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Abstract—This paper discusses a computational 3D dual porosity model of two-phase incompress-
ible fluid filtration in a fractured-porous medium. The conservation laws are formulated in integral
form, and for their spatial approximation a combination of a mixed finite element method to determine
the total flow and pressure velocities and a finite volume method to determine the saturations in the
porous blocks and in the fractures are used. The equations for saturations are approximated with
an explicit upwind scheme to eliminate nonphysical oscillations. The model under consideration
includes injection and production wells with given total flow rates. For the total velocities and
pressures, a Neumann problem is formulated, for which a condition of unique solvability is used and
a method for solving it without additional conditions is proposed. For the explicit upwind scheme
used for solving the equations for saturations, a weak maximum principle is established, which is
illustrated by computational experiments.
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INTRODUCTION

This paper is devoted to some algorithmic issues of numerical modeling of the filtration process of a
two-phase incompressible fluid in fractured-porous media. Major applications for such models are in oil
production technologies based on the processes of oil displacement by water. In what follows the two-
phase fluid will be considered as an “oil–water” system. An extensive literature on the development of
computational methods for modeling of oil reservoirs has evolved (see, for instance, [1–6]). Numerous
publications provide descriptions of fractured-porous reservoirs, including fluid flow in such media
(see, for instance, monograph [7] and reviews [8–12]). According to the terminology used in [12], the
models of processes in fractured-porous media are divided into two main classes: single-continuum
and multi-continuum models. In the former, standard equations of (single-phase or multi-phase)
filtration are used with some efficient permeability tensor responsible for the presence of a fractured
structure along with porous blocks. The multi-continuum models are subdivided into models with an
explicit (if information on the geometric characteristics of fracturing is available) and with an implicit
representation of fractures. The latter models are presented in the form of continua with a fluid transfer
between them that takes place according to a given law. The algorithm considered below is used for a
model of this latter kind, which is usually called a dual porosity model.

The dual porosity models originated from the classical papers [13] and [14], which considered the case
of a single-phase fluid. The results of these papers were used for multi-phase fluids in [15–17], where
major attention was given to choosing a function of fluid transfer between the fractures and the pore
blocks, which was defined by the difference in the corresponding pressures. There are several papers in
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which the flow rates and pressures are used to define the exchange function [18–20] to better take into
account the fractured-porous medium characteristics (for instance, the formation anisotropy).

The numerical solution of filtration problems with a dual porosity model were discussed in detail in
[17]. One should mention a recent paper, [21], in which the velocities and pressures were calculated by
a mixed finite element method [22] with Raviart–Thomas elements [23], and the saturation equations
were approximated by a finite element method in space and an implicit Euler scheme in time. In this
case, to eliminate the numerical oscillations an upstream regularization was used by introducing artificial
diffusion. Note that the elimination of the nonphysical oscillations at the front of the oil-water contact
is one of the main difficulties in constructing computational algorithms for solving problems of oil
displacement by water. Various approaches to solving this problem were discussed by us in [24]. Among
the many methods for solving this issue, let us mention a class of algorithms that most efficiently, in
our opinion, solves the problem of eliminating the oscillations. We mean finite volume methods with
an upstream approximation of the convective terms relating scalar functions to grid cells [25–28]. In
this paper, the above approach is used to numerically solve the problem of filtration of a two-phase
incompressible fluid in a fractured-porous medium with the Buckley–Leverett model [29]. This model
lacks the natural regularization due to capillary diffusion, and the appearance of numerical oscillations
becomes more difficult than in models that take into account capillary forces. A multidimensional
two-continuum mathematical model is considered in terms of “velocity–pressure–saturation,” it is
numerically implemented by a mixed finite element method [22, 23] to find the velocities and pressures
and by a finite volume method with an upstream approximation of the phase velocities in a combination
with an explicit Euler scheme in time to find the saturations. In fact, a version of the IMPES method is
implemented [30].

Note that the Buckley–Leverett model is characterized by the presence of discontinuous solutions.
Therefore, the initial problem will be formulated not in the form of a traditional system of differential
equations, but in the form of a system of integral identities. Besides, the three-dimensional model being
considered includes injection and production wells with given flow rates, and a zero normal velocity
condition is imposed on the outer boundary of the reservoir. Well modeling is performed in accordance
with [31]. The solvability of the problem in this formulation is ensured by a condition of mass balance,
but there arises a singular Neumann problem for the pressures, which is solved in a mixed formulation.
The difficulties caused by the need to solve the problem in a subspace have been overcome for a single-
continuum model by using a modification of the Lagrange function described in [31] that allows finding
stationary points in the entire space.

The paper is organized as follows. Section 1 presents the equations of filtration of a two-phase
incompressible fluid in the form of conservation laws of mass and momentum in integral form for the
two-component Buckley–Leverett model. In Section 2, based on a mixed finite element method, an
algorithm is presented for calculating the total velocities of fluid flows and pressures at given saturations
in the pore blocks and fractures. The above-mentioned method of solving the singular Neumann problem
in a mixed formulation is described. In Section 3, with a finite volume method, an upwind algorithm is
constructed for calculating the water saturations in the pore blocks and fractures in terms of variables
related to grid cells. Section 4 is devoted to a description of the explicit Euler scheme used for calculating
the saturations and a study of the monotonicity of this scheme. Section 5 presents the results of some
computational experiments, in which primary attention is given to a demonstration of the absence of
oscillations at the front of a discontinuity of the water saturation functions.

