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Abstract—In this paper, an operator iterative procedure for constructing an orthogonal projection of
a vector onto a given subspace is proposed. The algorithm is based on Euclidean orthogonalization of
power sequences of a special linear transform generated by an initial subspace. A numerical method
based on this idea for solving consistent systems of linear algebraic equations is proposed. Numerical
results are presented.
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1. INTRODUCTION

Let E denote a Euclidean space of dimension dim E with inner product (u, v) of vectors u, v ∈ E;
‖u‖ =

√

(u,u) is the length of a vector u.

Let V be a subspace of E, dim V < dimE; and let V
⊥ be its orthogonal complement to E, that is, the

annihilator [2] of the set V. Then E is a direct sum V ⊕ V
⊥ and for any vector u ∈ E there exists a unique

representation

u = uV + u⊥
V : uV ∈ V, u⊥

V ∈ V
⊥; (1)

uV is called [2] the orthogonal projection, and u⊥
V

is the orthogonal component of the vector u with respect
to V. Let P and P⊥ be the orthogonal projectors of the Euclidean space E onto V and V

⊥, respectively.
Then

uV = Pu, u⊥
V = P⊥u.

The problem of determining Pu for a given vector u is one of the key problems of computational linear
algebra. In particular, solving a system of linear algebraic equations can be reduced to this problem.
An iterative algorithm (in operator form) for constructing an orthogonal projection of a vector onto a
subspace and a method based on this algorithm for numerically solving a consistent system of linear
algebraic equations will be considered below.
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2. CALCULATION OF THE ORTHOGONAL PROJECTION OF A VECTOR
ONTO A SUBSPACE

In what follows, any self-adjoint nonnegative definite transformation A of the subspace E whose
range is V

⊥ will be called an annihilating transformation of the subspace V. Thus, V coincides with the
kernel of its annihilator A. Its condition number æA will be called the condition number of restriction of
the operator A on V

⊥. With no rounding errors, the following theorem is valid:

Theorem 1. For any annihilatorA of a subspace V ⊂ E and any vector u /∈ V consider the iterative
process u0 := u, s1 := Au0 for n ≥ 1:

un := un−1 −
(

un−1, sn
)

(sn, sn)
sn; sn+1 := Aun − (Aun, sn)

(sn, sn)
sn. (2)

In less than dimV
⊥ steps, this will lead to a construction of an orthogonal projection Pu of the

vector u onto the subspace V, that is, a natural number k ≤ dimV
⊥ will be found so that uk = Pu.

The vectors s1, s2, . . . , sn will be mutually orthogonal, and

‖un − Pu‖ ≤ T−1
n

(
æA + 1
æA − 1

)

‖u − Pu‖ . (3)

Here Tn(x) is a Chebyshev polynomial of the first kind, and æA is the condition number of A.

A proof of the first part of this theorem is given in [3], where an algorithm for solving a partial problem
of eigenvalues and vectors on the basis of the process (2) is proposed. According to a general theory
of conjugate gradient methods (see [1, 4]), at each step of the process (2)

∥
∥P⊥un

∥
∥ is minimized on a

corresponding Krylov subspace generated by A. Hence, we have the inequality (3).
The relation (3) means that the construction of an orthogonal projection of a vector onto a subspace

V can be efficiently numerically solved by the process (2) if an annihilator A with a small condition
number æA can be constructed for V. If the orthogonal projector P

⊥
V

of the Euclidean space E onto V
⊥

is taken as A, the solution Pu is obtained in one iteration. An annihilator for V will be the sum of all
orthogonal projectors onto each of vectors with a linear span equal to V

⊥. The following statement may
be useful in constructing the annihilators:

Theorem 2. Let V
⊥ = V

⊥
a ⊕ V

⊥
b be the direct sum of subspaces with an angle between them

[5, 6] equal to θ; P⊥
a and P⊥

b are the orthogonal projectors of E onto the subspaces V
⊥
a and V

⊥
b ,

respectively. Then for any positive α and β the operator A = αP⊥
a + βP⊥

b is an annihilator of V

whose condition number

æA =
α + β +

√

(α − β)2 + 4αβ cos2 θ

α + β −
√

(α − β)2 + 4αβ cos2 θ

and satisfies the exact inequality æA ≥ cot2(θ/2), which turns into the equality at α = β.

