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Abstract—To numerically solve a system of linear algebraic equations with a tridiagonal matrix, a
recursive version of Cramer’s rule is proposed. This method requires no additional restrictions on
the matrix of the system similar to those formulated for the double-sweep method. The results of
numerical experiments on a large set of test problems are presented. A comparative analysis of the
efficiency of the method and corresponding algorithms is given.
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1. INTRODUCTION

Solving systems of linear algebraic equations (SLAEs) is one of major problems in computational
algebra [1, 2]. SLAEs can be used in mathematical models either directly (for instance, in Leontiev’s
interindustry balance model) or as stages in numerically solving problems for differential equations
and systems describing physical processes [3]. In particular, SLAEs with tridiagonal matrices of large
dimension are inherent in approximating boundary value problems for ordinary differential equations of
the second order by three-point difference schemes, as well as in difference schemes for time-dependent
partial differential equations [4]. In the latter case the SLAEs are solved at each time level, that is,
multiple times.

Consider the following SLAE with a tridiagonal matrix:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b1y1 + c1y2 = f1,

akyk−1 + bkyk + ckyk+1 = fk, k = 2, 3, . . . , n − 1,

anyn−1 + bnyn = fn.

(1)

One of the well-known classical economical methods for solving systems of the form (1) is the
double-sweep method: various versions of this method are described, for instance, in the monograph [5].
The double-sweep method is known to be an implementation of Gaussian elimination for the systems
of form (1), and the monotonic sweep method is the simplest and most frequently used one. However,
the natural condition of unique solvability of system (1) (nonzero determinant of the system) is often
insufficient for the method to be correct and stable. The following sufficient conditions of correctness
and stability of the monotonic sweep method are typically used [5]:
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1) b1 �= 0, bn �= 0, ai �= 0, ci �= 0, i = 2, 3, . . . , n − 1,

2) |b1| ≥ |c1, |bi| ≥ |ai| + |ci|, i = 2, 3, . . . , n − 1, |bn| ≥ |an|,
(2)

and in the second group of conditions (2) at least one inequality is assumed to be strict. These inequalities
are commonly referred to as “diagonal dominance conditions.” If system (1) is part of a more complex
problem (for instance, in a reservoir hydrodynamics model [6]) and its coefficients are calculated when
implementing this model, conditions of type (2) are often difficult to verify. In this case, a more universal
method for solving system (1) is needed. The non-monotonic double-sweep method (or Gaussian
elimination with partial pivoting [5]) is more universal: it solves system (1) under assumptions that
are more general than (2), but uses a rather complicated logic. Despite the above disadvantages,
Gaussian elimination is one of the most economical methods: the number of arithmetic operations for its
implementation in the case of a dense matrix is proportional to n3, while for the double-sweep method it
is proportional to n [4].

The most universal method for solving systems of linear algebraic equations with square matrices
is Cramer’s rule [7]. It requires only one condition: the system determinant must be nonzero. However,
Cramer’s rule is not considered economical: the number of arithmetic operations for implementing it is
proportional to n! [4]. Therefore, this method is typically not used in computational practice. It is shown
in the present study that since the matrix of system (1) has a band structure, Cramer’s rule can be
implemented recursively, retaining its universality and efficiency, like the double-sweep method.

2. RECURSIVE ALGORITHM FOR SOLVING SYSTEM (1)

Let us introduce the following notation for determinants (k = 1, 2, . . . , n − 1):

Dk =

⎡

⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

bk ck 0 · · · · · · 0

ak+1 bk+1 ck+1 0 · · · · · ·

0 · · · · · · · · · 0 · · ·

· · · 0 · · · · · · · · · 0

· · · · · · 0 an−1 bn−1 cn−1

0 · · · · · · 0 an bn

⎤

⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

, Dn = bn, Dn+1 = 1;

Fk =

⎡

⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

fk ck 0 · · · · · · 0

fk+1 bk+1 ck+1 0 · · · · · ·

fk+2 · · · · · · · · · 0 · · ·

· · · 0 · · · · · · · · · 0

· · · · · · 0 an−1 bn−1 cn−1

fn · · · · · · 0 an bn

⎤

⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

, Fn = fn.

It is easy to verify that these determinants satisfy the recurrence relations (k = 1, 2, . . . , n − 1):

Dk = bkDk+1 − ckak+1Dk+2, (3)

Fk = fkDk+1 − ckFk+1. (4)

The following simple theorem forms a basis of the method:
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Theorem. If D1 �= 0 then ck and Dk+1 are never both zero together for any k.