1. INTEGRAL FORM OF THE DUAL POROSITY MODEL

Let Ω ⊂ R3 be a domain of flow of a two-phase incompressible fluid with outer boundary Γ (it will
be described below how wells are taken into account). The mass conservation of each phase in the pore
blocks and fractures with a fluid flow between them may be written in the following integral form: for any
open set τ ⊂ Ω

d

dt

〈
φ(β)S(β)

α

〉

τ
+

1
|τ |

∫

∂τ

v(β)
α · nτ dγ =

〈
r(β)
α

〉

τ
, α = w, o, β = b, f, (1)
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where the subscripts w and o are for water and oil, respectively, and the superscripts b and f are for pore

blocks and fractures, φ(β) are the porosities of pore blocks and fractures, S(β)
α and v(β)

α are the saturations
and phase velocities, respectively, nτ is the unit vector of the outer normal to the boundary ∂τ , |τ | is the

volume of the set τ , r
(β)
α is a function of mass transfer between the pore blocks and fractures, and 〈 · 〉τ is

averaging of a function over the set τ . A modification of Eqs. (1) with sources of mass from injection and
production wells will be presented below. Note that, in contrast to the formulation of mass conservation
in the form of differential equations, (1) hold also for the Buckley–Leverett model, in which saturations
are, as a rule, discontinuous functions. The entire space in the pore blocks and fractures is assumed to
be filled with fluid:

S(β)
w + S(β)

o = 1, β = b, f. (2)

The mass balance for each phase in terms of the mass transfer function can be written as follows [15]:

r(b)
α + r(f)

α = 0, α = w, o. (3)

Assuming that the porosity φ(β) does not depend on time, from the equalities (1), (2) we have

∫

∂τ

v(β) · nτ dγ = |τ |
〈
r(β)
〉

τ
, β = b, f, (4)

where v(β) = v(β)
w + v(β)

o and r(β) = r
(β)
w + r

(β)
o are the total velocities and total mass transfer functions

in the pore blocks and fractures, respectively. In what follows, according to (3), we will denote r
(b)
α = rα,

r
(f)
α = −rα and, correspondingly, r(b) = r, r(f) = −r, where r = rw + ro. For smooth solutions the

equalities (4) can be rewritten as ∇ · v(b) = r and ∇ · v(f) = −r.
Consider Darcy’s law. Before writing it in integral form, we present the boundary conditions and

consider the question of including into the model of (injection) and (production) wells. On the external
boundary Γ, for water and oil we specify the following zero normal velocity conditions of the phase flows:

v(β)
α · n |Γ = 0, α = w, o, β = b, f, (5)

where n is the unit vector of the outer-pointing normal for Ω, which is defined almost everywhere on Γ.
From (5) we have the zero normal velocity condition for the total flows

v(β) · n |Γ = 0, β = b, f. (6)

Following [31], we introduce wells in the form of a system of open sets Ωd,m, m = 1, . . . ,Md, where the
subscripts d = in and d = pr correspond to injection and production wells. Here under wells we mean
only the perforated fragments of real wells, which are the sources/sinks of the fluid. It will be assumed
that Md > 0, d = in, pr, that is, for several given injection wells there is at least one production well. The
case Min = Mpr = 0 under the condition (5) (the absence of sources/sinks) is of no interest. Assume
that

Ωd =
Md⋃

m=1

Ωd,m, d = in,pr, Ωd,m ∩ Ωd,l = ∅, m �= l, Ωin ∩ Ωpr = ∅. (7)

Let

G = Ω ∪ Ωin ∪ Ωpr, Γd,m = ∂Ωd,m, d = in,pr.

At the wells, we specify boundary conditions of the form
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p(β)|Γd,m
= c

(β)
d,m,

∫

Γd,m

v(β) · nd,m dγ = −Q
(β)
d,m, (8)

m = 1, . . . ,Md, d = in,pr, β = b, f,

where nd,m is the unit vector of the normal on Γd,m that is inward-pointing for Ωd,m (outer-pointing for

Ω); c
(β)
d,m are some unknown constants; Q

(β)
in,m ≥ 0, Q

(β)
pr,m ≤ 0 are the volume flow rates of the injection

and production wells for the pore blocks and fractures separately. The well flow rates are specified by

the equalities Qd,m = Q
(b)
d,m + Q

(f)
d,m. A method of their separation for pore blocks and fractures will be

presented below in the numerical experiments. In this case, the velocity vectors are outer-pointing for
the injection wells and inward-pointing for the production wells.

Let us present some notation needed to formulate Darcy’s law. Here p(β), β = b, f , denote the

pressures in the pore blocks and fractures, which are, together with S
(β)
α and v(β), sought-for functions

of the problem under consideration. Note that for the Buckley–Leverett model the phase pressures

coincide: p
(β)
w = p

(β)
o = p(β). Let λα

(
S

(β)
α

)
= kr,α

(
S

(β)
α

)
/μα be the phase mobilities, where kr,α are

the relative phase permeabilities, and μα are the dynamic viscosities of the phases. Let us denote

S(β) = S
(β)
w , and, according to the equality (2), S(β)

o = 1−S(β). Next, we introduce total mobilities in the

pore blocks and fractures: λ
(
S(β)

)
= λw

(
S(β)

)
+ λo

(
1 − S(β)

)
. Finally, let K(β)

(
S(β)

)
= K

(β)
0 λ

(
S(β)

)
,

where K
(β)
0 are the absolute permeability tensors. It is well known that λ

(
S(β)

)
≥ λ0 > 0; hence, the

tensor
[
K(β)

(
S(β)

)]−1 exists.

Let us continue the sought-for scalar functions (of saturation and pressure) inside the wells by
constants, and thereby we consider these functions as elements of a closed subspace W ⊂ L2(G). We
also continue the total velocities to the entire set G, assuming that ∇ · v(β) ∈ W . Now Darcy’s law can
be written for the total velocities in the pore blocks and fractures in integral form. Note that in the present
paper the effects of gravitational forces (we consider a rather thin formation) are neglected: to take into
account gravity we need a special modification of the algorithm for calculating the saturation, which will
be the subject of another paper. For an arbitrary vector-function u such that ∇ · u ∈ W and u · n |Γ = 0,
consider the integral identity

∫

Ω

[
K(β)

(
S(β)

)]−1 v(β) · u dx =
∫

G

p(β) ∇ · u dx, β = b, f. (9)

For smooth solutions, from Green’s formula we have the equality

∫

G

p(β) ∇ · u dx =
∫

Ω

p(β) ∇ · u dx −
∑

d=in,pr

Md∑

m=1

∫

Γd,m

p(β) u · nd,m dγ = −
∫

Ω

∇p(β) · u dx.