Proof. It is obvious that A is an annihilating transformation of the space V. Let us calculate the ends of
the spectrum of its restriction to V

⊥. For definiteness, assume that dim V
⊥
a = k ≤ dim V

⊥
b = l.

Let a1, . . . , ak and b1, . . . ,bl be consistent orthonormal bases from the principal vectors of the
subspaces V

⊥
a and V

⊥
b (the principal vectors of the pair of spaces) [5], respectively:

(ai,bj) = 0, i �= j; (ai,bi) = σi ≥ 0, i = 1, . . . , k, j = 1, . . . , l.

Since the system of vectors a1, . . . , ak,b1, . . . ,bl forms a basis in the entire V
⊥, according to the

definition of the angle between the subspaces V
⊥
a and V

⊥
b
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cos θ = sup
a∈V⊥

a ,‖a‖=1;

b∈V⊥
b

,‖b‖=1

(a,b) = sup
∑

α2
i
=1;

∑
β2

j
=1

∑

σiαiβi = σ1,

where σ1 is the largest of the singular numbers: σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0.
It is evident that cos θ ∈ [0, 1), since the equality cos θ = 1 means that V

⊥ is not the direct sum of the
subspaces V

⊥
a and V

⊥
b .

Let λ be an arbitrary eigenvalue of the transformation A = αP⊥
a + βP⊥

b . Then the coordinates of
the corresponding eigenvector α1, . . . , αk, β1, . . . , βl in the above basis satisfy the following system of
equations:

(λ − α)αi = βσiβi, (λ − β)βi = ασiαi, i ≤ k; (λ − β)βj = 0, k < j ≤ l.

Hence, we have the exact inequality

α + β

2
−

√
(

α − β

2

)2

+ αβ cos2 θ ≤ λ ≤ α + β

2
+

√
(

α − β

2

)2

+ αβ cos2 θ

for λ and the condition number æA.
Eliminating the irrational expression in the denominator æA, we have

æA =
1

4(1 − cos2 θ)

⎡

⎢
⎣

√
α

β
+

√

β

α
+

√
√
√
√

(
√

α

β
−

√

β

α

)2

+ 4cos2 θ

⎤

⎥
⎦

2

≥ 1
4(1 − cos2 θ)

[
√

α

β
+

√

β

α
+ 2cos θ

]2

≥ 1
4(1 − cos2 θ)

(2 + 2 cos θ )2

=
1 + cos θ

1 − cos θ
= cot2

θ

2
.

Here all equalities are valid at α = β. The theorem is proved. �

Since cot2(θ/2) is the minimum value of the function æA(α, β) at α, β > 0, it follows from Theorem 1
that for constructing an annihilator it is reasonable to consider only the case α = β = 1. This particular
case was investigated by a slightly different method in paper [5], in which it was proved that all
eigenvalues of the transformation P⊥

a + P⊥
b belong to the interval [1 − cos θ, 1 + cos θ].

Since real calculations always contain rounding errors, it is important to construct a termination
criterion (see [1, 7]) for the iterative process (2), that is, determine the number of process steps
after which the accuracy of approximation of the solution Pu by un on a given computer cannot be
considerably increased.

Let sn be the direction calculated at the nth iteration of (2) to which the vector un must be orthogonal.
Then

‖un‖2 =
∥
∥un−1

∥
∥

2 −
(

un−1, sn
)2

‖sn‖2 .

