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Abstract—In this paper we discuss a priori error estimates and superconvergence of splitting
positive definite mixed finite element methods for optimal control problems governed by pseudo-
hyperbolic integro-differential equations. The state variables and co-state variables are approxi-
mated by the lowest order Raviart—Thomas mixed finite element functions, and the control variable is
approximated by piecewise constant functions. First, we derive a priori error estimates for the control
variable, state variables, and co-state variables. Second, we obtain a superconvergence result for the
control variable.
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1. INTRODUCTION

The finite element approximation of optimal control problems has been extensively studied in the
literature. It is impossible to give even a very brief review here. See [2, 5, 15, 22] and [16, 17] for elliptic
control problems and parabolic control problems, respectively.

Although the finite element method has successfully simulated a lot of optimal control problems, it
fails to solve a certain class of optimal control problems, in which the objective function contains not
only the primal state variable, but also its gradients. Mixed finite element methods will be the best choice
because both the scalar variable and the flux variable can be approximated to the same accuracy using
such methods. Some results on a priori error estimates and superconvergence of Raviart—Thomas mixed
finite element methods for elliptic and parabolic optimal control problems can be found in [3, 4, 6, 21].
In [3, 4], Chen used the postprocessing projection operator, which was defined by Meyer and Résch [15]
to prove quadratic superconvergence of control by mixed finite element methods. In [9], Guo, Fu, and
Zhang discussed a splitting positive definite mixed finite element method for the elliptic optimal control
problem and derived a priori error estimates.

Many real applications, such as heat conduction control for materials with memory, population
dynamics control, wave control, and control in elastic-plastic mechanics, necessitate consideration of
optimal control problems governed by elliptic integral equations, parabolic integro-differential equations,
and hyperbolic integro-differential equations. In [2], the authors analyzed Galerkin finite element
discretizations for a class of constrained optimal control problems that are governed by the Fredholm
integral and integro-differential equations. In [19], Shen et al. derived equivalent a posteriori error
estimates with lower and upper bounds for a finite element approximation of a constrained optimal
control problem governed by a parabolic integro-differential equation. In [10], Hou considered an H!-
Galerkin mixed finite element approximation of linear parabolic integro-differential optimal control
problems and obtained a priori error estimates. In[11], Hou obtained a priori error estimates of Raviart—
Thomas mixed finite element methods for optimal control problems governed by hyperbolic integro-
differential equations. To the best of the author’s knowledge, in the literature there are no papers on
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18 XU

splitting positive definite mixed finite element approximations for hyperbolic integro-differential optimal
control problems.

Splitting positive definite mixed finite element methods were first proposed in [23] to solve miscible
displacement of compressible flow in porous media. As compared with the standard mixed finite element
methods, this technique has the following advantages: the Ladyzhenskaya—Babushka—Brezzi (LBB)
consistency condition for finite element spaces is not necessary and the original problems can be split
into two independent symmetric positive definite sub-schemes. The superconvergence of fully discrete
splitting positive definite mixed finite element methods for hyperbolic equations was studied in [20]. A
priori error estimates of splitting positive definite mixed finite element methods for hyperbolic and elliptic
optimal control problems can be found in [14,24] and [9], respectively.

In this paper, we will discuss a priori error estimates and superconvergence of splitting positive
definite mixed finite element approximations for pseudo-hyperbolic integro-differential optimal control
problems. Of interest to us are the following optimal control problems, which are widely encountered in
reaction diffusion and nerve conduction processes:

T
. 1 ) , ,
- - dt 1.1
ug}ggU{z/Q\p pall” + 1|y — vall +Hu|y> } (1.1)

0
t
yu — divp — divp + /divp(s)ds =f4u, x€Q, te (1.2)
0
p=Vy, z€Q, teJ (1.3)
Vy-n=0, x€dQ, te (1.4)
y(z,0) = yo(z), x €, (1.5)
y(2,0) = y1(x), x€Q, (1.6)

where Q € R? is a polygonal domain, J = [0,7], and n is the outward normal on 9. Let K be a
closed convex set in U = L?(J; L2(Q)), f and yq € L?*(J; L?(2)), pg € L*(J; (L*(Q))?), and 1o and
y1 € HY(Q). The set K is defined as follows:

K{uEU:/T/udmdt>0}. (1.7)

0 Q

In this paper, we adopt the standard notations of WP (Q) for Sobolev spaces on  with a norm || -

llm,p given by |[v|linp = | ‘Z ||Dav||Lp(Q and a semi-norm | - |, , given by [v|5,, = | ‘Z ||Dav||Lp(Q
al<m al=m

We set Wén’p(%) = {v € W™P(Q) : v|ypq = 0}. For p = 2, we denote as follows: H™(Q) = W™2((Q),

H () = W (Q), | llm = I 2, and [| - || = || [lo,2-

Let L*(J; W™P(Q)) be the Banach space for all L* integrable functions from .J into W™P(Q) with the
norm |[v|| s (., wm.r () (f HvHme(Q dt> 1s for s € [1,00) and the standard modification for s = co.

For simplicity of presentation, we denote [|v|| s (j.pm.e()) by [[0]| s (wm»). The spaces H'(J; W™P(Q))
can be defined similarly. In addition, C' denotes a general positive constant independent of A, where A is
the spatial mesh step.

This paper is organized as follows. In Section 2, we construct a splitting positive definite mixed
finite element scheme for optimal control problem (1.1)—(1.6) and give equivalent optimality conditions.
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A PRIORI ERROR ESTIMATES AND SUPERCONVERGENCE 19

The main results of this paper are stated in Section 3 and 4. In Section 3 we introduce some useful
intermediate variables and give a priori error estimates for the control variable, state variables, and co-
state variables. In Section 4, we derive the superconvergence properties for all the variables. Then, using
the postprocessing method, we obtain the superconvergence result for the control variable.

2. MIXED METHODS FOR OPTIMAL CONTROL PROBLEMS
In this section, we will construct a splitting positive definite mixed finite element scheme for control
problem (1.1)—(1.6). To this end, we take the state spaces L = H?(J; V) and W = H?(J; W), where
V and W are defined as follows:
V = Hy(div; Q) = {v € (L*(Q))? | divv € L*(Q),v n|po =0}, W=L*Q). (2.1)

The Hilbert space V' is equipped with the following norm:

1/2
[0l mraivse) = (l0]5 o + Idivellq)

A mixed weak form of (1.2) and (1.3) can be given as follows:

(p,v) = —(y,dive) Vo eV, (2.2)
t

(yer, w) — (divp,w) — (div pg, w +/ (divp(s),w)ds = (f + u,w) Yw € W, (2.3)
0

where (-, ) is the inner product L?(€2).
Similarly to [9], taking w = divwv in (2.3) and differentiating (2.2) with respect to ¢, we obtain

t
(pit,v) + (divp,divw) + (div ps, div o) / divp(s),divo)ds = —(f + u,dive) Yo e V. (2.4)
0

Now, we recast (1.1)—(1.6) as the following weak form: find (p,y,u) € L x W x K such that

T
. 1 9 ) )
ug;égy{z [ (10 vl 1~ i +Huu>dt}, 05)
0

¢
(pet, v) + (divp, divw) + (divpe, dive) — / (divp(s),divev)ds = —(f + u,divev) Yo e V, (2.6)
0

p({L’,O) = Vy0($), (27)

pi(z,0) = Vi (2), (2.8)

(yet, w) — (div p, w) — (div p, w —I-/ divp(s),w)ds = (f +u,w) Yw € W, (2.9)
0

y(x,0) = yo(z), (2.10)
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y(2,0) = y1(x). (2.11)

Since the objective functional is convex, it follows from [13] that optimal control problem (2.5)—(2.11)
has a unique solution (p, y,u) and a triplet (p, y, ) is a solution of (2.5)—(2.11) if and only if there is a
co-state (g, z) € L x W such that (p, vy, q, z, u) satisfies the following optimality conditions:

¢
(pit,v) + (div p, divw) + (div pt, div o) / (divp(s),divv)ds = —(f + u,dive) Vv e V, (2.12)
0

p({L’,O) = Vy0($), (213)

pi(,0) = Vyi (z), (2.14)

(yet, w) — (div p, w) — (div py, w —I-/ divp(s),w)ds = (f +u,w) Yw € W, (2.15)
0

y(x,0) = yo(z), (2.16)

yi(x,0) = y1(x), (2.17)