Since the vector-function u is arbitrary, from the above equality and equation (9) we have the following
standard representation of Darcy’s law:

v(β) = −K(β)
(
S(β)

)
∇p(β), β = b, f. (10)

In this case, for the phase velocities Darcy’s law is written as follows:

v(β)
α = −K(β)

α

(
S(β)

α

)
∇p(β), α = w, o, β = b, f,
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where K
(β)
α

(
S

(β)
α

)
= K

(β)
0 λα

(
S

(β)
α

)
.

It is easy to see that, according to (10),

v(β)
α = σα

(
S(β)

)
v(β), α = w, o, β = b, f, (11)

where σα

(
S(β)

)
= λα

(
S

(β)
α

)
/λ
(
S(β)

)
. Thus, for discontinuous solutions we will take Eq. (9) as the initial

formulation of Darcy’s law. In this case the phase velocities are specified by formulas (11). In the case of
smooth solutions the equalities (9) and (11) are transformed to the classical form of Darcy’s law for each
phase.

Let us modify the equalities (4) taking into account the wells. Let τd,m be a subdomain of the domain
G that contains only one injection well, Ωd,m. The existence of such a subdomain for any well follows
from the conditions (7). Let ωd,m = τd,m \ Ωd,m. In this case ωd,m ⊂ Ω. Then we have

∫

∂ωd,m

v(β) · nd,m dγ =
∫

∂τd,m

v(β) · nd,m dγ +
∫

Γd,m

v(β) · nd,m dγ, β = b, f. (12)

According to the boundary conditions (8), the equality (4) takes the following form:

∫

∂τd,m

v(β) · nd,m dγ =
∫

ωd,m

r(β) dx + Q
(β)
d,m. (13)

Here the vectors of the normal nd,m are outer-pointing for the set ωd,m; that is, they are outer-pointing
for τd,m and inward-pointing for Ωd,m, which corresponds to the conditions (8). Thus, for any subdomain
τ ⊂ G we have the equalities (4) if τ does not have wells and (13) if τ = τd,m has a single well. For the
entire domain G we have

∫

Γ

v(β) · n dγ +
∑

d=in,pr

Md∑

m=1

∫

Γd,m

v(β) · nd,m dγ =
∫

Ω

r(β) dx, β = b, f.

Then, according to the boundary conditions (6), (8), we have the following necessary solvability
condition for the problem (4), (6), (8), (9), (11) under given saturations:

Min∑

m=1

Q
(β)
in,m +

Mpr∑

m=1

Q(β)
pr,m =

∫

Ω

r(β) dx, β = b, f. (14)

The non-zero right-hand side of (14) is a peculiarity of the dual porosity model: a water source can
only be related to pore blocks, and oil can come into production wells only from fractures. Nevertheless,
from (3) and (14) we have the following general condition of balance:

Min∑

m=1

Qin,m +
Mpr∑

m=1

Qpr,m = 0. (15)

A requirement for the initial data of the problem is the equality (15); (14) means that if the well flow

rates Q
(β)
d,m do not depend on time, the integral of the mass transfer function in the right-hand side of the

equality (14) also does not depend on time and is equal to a given value. Supplementing equations (1)
by equations in the wells will be considered in Section 3 when discussing a numerical method of finding
the saturations.
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Let us consider choosing of the mass transfer functions r
(β)
α . Following [19], we use the total hybrid

mass transfer function

r = k(b,f)η(b,f)
(
p(f) − p(b)

)
, (16)

where k(b,f) is a nondimensional parameter characterizing the permeability between the pore blocks
and fractures. According to [13] and [15], k(b,f) ∼ k0/ν

2, where k0 is an average value of absolute
permeability of the pore blocks, and ν is the ratio of a characteristic volume to the total surface of
fractures contained in the volume. Following [21], let

η(b,f) =
1
2

(
λ
(
S(b)
)

+ λ
(
S(f)
))

.

The mass transfer functions in the equations for phase saturations are given by the equality

rα =

⎧
⎪⎨

⎪⎩

σα

(
S(b)
)
r, p(f) ≤ p(b),

σα

(
S(f)
)
r, p(f) > p(b),

α = w, o. (17)

Finally note that the operator of the boundary value problem for the total velocities and pressures (4),
(6), (9), (13) has a one-dimensional kernel: the pressures are determined up to a constant that is common
to both pressures. Let p(b), p(f) be a solution to the problem. It follows from Darcy’s law (9) that the
functions p̂(b) = p(b) + c(b) and p̂(f) = p(f) + c(f) are also solutions, where c(b) and c(f) are arbitrary
numbers. Substituting these functions to equation (4) and taking into account the form of the mass
transfer function (16) gives the equality

∫

τ

ηb,f
(
c(b) − c(f)

)
dx = 0.

Hence, c(b) = c(f) = c. Thus, the difference between the pressures in the pore blocks and fractures is
determined uniquely. Then we have the following obvious representations:

p̂(b) = (q + c) +
1
2
(
p(b) − p(f)

)
, p̂(f) = (q + c) − 1

2
(
p(b) − p(f)

)
,

where q =
(
p(b) + p(f)

)
/2, that is, the sum of the pressures is determined only up to a constant. To

eliminate the above ambiguity, we require that the following condition of orthogonality of the sum of the
pressures to the constant be satisfied:

p(b) + p(f) ∈ W⊥, W⊥ =
{

q ∈ W,

∫

G

q dx = 0
}

. (18)
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2. CALCULATION OF THE TOTAL VELOCITIES AND PRESSURES

To numerically solve the problem (4), (9), (13) at each time level tn, we use a mixed finite element
method [22] with Raviart–Thomas elements of the lowest order [23]. For simplicity, as the domain
G we take a parallelepiped with a cubic grid of spacing h: for natural numbers Mx, My, Mz let
G = [0, Lx] × [0, Ly] × [0, Lz ], where Lx = Mxh, Ly = Myh, Lz = Mzh. Let T be the set of all grid
cells:

τ = [xi−1, xi] × [yj−1, yj] × [zk−1, zk], i = 1, . . . ,Mx, j = 1, . . . ,My, k = 1, . . . ,Mz.

To approximate the pressures p(β), we construct a space of piecewise constant functions, Wh ⊂ W .
Let us introduce a set of cells whose union contains the injection and production wells:

Td,m =
{

τ ∈ T | τ
⋂

Ωd,m �= ∅
}
, m = 1, . . . ,Md, d = in,pr.