That is, the norm ‖un‖ can be calculated in two different ways, both recurrently and directly: ‖un‖ =
√

(un,un). The difference between these values can characterize the error accumulated in the calcula-
tion process. These considerations lead to the following termination criterion of the algorithm (2):
set η0 := ‖u0‖, δ0 := 0; for n ≥ 1 for ‖Aun‖ > 0 calculate
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ηn :=

√

η2
n−1 −

(un−1, sn)2

‖sn‖2 , δn := max{δn−1, |‖un‖ − ηn|}; ρn :=
(Aun,un)
‖Aun‖ ; (4)

terminate the process (2) if ‖Aun‖ = 0 or the following inequality is valid:

ρn ≤ δn. (5)

Here ρn is the numerical projection of the vector un onto the direction Aun. The Cauchy and Kantorovich
inequalities [8] provide the following limitation:

2
√

æA
1 + æA

∥
∥P⊥un

∥
∥ ≤ ρn ≤

∥
∥P⊥un

∥
∥. (6)

The projectors are very simple linear transformations of vector spaces, and the direct methods of
computational linear algebra based on orthogonalization are most stable with respect to rounding errors.
Therefore, it is natural to construct iterative methods using the process (2) for solving basic problems of
computational linear algebra. One of such problems is solving systems of linear algebraic equations.

3. THE ALGORITHM FOR SOLVING SYSTEMS OF LINEAR
ALGEBRAIC EQUATIONS

Let R
m denote the Euclidean space of m-dimensional real vector-columns with the inner product

(v,u) =
∑

1≤i≤m

viui; v = (v1, v2, . . . , vm)T, u = (u1, u1, . . . , um)T ∈ R
m.

Here “T” means transposition. In addition to the Euclidean norm ‖v‖, we will use the 1-norm ‖v‖1 and
∞-norm ‖v‖∞ [1] of vectors from R

m:

‖v‖1 =
∑

1≤i≤m

|vi|, ‖v‖∞ = max
1≤i≤m

|vi|; v ∈ R
m.

Let an inhomogeneous system of real linear algebraic equations

Ax = b, b = (b1, . . . , bk)
T ∈ R

k, x = (x1, . . . , xl)
T ∈ R

l, (7)

with a rectangular matrix A of order k × l be consistent, rangA = k ≤ l. The system (7) allows a
geometric interpretation similar to that in the Kaczmarz method (see [9–13]): construct a vector
y = (y0, y1, . . . , yl)

T ∈ R
l+1 such that y0 �= 0 and

(ai, y) = 0, ai = (−bi, ai1, . . . , ail)
T ∈ R

l+1, i = 1, . . . , k. (8)

Here aij is an element of the matrix A. Let the vector y satisfy the relations (8). Then the vector
x = (y1/y0, . . . , yl/y0)

T ∈ R
l is a solution to the initial equations (7). If the system (7) is homogeneous,

that is, b = 0, no additional parameter y0 is needed.

To solve the problem (8), the process (2) is used assuming that E = R
l+1 and that its subspace V

coincides with the space of solutions of the homogeneous system (8). Then V
⊥ is the linear span of

the rows aT
1 , . . . , aT

k of the extended matrix of the inhomogeneous system (7). The sum of k orthogonal
projectors onto one-dimensional subspaces that are collinear to the basis vectors V

⊥ can be taken as an
annihilator:
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A =
∑

1≤ i ≤k

P⊥
i ; P⊥

i v =
(ai, v)
‖ai‖2

· ai; v ∈ R
l+1. (9)

If the system of linear algebraic equations (8) is represented as the union of two systems of smaller
dimension, an annihilator can be constructed on the basis of Theorem 2 assuming that α = β = 1.
An arbitrary nonorthogonal vector y can be taken as an initial approximation of the solution y to the
problem (8) for any annihilator A of the subspace V.