Proof. Let, on the contrary, ck = Dk+1 = 0 for some k. Then it follows from (3) that Dk = 0. Hence,
by virtue of (3), we conclude by induction that Dk−1 = 0 and Dk−2 = 0, . . . ,D1 = 0. The latter relation
contradicts the assumption D1 �= 0, and our theorem is proved. �

The condition D1 �= 0 means that the system of equations has a unique solution. It is this condition
that we will assume to be satisfied. Let us briefly describe the method: As the double-sweep method
(Gaussian elimination), it consists of two steps. The forward sweep of the method is based on the
recurrent calculation of the determinants Dk and Fk by formulas (3) and (4) with corresponding initial
conditions. The backward sweep, by virtue of the theorem, can be implemented by using various versions
of the conditional operator, for instance: Let the quantities y1, y2, . . . , yk be found; if Dk+1 �= 0, we
use Cramer’s formula to find yk+1 as a solution to a “truncated system” (equations of the system (1)
beginning with the k + 1th one):

yk+1 =
Fk+1 − ak+1Dk+2yk

Dk+1
, (5)

if Dk+1 = 0, the unknown yk+1 is determined from the corresponding equation in (1):

yk+1 =
fk − akyk−1 − bkyk

ck
(6)

(in this case ck �= 0).
Thus, formulas (3)–(6) are used to obtain an algorithm that implements the above-proposed

method for solving system (1) (iterative Cramer’s algorithm). For an unambiguous interpretation of the
commands, it is presented in the form of a Pascal-like pseudocode:

IC-algorithm.

� INPUT (n; {ak}n
k=2 ; {bk}n

k=1 ; {ck}n−1
k=1 ; {fk}n

k=1);
begin
Dn+1 = 1; Dn = bn; Fn = fn;
for k = 1 to n-1 do

begin
Dn−k = bn−kDn−k+1 − cn−kan−k+1Dn−k+2;
Fn−k = fn−kDn−k+1 − cn−kFn−k+1;

end
y1 = F1/D1;
if abs(c1) < abs(D2) then y2 = (F2 − a2D3y1)/D2

else y2 = (f1 − b1y1)/c1;
for k=2 to n-1 do
if abs(ck) < abs(Dk+1) then yk+1 = (Fk+1 − ak+1Dk+2yk)/Dk+1

else yk+1 = (fk − akyk−1 − bkyk)/ck;
end
OUTPUT ({yk}n

k=1)�

Numerous experiments have shown (see Tables 2, 3, and 7) that the IC-algorithm does not always
yield the desired result: for systems with a large number of equations it can accumulate errors in the
recurrent calculation of determinants by formulas (3) and (4). To avoid this, the algorithm is modified
by introducing some normalizing factors. Let us multiply the kth equation of system (1) by a nonzero
factor λk, thereby changing the coefficients and the right-hand sides of the system but not changing its
solution. Let us use the above IC-algorithm to solve the resulting system and set
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λk =
1

|Dk+1| + |ck|
, k = 1, 2, . . . , n − 1, λn = 1.

This choice of the normalizing factors is correct by virtue of the theorem we have proved above.
However, the question of how to find the optimal normalizing factors in the method remains open and
requires further studies. In terms of the initial system (1) the new algorithm (called the modified IC-
algorithm) is as follows:

MIC-algorithm.

� INPUT (n; {ak}n
k=2 ; {bk}n

k=1 ; {ck}n−1
k=1 ; {fk}n

k=1);
begin
Dn+1 = 1; Dn = bn; Fn = fn; λn = 1;
for k = 1 to n-1 do

begin
λn−k = 1/ (|Dn−k+1| + |cn−k|) ;
Dn−k = (bn−kDn−k+1 − cn−kλn−k+1an−k+1Dn−k+2)λn−k;
Fn−k = (fn−kDn−k+1 − cn−kFn−k+1)λn−k;

end
y1 = F1/D1;
if abs(c1) < abs(D2) then y2 = (F2 − λ2a2D3y1) /D2

else y2 = (f1 − b1y1) /c1;
for k=2 to n-1 do

if abs(ck) < abs(Dk+1) then yk+1 = (Fk+1 − λk+1ak+1Dk+2yk) /Dk+1

else yk+1 = (fk − akyk−1 − bkyk) /ck;
end
OUTPUT ({yk}n

k=1)�

Note that theoretical issues of stability of the modified algorithm (MIC), which is considered to be the
main one in the present paper, are not discussed here. Such a study (as evident from paper [10]) is rather
complicated even for the monotonic sweep method. It is of interest in its own right and will be performed
in the future.