We denote

Td =
Md⋃

m=1

Td,m, d = in,pr, T0 = T \ (Tin ∪ Tpr).

In this case Ωd,m ⊂ τd,m, Ωd ⊂ τd, the set T0 consists of the cells τ ⊂ Ω not containing wells. The space
Wh is defined as follows:

Wh =
{

q =
∑

τ∈T0

qτχ(τ) +
Min∑

m=1

qin,mχ(τin,m) +
Mpr∑

m=1

qpr,mχ(τpr,m)
}

, (19)

where χ(τ) and χ(τd,m) are the characteristic functions of the sets τ and τd,m, respectively. Consider a
grid analog of the space W⊥ which was introduced in the condition (18):

W⊥
h =

{

q ∈ Wh

∣
∣
∣
∣

∑

τ∈T0

|τ | qτ +
Min∑

m=1

|τin,m| qin,m +
Mpr∑

m=1

|τpr,m| qpr,m = 0
}

. (20)

It is easy to see that Wh ⊂ W and W⊥
h ⊂ W⊥.

Consider the space of grid vector functions RT[0] with a Raviart–Thomas basis of the lowest order
in which the components of an arbitrary vector u ∈ RT[0] have the form

ux(x) =
Mx∑

i=0

My∑

j=1

Mz∑

k=1

ui,j−1/2,k−1/2 ϕi(x)χj−1/2(y)χk−1/2(z),

uy(x) =
Mx∑

i=1

My∑

j=0

Mz∑

k=1

ui−1/2,j,k−1/2 χi−1/2(x)ϕj(y)χk−1/2(z),

uz(x) =
Mx∑

i=1

My∑

j=1

Mz∑

k=0

ui−1/2,j−1/2,k χi−1/2(x)χj−1/2(y)ϕk(z),

where χl−1/2(ξ) are the characteristic functions of the sets [ξl−1, ξl], and ϕl(ξ) are the piecewise linear
hat functions with supports (ξl−1, ξl+1), l = 1, . . . , Nξ − 1. The supports of the functions ϕ0(ξ) and
ϕNξ

(ξ) are the intervals (0, h) and (Lξ − h,Lξ).
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The grid vector functions, v(β), are sought for as elements of the space

Vh = {u ∈ RT[0]

∣
∣∇ · u ∈ Wh }.

For the grid functions we will use the notation from Section 1. A grid function p(β) is sought for as an
element of the space Wh and, according to (19), (20)

p(β) =
∑

τ∈T0

p(β)
τ χ(τ) +

Min∑

m=1

p
(β)
in,mχ(τin,m) +

Mpr∑

m=1

p(β)
pr,mχ(τpr,m),

and according to (18) we have

∑

τ∈T0

|τ |
(
p(b)

τ + p(f)
τ

)
+
∑

d=in,pr

Md∑

m=1

|τd,m|
(
p
(b)
d,m + p

(f)
d,m

)
= 0, (21)

that is, p(b) + p(f) ∈ W⊥
h . Then the grid analog of (9) is the equation

∫

Ω

[
K(β)

(
S(β)

)]−1
v(β) · u dx =

∑

τ∈T0

|τ | p(β)
τ (∇ · u)τ +

∑

d=in,pr

Md∑

m=1

|τd,m| p(β)
d,m(∇ · u)d,m, (22)

which holds for an arbitrary vector function u ∈ Vh, where v(β) ∈ Vh, p(β) ∈ Wh, S(β) ∈ Wh (at a fixed
time), and p(b) + p(f) ∈ W⊥

h .

Let r(β) be the approximation of a mass transfer function given by the equality (16):

r(b)
τ = rτ , r(f)

τ = −rτ

and

rτ = k(b,f)η(b,f)
τ

(
p(f)

τ − p(b)
τ

)
, (23)

where η
(b,f)
τ =

(
λ
(
S

(b)
τ

)
+ λ
(
S

(f)
τ

))
/2, S

(β)
τ is the value of the grid function S(β) in the cell τ . Then the

approximation of Eqs. (4), (13) can be written in the form of the following equalities:

(
∇ · v(β)

)
τ

= r(β)
τ , τ ∈ T0, (24)

(
∇ · v(β)

)
d,m

=
1

|τd,m|

( ∫

ωd,m

r(β) dx + Q
(β)
d,m

)

, m = 1, . . . ,Md, d = in,pr, (25)

where ωd,m = τd,m \ Ωd,m. Recall that ∇ · v(β) ∈ Wh.

Let us present the vector-matrix form of the problem (22), (24), (25). Let M0 be the number of cells
in T0. Let us introduce an Euclidean space EM of dimension M = M0 + Min + Mpr with inner product
[ · , · ] and norm ‖ · ‖. Note that M < MxMyMz , since each well is located in several cells of the set T . In
this case M = dimWh. The elements of the space EM are the column vectors q with components (q)τ
and (q)d,m. Following [24], we establish the following relationship between the elements of a column
vector q ∈ EM and the values of the grid function qh ∈ Wh:
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(q)τ =
√

|τ | qτ , τ ∈ T0, (q)d,m =
√
|τd,m| qd,m, m = 1, . . . ,Md, d = in,pr. (26)

Equations (22), (24), (25) take the following vector-matrix form:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

D(b) B 0 0

Bt −P 0 P

0 0t D(f) B

0t P Bt −P

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

v(b)

p(b)

v(f)

p(f)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

Q
(b)

0

Q
(f)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (27)

Here P is the square symmetric positive definite matrix that corresponds to the grid mass transfer
function rh given by the equality (23) with formulas (26).

Let us introduce a column vector e ∈ EM with components

(e)τ =
√

|τ |, τ ∈ T0, (e)d,m =
√

|τd,m|, m = 1, . . . ,Md, d = in,pr.

It is easy to see that B e = 0, and the matrix of the system (27) is singular with a one-dimensional
kernel of the form c (0 e 0 e )t, where c is an arbitrary constant. Then the orthogonality condition (21)(
p(b) + p(f) ∈ W⊥

h

)
takes the form

[
p(b) + p(f), e

]
= 0. (28)

Let

E⊥
M =

{
q ∈ EM | [ q, e ] = 0

}
.