These two approaches have been implemented in numerical experiments that showed that the
termination criterion (4), (5) of iterations of (2) is efficient if ‖b‖1 is comparable to the maximum 1-norm
of the columns of the matrix A in the system (7). In this case the numerical projection ρn correlates well
with the ∞-norm of the vector P⊥un satisfying the evident inequality, which is similar to (6):

1√
l + 1

‖P⊥un‖ ≤ ‖P⊥un‖∞ ≤ ‖P⊥un‖.

It is well known [14] that the accumulation of rounding errors in iterative orthogonalization algo-
rithms in Krylov subspaces violates the mutual orthogonality of the vectors sn. In this case the process
ceases to be “finite,” but the calculated sn usually remain practically important [15]. The calculations
have shown that if the relations (2) are calculated inaccurately, the inclusion sn ∈ V

⊥ after some step
may be violated. However, this can be avoided by regularizing the process (2) as follows:

set u0 := u, t1 := u; for n ≥ 1 calculate

un := un−1 −
(

un−1,Atn
)

‖Atn‖2 Atn; tn+1 := un − (Aun,Atn)
‖Atn‖2 tn. (10)

In this case the total number of operations is almost doubled, since annihilators of the vectors un and tn
are calculated at each step (10). If the calculations are exact, the vector sn in (2) is collinear to the vector
Atn, and the process is finite. In real calculations, the version (10) of the process (2) guarantees that the
vector sn belongs to the subspace V

⊥ with maximum possible accuracy.

If the subspace V
⊥ is generated by a system of generators a1, . . . , ak (as in the problem (8)),

an alternative form of the process (10) that is similar to the method of AA∗-minimum iterations is
possible [1]. Let Ab denote the extended matrix of the system (8), and let AT

b be its transpose:

(Ab)ij = (ai)j =
(

AT
b

)

ji
; i = 1, . . . , k; j = 1, . . . , l + 1.

Assuming that the initial approximation y0 to the solution y of the problem (8) is known,

set r0 = Aby0, t1 = r0; and for n ≥ 1 calculate

sn := AT
b tn; yn := yn−1 − (yn−1, sn)

(sn, sn)
sn;

rn := rn−1 − (yn−1, sn)
(sn, sn)

Absn; tn+1 := rn − (rn, Absn)
(sn, sn)

tn.

(11)

With no rounding errors this process is finite, at each step the equality rn = Abyn is satisfied,
and at A = AT

b · Ab the vectors sn in (2) and (11) coincide. For a normalized system of generators
{ai : ‖ai‖ = 1} of the subspace V

⊥ the multiplication of a vector v by the matrix AT
b Ab is equivalent

to calculating the sum (9) of all one-dimensional orthogonal projectors P⊥
i v. Owing to the recurrent

calculation of the residual rn at each iteration, the numbers of operations in the processes (2) and (11)
differ only slightly.
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4. THE COMPUTATIONAL EXPERIMENTS

Consider, on a uniform grid, a discrete analog of the first boundary value problem for the following
elliptic equation with constant coefficients:

−Δu (x, y) + c · u (x, y) = f (x, y) ; x ∈ (0, 1) , y ∈ (0, 1) ; c ≥ 0,

u(x, 0) = u(x, 1) ≡ 0, x ∈ [0, 1] ; u(0, y) = u(1, y) ≡ 0, y ∈ [0, 1] .
(12)

Using a finite element Q1-type Lagrangian approximation (16) of the sought-for function u (x, y) with
its node values

uij = u (Mij) , Mij (xi, yj) , xi = i/Nx, yj = j/Ny , i ∈ {0, . . . , Nx} , j ∈ {0, . . . , Ny} , (13)

we obtain, for the sought-for quantities uij , a system of m = (Nx − 1)(Ny − 1) linear algebraic equa-
tions (7) (k = l = m) with a positive definite symmetric square matrix A. Systems of linear algebraic
equations of this type have been thoroughly studied (see [17]) as basic systems for testing “solvers” of
the Krylov type.