3. RESULTS OF NUMERICAL EXPERIMENTS

Let us illustrate the computational capabilities of the algorithms proposed above with a series of test
problems, comparing them with the monotonic sweep method called DSM (Double-Sweep Method).
The numerical experiments have been performed in the MatLab environment. The results are presented
in Tables 1–7. The tables present absolute errors calculated by the formula

max
1≤k≤n

|yk − ȳk| ,

where yk is an exact solution and ȳk is an approximate solution of the corresponding problem.

Problem 1:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y1 = φ,

−yk−1 + 2yk − yk+1 = 0, k = 2, 3, . . . , n − 1,

yn = ψ.

(7)
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Table 1. Problem 1, φ = −1, ψ = 1

n 10 102 103 104

DSM 2 · 10−16 5 · 10−15 10−13 3 · 10−12

IC 2 · 10−16 3 · 10−15 10−15 2 · 10−15

MIC 2 · 10−16 10−14 10−12 2 · 10−11

The system of equations (7) is obtained by approximating with a three-point difference scheme the
following simple boundary-value problem for a second-order equation:

⎧
⎪⎨

⎪⎩

d2y

dx2
= 0, x ∈ (0, 1) ,

y (0) = φ, y (1) = ψ.

The solution to system (7) has the following form:

yk =
φ (n − k) + ψ (k − 1)

n − 1
, k = 1, 2, . . . , n.

It is easy to see that conditions (2) for system (7) are satisfied. Hence, the monotonic sweep method
is correct and stable, which is confirmed by calculations whose results are presented in Table 1. The IC
and MIC algorithms are also efficient for this problem.

Problem 2:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y1 = 0,

(cth (R) − 1) yk−1 − 2 cth (R) yk + (cth (R) + 1) yk+1 = 0, k = 2, 3, . . . , n − 1,

yn = 1;

(8)

R =
1

2ε (n − 1)
.

System (8) is a difference scheme proposed by A.M. Il’in (see [8, 9]) to approximate the following
singularly perturbed boundary value problem:

⎧
⎪⎨

⎪⎩

ε
d2y

dx2
+

dy

dx
= 0, x ∈ (0, 1) ;

y (0) = 0, y (1) = 1.

The solution to system (8) has the form

yk =
1 − e−(k−1)/ε(n−1)

1 − e−1ε
, k = 1, 2, . . . , n.

Conditions (2) for system (8) are satisfied, and the monotonic sweep method is correct and stable.
This is confirmed (as in the previous example) by calculation with results presented in Table 2. The MIC
algorithm also works well for this problem. However, the IC algorithm accumulates errors in case of a
sufficiently large number of equations in the system.
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Table 2. Problem 2, ε = 10−2

n 10 102 103 104

DSM 2 · 10−15 7 · 10−15 8 · 10−13 8 · 10−11

IC 10−15 2 · 10−15 NaN NaN

MIC 10−15 6 · 10−15 2 · 10−13 3 · 10−13

Table 3. Problem 3, ε = 10−3

n 10 102 103 104

DSM 2 · 10−16 6 · 10−15 2 · 10−13 8 · 10−12

IC 10−15 2 · 10−15 NaN NaN

MIC 2 · 10−16 2 · 10−15 7 · 10−14 2 · 10−12

Problem 3:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−y1 + y2 = 1
n−1 ,

[
ε − (k−1)

2(n−1)2

]
yk−1 − 2εyk +

[
ε + (k−1)

2(n−1)2

]
yk+1 = k−1

(n−1)3
, k = 2, 3, . . . , n − 1,

yn = 2.

(9)

The system of equations (9) is taken from [10] and is a difference scheme for solving the following
problem:

⎧
⎪⎨

⎪⎩

ε
d2y

dx2
+ x

dy

dx
= x, x ∈ (0, 1) ;

dy

dx
(0) = 1, y (1) = 2.

The solution to system (9) has the form

yk = 1 +
k − 1
n − 1

, k = 1, 2, . . . , n.

Conditions (2) for system (9) are, generally speaking, not satisfied: in the equations with numbers
such that 2ε (n − 1)2 + 1 < k the conditions of diagonal dominance are not satisfied. However, the
monotonic sweep method works well (as shown in Table 3). The MIC method is also efficient, in contrast
to the IC algorithm, which does not work at sufficiently large n.