In the subspace E⊥
M the symmetric matrix of the system (27) is positive definite. Similarly to [24], we

regularize the system (27); as a result, it becomes uniquely solvable. Let us consider the single-rank
matrix C = e · e t. It is easy to see that for an arbitrary column vector q ∈ EM we have the equality
Cq = [ q, e ] e, from which, in particular, it follows that the matrix C is positive semi-definite in EM :
[Cq, q ] = [ q, e ]2 ≥ 0. Consider the following system:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

D(b) B 0 0

Bt −P − εC 0 P − εC

0 0t D(f) B

0t P − εC Bt −P − εC

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

v(b)

p(b)

v(f)

p(f)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

Q
(b)

0

Q
(f)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (29)

where ε > 0 is a positive parameter. Let us show that the system (29) is uniquely solvable and its solution
is a solution to the problem (27), (28). For this, the velocities v(β) are removed from (29). As a result, we
obtain a system of equations for determining the column vector p ∈ EM × EM :

SH p = −Q,

where SH = SH0 + SHP + εSHC ,
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SH0 =

⎛

⎝
Bt(D(b))−1B 0

0t Bt(D(f))−1B

⎞

⎠ , SHP =

⎛

⎝
P −P

−P P

⎞

⎠ , SHC =

⎛

⎝
C C

C C

⎞

⎠ ,

p =

⎛

⎝
p(b)

p(f)

⎞

⎠ , Q =

⎛

⎝
Q

(b)

Q
(f)

⎞

⎠ .

Consider an arbitrary column vector q ∈ EM ×EM with components q(β) ∈ EM , β = b, f . The rectangu-
lar matrix B has a one-dimensional kernel KerB = { ξe, ξ ∈ R }. Hence, the column vectors q(β) can
be presented in the form

q(β) = q
(β)
0 + ξ(β)e,

[
q
(β)
0 , e

]
= 0.

There is a grid analogue of the Poincare inequality (see, for instance, [22]) from which we have the
inequality

[[SH0q, q]] ≥ c0[[q0, q0]], (30)

where q0 ∈ EM × EM is the column vector with components q
(b)
0 and q

(f)
0 . Hereinafter [[ ·, · ]] is the

inner product in EM × EM . Since the matrix P is positive definite and the vectors q
(b)
0 − q

(f)
0 and e are

orthogonal, we have

[[SHP q, q]] =
[
P (q(b) − q(f)), q(b) − q(f)

]
≥ cP

∥
∥q(b) − q(f)

∥
∥2 ≥ cP

(
ξ(b) − ξ(f)

)2‖e‖2. (31)

It is easy to see that

[[SHCq, q]] =
[
C(q(b) + q(f)), q(b) + q(f)

]
=
[
q(b) + q(f), e

]2 =
(
ξ(b) + ξ(f)

)2‖e‖4.

Here we used the orthogonality of the vectors q
(b)
0 + q

(f)
0 and e. Let c1 = min(cP , ε‖e‖2). From the above

equality and the inequality (31) we have

[[(SHP + εSHC)q, q]] ≥ 2c1

[(
ξ(b)
)2 +

(
ξ(f)
)2] ‖e‖2. (32)

From the inequalities (30) and (32) we have positive definiteness of the matrix SH :

[[SHq, q]] ≥ c[[q, q]],

where c = min(c0, 2c1). Thus, we have established unique solvability of the system of equations (29)
in EM .

The solution to the system (29) is a solution to the system (27) in the subspace defined by the
condition (28). Let us take the inner product of the system (29) and the column vector (0 e 0 e )t.
As a result of simple calculations we have

ε
[
C
(
p(b) + p(f)

)
, e
]
+
[
Q

(b) + Q
(f)

, e
]

= 0.

In vector-matrix form the condition (15) can be written as
[
Q

(b) + Q
(f)

, e
]

= 0, and, hence,
[
C(p(b) +

p(f)), e
]

=
[
p(b) + p(f), e

]
[e, e] = 0. Thus, the solution to the system (29) satisfies the condition (28).

Also, C
(
p(b) + p(f)

)
=
[
p(b) + p(f), e

]
e = 0, from which it immediately follows that the solution to the

system (29) is a solution to the system (27).
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3. THE UPWIND SCHEME

The computational algorithm for solving Eqs. (1) at α = w is constructed on the basis of upwind
schemes. As noted above, the spatial approximations of the water saturation functions are represented
by piecewise constant functions S(β) ∈ Wh. Recall that for the grid functions we use the same notation
as in Section 1. We have

S(β) =
∑

τ∈T0

S(β)
τ χ(τ) +

Min∑

m=1

S
(β)
in,mχ(τin,m) +

Mpr∑

m=1

S(β)
pr,mχ(τpr,m), β = b, f.

Then

〈
φ(β)S(β)

〉
τ

= φ(β)
τ S(β)

τ , τ ∈ T0.

Here for a nonhomogeneous formation we set φ(β) ∈ Wh. Then the semi-discreet analog of Eq. (1) with
formulas (11) takes the form

φ(β)
τ

dS
(β)
τ

dt
+

1
|τ |

∫

∂τ

v(β)
w · nτ dγ = r(β)

w,τ , β = b, f, τ ∈ T0. (33)

Note that r
(β)
w ∈ Wh and r

(β)
w,τ =

〈
r
(β)
w

〉
τ

. Recall that r
(b)
w,τ = −r

(f)
w,τ = rw,τ , where, in contrast to (17), we

use a grid function specified by the equality (23):

rw,τ =

⎧
⎪⎨

⎪⎩

σw

(
S

(b)
τ

)
rτ , p

(f)
τ ≤ p

(b)
τ ,

σw

(
S

(f)
τ

)
rτ , p

(f)
τ > p

(b)
τ .