A series of numerical calculations has been performed in the double precision mode [1] with various
values of the parameters c and m. The node values of a randomly chosen smooth function satisfying the
homogeneous boundary conditions in (12) are taken as an exact solution x of the system (7). To provide
graphical representation of the calculation results, the exact solution of the system (7) is normalized by
unity in the ∞-norm, and then the right-hand side b is determined. In all numerical experiments, δn,
ρn, and ‖xn − x‖∞ as functions of n vary in a similar way; here xn is an approximation to the solution
of Eq. (7): xn

i = yn
i /yn

0 , i = 1, . . . , l. Figures 1–4 show in graphical form the results of calculations for
Nx = Ny = 100, c = 10 and a zero initial approximation (x0 = 0).

Figure 1 shows the results for the process (2) with the annihilator (9). The curves in Fig. 2 result
from the same algorithm, but with the annihilator based on Theorem 2 at α = β = 1. The linear span
of the rows of the extended matrix of the system (7) (12), (13) associated with the nodes (xi, yj), where

Fig. 1. A =
∑

P⊥
i .
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Fig. 2. A = P⊥
a + P⊥

b .

Fig. 3. A = P⊥
a + P⊥

b & regularization.

1 ≤ i < Nx and 1 ≤ j ≤ Ny/2, is used as the subspace V
⊥
a . The subspace V

⊥
b supplements V

⊥
a to the

entire V
⊥, and the corresponding orthogonal components are calculated by the formulas

P⊥
a un = un − Paun, P⊥

b un = un − Pbun.

To calculate the projections Paun and Pbun, the process (2), (9) with the termination criterion (4), (5),
which turned out to be well-suited for this class of problems, is used: a value of ‖xn − x‖∞ that is close to
the minimum has been typically reached already at the first iteration, when the inequality (5) is satisfied.
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Fig. 4. Convergence of the various algorithms.

Figure 2 shows that the behavior of the ∞-norm of the error xn − x is not monotone and often implies
an “accuracy breakdown” (a breakdown phenomenon [14]) as the number of iterations increases. In this
case restarting the process once the condition (5) is satisfied does not give a significant improvement.
However, calculating P⊥

a un and P⊥
b un directly with the algorithms (10) and (11) allows avoiding this

phenomenon. The corresponding curves for these processes differ but slightly, and Fig. 3 shows the
results only for the process (10).

If the subspace V
⊥
b is modified by orthogonalizing its generators corresponding to the nodes MiNy/2,

1 ≤ i < Nx, to the similar vectors of V
⊥
a associated with the nodes Mij , 1 ≤ i < Nx, j = Ny/2 −

2, Ny/2 − 1, the convergence of iterations to the exact solution improves significantly. This version of
the algorithm can be considered as one of the domain decomposition methods [18] for solving partial
differential equations. The corresponding information is shown in graphical form (2) in Fig. 4. It is
a comparison of step-by-step values of ‖xn − x‖∞ for the above processes: curve (1) is shown also
in Fig. 1; curve (3) is shown in Fig. 3. For comparison, the results of the fastest implementation of
the conjugate gradient method [7] for numerically solving the system (7), (12), and (13) are shown by
curve (4). The regularized processes have a higher convergence rate of iterations xn to the exact solution
x than the best version of the conjugate gradient method.

5. CONCLUSIONS

This paper considered a theoretically justified iterative method for constructing orthogonal pro-
jections of a vector onto a given subspace and a procedure for determining the number of steps of
the process after which calculations with this accuracy are not reasonable. With these algorithms, a
method for numerically solving a consistent system of linear algebraic equations similar to the Kaczmarz
method has been constructed. Various software implementations of the method were considered. The
method was compared with the classical conjugate gradient method using a specific problem as an
example. Numerical experiments in the double-precision mode have shown that the above-constructed
algorithms are workable and efficient.
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