Problem 4:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y1 = φ,

−yk−1 + yk − yk+1 = 0, k = 2, 3, . . . , n − 1,

yn = ψ.

(10)

The system of equations (10) is presented in [5] as an example of a system for which the monotonic
sweep algorithm is not suitable. In fact, in calculating the third sweep coefficient the algorithm fails
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Table 4. Problem 4, φ = −5, ψ = 10

n 30 3 · 102 3 · 103 3 · 104

DSM NaN NaN NaN NaN

IC 2 · 10−14 6 · 10−13 6 · 10−12 7 · 10−11

MIC 2 · 10−14 6 · 10−13 6 · 10−12 7 · 10−11

Table 5. Problem 5, φ = −1, ψ = 10

n 40 4 · 102 4 · 103 4 · 104

DSM 0.7 0.7 0.7 0.4

IC 5 · 10−14 4 · 10−13 5 · 10−12 6 · 10−11

MIC 2 · 10−14 6 · 10−13 8 · 10−12 4 · 10−11

because of division by zero. Note that the conditions of diagonal dominance (2) do not hold for this
system. At the same time, if n �= 3k + 1 for some integer k > 0, a solution to system (10) exists and is
determined by the formula

yk =
φ sin π(n−k)

3 + ψ sin π(k−1)
3

sin π(n−1)
3

, k = 1, 2, . . . , n.

The results presented in Table 4 show that the monotonic sweep method is unacceptable for this case,
but both IC and MIC are efficient.

Problem 5:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y1 = φ,

−yk−1 +
√

2yk − yk+1 = 0, k = 2, 3, . . . , n − 1,

yn = ψ.

(11)

The system of equations (11) is presented as an example of a system for which the monotonic sweep
algorithm is not correct. In fact, in calculating the fourth sweep coefficient the algorithm fails because of
division by zero. Note that the conditions of diagonal dominance (2) do not hold for this system. At the
same time, if n �= 4k + 1 for some integer k > 0, a solution to the system (11) exists and is determined
by the formula

yk =
φ sin π(n−k)

4 + ψ sin π(k−1)
4

sin π(n−1)
4

, k = 1, 2, . . . , n.

The results presented in Table 5 show that the monotonic sweep method is unacceptable in this case,
but both IC and MIC work well.

Problem 6:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−y1 + y2 = −1,

cos (πk/2) yk−1 + cos (πk/2) yk + sin (πk/2) yk+1 = (−1)k , k = 2, 3, . . . , 4m − 1,

y4m−1 + y4m = 1.

(12)
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Table 6. Problem 6

n 40 4 · 102 4 · 103 4 · 104

DSM 0.5 0.5 0.5 0.5

IC 4 · 10−15 8 · 10−14 7 · 10−13 6 · 10−12

MIC 4 · 10−15 8 · 10−14 7 · 10−13 6 · 10−12

Table 7. Problem 7

n 12 120 12 · 102 12 · 103

DSM 0.04 0.2 0.2 0.3

IC 2 · 10−15 10−15 ∞ ∞

MIC 10−15 2 · 10−15 3 · 10−15 3 · 10−15

The system of equations (12) splits into subsystems of dimension 4 × 4 and does not satisfy
conditions (2). Its solution is determined by the formula

yk = cos (πk/2) , k = 1, 2, . . . , 4m.

The results of numerical experiments show (Table 6) that system (12) cannot be solved by the
monotonic sweep method. Both the IC and MIC algorithms solve the system (12) well.

Problem 7:

cos
(

π
k + 1

4

)
yk−1 − cos

(
π

k

4

)
yk + 2 sin

(
π

k

3

)
yk+1

= 2 sin
(

π
k

3

)
cos

(
π

k + 2
4

)
, k = 1, 2, . . . , 12m. (13)

This is one more splitting system with a solution determined by the formula

yk = cos
(

π
k + 1

4

)
, k = 1, 2, . . . , 12m.

System (13) does not satisfy conditions (2) and (as shown in Table 7) cannot be solved by the
monotonic sweep method. The IC algorithm in case of a large number of equations in the system is
also not efficient, but the MIC method solves the system (13) well.

Thus, the MIC algorithm turned out to be efficient in solving all the problems presented in the present
paper, while the monotonic sweep method has a limited area of application. The IC algorithm, as shown
by the numerical experiments, may cause accumulation of errors at a large number of equations in the
system.
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