(34)

The construction of the upwind scheme is reduced to an upwind approximation of the second term in
the left-hand side of Eq. (33). Formula (34), in fact, implements an upwind approximation for the fluid
flow between pore blocks and fractures: when the flow is directed from pores to fractures

(
p(f) ≤ p(b)

)
,

in a cell τ we take σw

(
S

(b)
τ

)
as the coefficient at rτ , and when the flow is directed from fractures to pores

(
p(f) > p(b)

)
, we use σw

(
S

(f)
τ

)
. That is, an upwind scheme taking into account mass transfer is specified

by the initial definition of the mass transfer function (16), (17).
Let e be one of the faces of a cell τ . Assume that e is an inner face, that is, it is not a part of the

outer boundary Γ on which, according to (5),
〈
v(β)

w

〉
e
· ne,τ = 0. Hereinafter ne,τ is the unit vector of the

normal (that is outward pointing for τ ) on the face e. To approximate the second term in the left-hand

side of Eq. (33), for each face of the cell τ we need to calculate
〈
v(β)

w

〉
e
· ne,τ , where 〈 · 〉e is averaging of

a vector over the face e. In what follows τe will mean the cell that is adjacent to τ : τe ∩ τ = e. Let

(
σ(β)

w

)+
e

= σw

(
S(β)

τ

)
,

(
σ(β)

w

)−
e

= σw

(
S(β)

τe

)
, β = b, f. (35)

According to formulas (11), we assume that

〈
v(β)

w

〉
e
· ne,τ =

(
σ

(β)
w

)+
e

〈
v(β)
〉
e
· ne,τ ,

〈
v(β)
〉
e
· ne,τ ≥ 0 ,

〈
v(β)

w

〉
e
· ne,τ =

(
σ

(β)
w

)−
e

〈
v(β)
〉
e
· ne,τ ,

〈
v(β)
〉
e
· ne,τ < 0 ,

β = b, f. (36)
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Fig. 1. Flow directions in the dual porosity model.

Note that in different media the flow directions may be different. Figure 1 is a 2D illustration of flow
directions for the cells (shown by dots) in which the corresponding saturation-dependent coefficients
are calculated. The large dot shows the cell in which the coefficient of the mass transfer function is
calculated.

For a cell τd,m containing an injection or production well Ωd,m (a fragment of perforation), Eqs. (33)
for the saturation hold on the set ωd,m = τd,m \ Ωd,m:

|ωd,m|φ(β)
d,m

dS
(β)
d,m

dt
+
∫

∂ωd,m

v(β)
w · nd,m dγ =

∫

ωd,m

r(β)
w . (37)

Similarly to (12), we have the inequality

∫

∂ωd,m

v(β)
w · nd,m dγ =

∫

∂τd,m

v(β)
w · nd,m dγ +

∫

Γd,m

v(β)
w · nd,m dγ.

On the boundary Γin,m of an injection well Ωin,m we set S
(β)
in,m = S∗, and, hence, σw(S(β)

in,m) = 1. Then,
according to (11) and (8), we have

∫

Γin,m

v(β)
w · nin,m dγ = −Q

(β)
in,m,

∫

Γpr,m

v(β)
w · npr,m dγ = −σw(S(β)

pr,m)Q(β)
pr,m.

Substituting these formulas into the above equality and the result into Eq. (37), we obtain

|ωin,m|φ(β)
in,m

dS
(β)
in,m

dt
+
∫

∂τin,m

v(β)
w · nin,m dγ =

∫

ωin,m

r(β)
w + Q

(β)
in,m, (38)

|ωpr,m|φ(β)
pr,m

dS
(β)
pr,m

dt
+
∫

∂τpr,m

v(β)
w · npr,m dγ =

∫

ωpr,m

r(β)
w + σw(S(β)

pr,m)Q(β)
pr,m. (39)

The second term in the left-hand sides of the equalities (38) and (39) is calculated by formulas (35) and

(36). Note that before water flooding of a production, well when the equality
〈
v(β)

w

〉
· npr,m = 0 holds

on ∂τpr,m and S
(β)
pr,m = S∗ in τpr,m, and, hence, σw

(
S

(β)
pr,m

)
= 0 and r

(β)
w = 0, Eq. (38) takes the form

dS
(β)
pr,m/dt = 0. This equality may hold for pore blocks and for fractures at different times.
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4. THE EXPLICIT SCHEME AND THE MAXIMUM PRINCIPLE

Consider a discretization of the problem in time. Let the water saturation S
(β),n
τ at the time level

tn = nΔt be known. The values, S
(β),0
τ , are initial data for the problem. They are used to calculate the

total velocities and pressures in the pore blocks and fractures. Then formulas (34)–(36) are used to
determine the mass transfer function and the phase velocities. In what follows the superscript n will be
omitted. Equation (33) will be approximated in time by using an explicit Euler scheme:

S(β),n+1
τ = S(β),n

τ − Δt

φ
(β)
τ |τ |

Φ(β)
τ

(
S(β),n

τ , S
(β),n
τ

)
+

Δt

φ
(β)
τ

r(β)
w,τ

(
S(b),n

τ , S(f),n
τ

)
, β = b, f, τ ∈ T0, (40)

where S
(β)
τ =

{
S

(β)
τe , e ∈ Eτ

}
, Eτ is the set of all internal faces of a cell τ ; according to (11), (35),

and (36)

Φ(β)
τ

(
S(β)

τ , S
(β)
τ

)
= σw

(
S(β)

τ

) ∑

e∈E
(β),+
τ

|e|
〈
v(β)
〉
e
· ne,τ −

∑

e∈E
(β),−
τ

|e|σw

(
S(β)

τe

)∣
∣
〈
v(β)
〉
e
· ne,τ

∣
∣,

E(β),+
τ =

{
e ∈ Eτ

∣
∣
〈
v(β)
〉
e
· ne,τ > 0

}
, E(β),−

τ =
{

e ∈ Eτ

∣
∣
〈
v(β)
〉
e
· ne,τ < 0

}
.

Next, we will establish a weak maximum principle for the scheme (40); at a sufficiently small step Δt,

from the condition S∗ ≤ S
(β),n
τ ≤ S∗ we have the following estimates:

S∗ ≤ S(β),n+1
τ ≤ S∗, β = b, f, τ ∈ T0. (41)

According to the equality (24), the function Φ(β)
τ

(
S

(β)
τ , S

(β)
τ

)
by simple transformations can be rewritten

as follows:

Φ(β)
τ

(
S(β)

τ , S
(β)
τ

)
=

∑

e∈E
(β),−
τ

|e| dσw

dS
(S̃(β))

(
S(β)

τ − S(β)
τe

)∣
∣
〈
v(β)
〉
e
· ne,τ

∣
∣+ |τ |σw

(
S(β)

τ

)
r(β)
τ ,

where S̃(β) are some values of the water saturations between S
(β)
τ and S

(β)
τe . Taking into account this

equality, equation (40) can be written as

S(β),n+1
τ = S(β),n

τ − Δt

φ
(β)
τ |τ |

(
Φ(β)

τ,1

(
S(β),n

τ , S
(β),n
τ

)
+ Φ(β)

τ,2

(
S(b),n

τ , S(f),n
τ

))
, (42)

where

Φ(β)
τ,1

(
S(β)

τ , S
(β)
τ

)
=

∑

e∈E
(β),−
τ

|e| dσw

dS
(S̃(β))

(
S(β)

τ − S(β)
τe

)∣
∣
〈
v(β)
〉
e
· ne,τ

∣
∣, (43)

Φ(β)
τ,2

(
S(b)

τ , S(f)
τ

)
= |τ |

(
σw

(
S(β)

τ

)
r(β)
τ

(
S(b)

τ , S(f)
τ

)
− r(β)

w,τ

(
S(b)

τ , S(f)
τ

))
. (44)

In what follows we will need a specific form of the relative permeabilities, which will be assumed the
same for the pore blocks and fractures. The following functions are often used as kr,α(Sα) (see, for
instance, [5]):
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kr,α(Sα) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, 0 ≤ Sα ≤ S∗,
(

Sα − S∗
S∗ − S∗

)d

, S∗ < Sα < S∗,

1, S∗ ≤ Sα ≤ 1,

α = w, o, d ≥ 1. (45)

Recall that σw(S) = μkr,w(S)/
(
μkr,w(S) + kr,o(1 − S)

)
, μ = μo/μw ≥ 1. Simple calculations show

that at S∗ ≤ S ≤ S∗

dσw(S)
dS

(S) ≥ 0. (46)

We denote A(β) =
∑

e∈E
(β),−
τ

|e| dσw
dS

(
S̃(β)

)∣
∣
〈
v(β)
〉
e
· ne,τ

∣
∣.

Let the inequalities S∗ ≤ S
(β)
τ ≤ S∗ hold for an arbitrary cell τ ∈ T0. Specifically, these inequalities

hold when considering a fixed cell τ for S
(β)
τe . Then, according to (43), (46), we have the inequalities

A(β)
(
S(β)

τ − S∗) ≤ Φ(β)
τ,1

(
S(β)

τ , S
(β)
τ

)
≤ A(β)

(
S(β)

τ − S∗
)
. (47)

Consider the function Φ(β)
τ,2

(
S

(b)
τ , S

(f)
τ

)
. Let β = b. In the case of p

(f)
τ ≤ p

(b)
τ it immediately follows

from formulas (34) and (44) that Φ(b)
τ,2

(
S

(b)
τ , S

(f)
τ

)
= 0. Then, using the estimates (47) in Eq. (42), we

obtain

(

1 − Δt

φ
(b)
τ |τ |

A(β)

)

S(b),n
τ +

Δt

φ
(b)
τ |τ |

A(β)S∗ ≤ S(b),n+1
τ ≤

(

1 − Δt

φ
(b)
τ |τ |

A(β)

)

S(b),n
τ +

Δt

φ
(b)
τ |τ |

A(β)S∗.

Let the Courant–Friedrichs–Lewy (CFL) condition be satisfied:

ΔtA(β) ≤ φ(b)
τ |τ |. (48)

Then the assumption S∗ ≤ S
(b),n
τ ≤ S∗ immediately results in the estimates (41) at β = b and

p
(f)
τ ≤ p

(b)
τ .

Consider the case of p
(f)
τ > p

(b)
τ . According to (34), (44) we have

Φ(b)
τ,2

(
S(b)

τ , S(f)
τ

)
= |τ | rτ

(
σw(S(b)

τ ) − σw(S(f)
τ )
)
.

Here rτ is given by formula (23), and rτ ≥ 0. It is easy to obtain the following inequality:

Φ(b)
τ,2

(
S(b)

τ , S(f)
τ

)
= |τ | rτ

(
dσw

dS

(
S̃

(b)
1

)(
S(b)

τ − S∗
)
− σw

(
S(f)

τ

)
)

≤ B
(b)
1

(
S(b)

τ − S∗
)
, (49)

where S̃
(b)
1 ∈

[
S∗, S

(b)
τ

]
, B

(b)
1 = |τ | rτdσw/dS

(
S̃

(b)
1

)
≥ 0. On the other hand, we have the following

representation of the function Φ(b)
τ,2

(
S

(b)
τ , S

(f)
τ

)
:

Φ(b)
τ,2

(
S(b)

τ , S(f)
τ

)
= |τ | rτ

(
dσw

dS

(
S̃

(b)
2

)(
S(b)

τ − S∗)+
dσw

dS

(
S̃

(f)
2

)(
S∗ − S(f)

τ

)
)

,
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where S̃
(b)
2 ∈

[
S

(β)
τ , S∗], β = b, f . According to (46), from this representation we obtain the inequality

Φ(b)
τ,2

(
S(b)

τ , S(f)
τ

)
≥ B

(b)
2

(
S(b)

τ − S∗), (50)

where B
(b)
2 = |τ | rτdσw/dS

(
S̃

(b)
2

)
≥ 0. Thus, the estimates (49) and (50) are analogs of the two-sided

inequality (47) for the function Φ(b)
τ,2

(
S

(b)
τ , S

(f)
τ

)
. Using the estimates (47), (49), and (50) in Eq. (42), we

obtain the following inequalities:

(

1 − Δt

φ
(b)
τ |τ |

(
A(b) + B

(b)
1

)
)

S(b),n
τ +

Δt

φ
(b)
τ |τ |

(
A(b) + B

(b)
1

)
S∗

≤ S(b),n+1
τ ≤

(

1 − Δt

φ
(b)
τ |τ |

(
A(b) + B

(b)
2

)
)

S(b),n
τ +

Δt

φ
(b)
τ |τ |

(
A(b) + B

(b)
2

)
S∗.

In the case under consideration,
(
p
(f)
τ > p

(b)
τ

)
, the Courant–Friedrichs–Lewy condition is

Δt
(
A(b) + max

{
B

(b)
1 , B

(b)
2

})
≤ φ(b)

τ |τ |. (51)

From this condition the estimates (41) immediately follow at β = b. Note that, owing to the condi-
tion (51), the condition (48) is automatically satisfied, that is, (51) ensures that the inequality (41) is

satisfied for β = b at any sign of the difference p
(f)
τ − p

(b)
τ .

The case of β = f is investigated in a similar way with superscripts b and f interchanged in all
notation, starting with rτ in formula (23). As a result, we obtain the inequalities (41) if the following
condition (as well as the condition (51)) is satisfied:

Δt
(
A(f) + max

{
B

(f)
1 , B

(f)
2

})
≤ φ(f)

τ |τ |.

Finally note that the above Courant–Friedrichs–Lewy conditions depend on the grid functions v(β)

and p(β) found at the nth level. Hence, it is desirable to have some estimates of these functions. A method
of obtaining such estimates can be found in [22], and the effects of wells on these estimates are studied
in [32].

5. COMPUTATIONAL EXPERIMENTS

Here we present the results of computational experiments for the model of filtration in a fractured-
porous medium to illustrate the performance of the algorithm being considered in this paper. The main
purpose of the experiments is to demonstrate the absence of oscillations in the vicinity of the water-
oil contact in the Buckley–Leverett problem for the above dual porosity model. An example with one
injection well and one production well is considered. The formation is assumed to have homogeneous
porosity and absolute permeability distributions in the vertical direction, and the wells are assumed to be
of ideal completion. These assumptions mean that the calculations may be made for the 2D problem.
All experimental results presented below have been obtained at the following values of the physical
parameters of the filtration process:

φ(b) = 0.375, φ(f) = 0.05, k0 = 3.06 · 10−13 m2, S∗ = 0.2, S∗ = 0.8,

μw = 1.15 · 10−4 Pa · s, μo = 9.28 · 10−4 Pa · s,

Q(b) = 2 · 10−5 m3/s, Q(f) = 2 · 10−5 m3/s.

NUMERICAL ANALYSIS AND APPLICATIONS Vol. 14 No. 2 2021



A COMPUTATIONAL MODEL OF FLUID FILTRATION 141

Here k0 is the scalar absolute permeability of the formation, which is the same for the pore blocks and
the fractures, and the absolute permeability tensors due to anisotropy are given as

K
(b)
0 = k0

⎛

⎝
10 0

0 1

⎞

⎠ , K
(f)
0 = k0

⎛

⎝
1 0

0 10

⎞

⎠ .

The quantity k(b,f) will vary in the experiments. In what follows the calculation domain Ω ⊂ R2

will be related to a Cartesian system of coordinates: Ω = (0, Lx) × (0, Ly), where Lx = Ly = 50m.
The coordinates of the well centers are as follows: xin = 10m, yin = 25m, xpr = 40m, ypr = 25m. In
all experiments, a formation with zero water mobility is taken as initial data for the water saturation:
S(0,x) = S∗, x ∈ Ω. All calculations are made on a square grid at the following values of the grid
parameters: Mx = My = 200, Δt = 250 s. The time step for the Courant–Friedrichs–Lewy condition
was chosen experimentally.

The first experiment illustrates the absence of oscillations at the front of the water-oil contact.
Figure 2 presents the water saturation values in the pore blocks and fractures at various times for
k(b,f) = 10−15. The numerical solution has the form of a propagating discontinuity, which corresponds
to one-dimensional analytical solutions of the Buckley–Leverett problem. The above upwind technology
ensures the absence of nonphysical oscillations at the front of the discontinuity.

Another series of experiments illustrates the behavior of water saturation at different intensities of
mass transfer between the pore blocks and fractures at the initial stage of the process of oil displacement
with water and at the stage of production well flooding. The corresponding results are shown in Figs. 3
and 4.

If the mass transfer between the pore blocks and fractures (Fig. 3) is weak, the water flow in the
fractures reaches the production well almost simultaneously with the flow propagating in the pore blocks.
This takes place despite the anisotropy of the formation, which prevents the water in the fractures to flow
in the direction of the production well. The well flooding begins when a significant amount of undisplaced
oil remains in the pore blocks. The situation is different at a significant increase in the mass transfer
intensity (Fig. 4). The water flow in the fractures greatly contributes to the oil displacement in the pore
blocks. A peculiarity of the process in this case is a local increase in the water saturation in the fractures
in the vicinity of the production well due to the water in the pore blocks.

Fig. 2. Water saturation in pore blocks (a) and fractures (b) with a mass transfer coefficient of 10−15.
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Fig. 3. Dynamics of water saturation in pore blocks (a), (b) and in fractures (b), (d) with a mass transfer coefficient of 10−15.

6. CONCLUSIONS

In this paper, a method for solving a 3D problem of filtration of a two-phase incompressible fluid in a
fractured-porous medium using the Buckley–Leverett model was considered. The model was formulated
in the form of integral conservation laws in terms of the total velocities, pressures, and saturation in the
pore blocks and wells. The injection and production wells ensured the inflow and outflow of the two-
phase fluid with given total flow rates. Assuming a condition of impermeability on the external boundary
of the formation for the total velocities and pressures, a Neumann problem for a system of four first-
order equations was formulated. A condition of unique solvability of this problem has been obtained:
the sum of pressures in the pore blocks and fractures is to be orthogonal to a constant. A uniquely
solvable modification of this problem has been proposed. Another peculiarity of the algorithm proposed
in this paper is the fact that an upwind technology was used not only for the convective terms, but
also for the mass transfer function. As a result, the calculated total speeds and pressures have allowed
establishing Courant–Friedrichs–Lewy conditions that provide stability and monotonicity of the explicit
scheme used for calculating the water saturations. The performance of the algorithm was illustrated by
computational experiments.
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