(20, w) = (Y — Y, w) Yw € W, (2.18)

z(x,T) =0, (2.19)

zt(x, T) =0, (2.20)

T
(qst,v) + (div q,divv) — (div g¢, div v) / div g(s),divwv)ds
t

T
(z,divv) / ),dive)ds — (z,dive) + (p — pg,v) Vv eV, (2.21)
t
q(z,T) =0, (2.22)
qi(z, T) =0, (2.23)
T
/(u—divq+z,fb—u)dt20 Vi e K. (2.24)
0

Inequality (2.24) can be expressed as follows:

u=max{0,z — divq} — (z — divg), (2.25)

oy

[ (z—div q) dz dt
where z —divg = "%
J [ 1dzdt
0Q
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A PRIORI ERROR ESTIMATES AND SUPERCONVERGENCE 21

Let 73, denote a regular rectangulation of the domain €2, h be the diameter of 7, and h = n%e%rx h,. Let
T h

Vi, x Wy, € V' x W denote the lowest order Raviart—Thomas mixed finite element space [18], namely,

Vi, i={v, € V V7 €Ty, vp|r € Qro(T) X Qoa(7)}, (2.26)
Wy, = {wh eW: :Vte ’Th,wh|7 S Qop(T)}, (2-27)

where @, »(7) indicates the space of polynomials of degree no more than m and n in z and y on 7,
respectively. Moreover, we set Kj, = U, N K, where Uy, = L?(.J; Wy).

Before the mixed finite element scheme is presented, we introduce two operators. Firstly, we define the
standard L?(Q)-projection [7] P, : W — W}, which satisfies the following conditions for any ¢ € W:

(Prg — ¢,wp) =0 Ywy, € Wh, (2.28)

¢ — Pugll—sr < ChT @)1y, s=0,1, 2< 7 <00, Vo € WH(Q). (2.29)

Next, recall the Fortin projection (see [1] and [7]) Il : V — V}, which satisfies the following
conditions forany g € V:

(div (Ilpg — @), wp) =0 Ywy, € Wh, (2.30)
lg —Thgllo, < Chliglli,, 2<p<oo, Vge (W'(Q))? (2.31)
|div (q — ,q)|| < Ch|divel; Ydivg € H'(Q). (2.32)

Now, we can construct the splitting positive definite mixed finite element approximation for problem
(1.1)=(1.6): find (pp, yn, up) € H2(J; V3,) x H?(J; W},) x K}, such that

T
: 1 2 2 2
_ 4 — + dt 2.33
uherIIgnCUh{Q/‘Q’ph de Hyh yd” ”uh”> }7 ( )

0

(Pt vp) + (div pp, divoy) + (div ppe, divoy) (div pp(s), div vy)ds

o\N

—(f +up,divop) Yo, € V, (2.34)
pr(z,0) = I Vye(x), (2.35)
Phi(7,0) = I, Vyi (2), (2.36)

t
(Ynet, wp) — (divpp, wy) — (div ppe, wy) +/ divpp(s),wn)ds = (f 4+ up,wp) Ywy € Wy, (2.37)
0

yn(x,0) = Ppyo(w), (2.38)
Yni(2,0) = Pry1(z). (2.39)
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Similar to the continuous case, optimal control problem (2.33)—(2.39) has a unique solution
(Ph, yn,upn), and a triplet (pp,yn,up) is the solution of (2.33)—(2.39) if and only if there is a co-
state (g, z,) € H*(J; Vi) x H?(J; Wy,) such that (py, yn, qn, 21, up,) satisfies the following optimality

conditions:

(Phtt, vp) + (div pp, divoy) + (div ppe, divoy) (div pp(s), div vy)ds

o\N

= —(f + up,divey) Yo, € Vp,
pr(,0) = 11, Vyo(x),

Pri(x,0) = 11, Vyi (),
t
(Ynet, wp) — (div pp, wy) — (div ppe, wp) +/ divpp(s), wp)ds
0

= (f +up,wp) Ywp, € Wy,
Yn(z,0) = Pryo(z),
Ynt(2,0) = Pry1 (),
(2nets wn) = (Yn — ya, wn) Y wn € W,
zn(x,T) =0,

zpe(z, T) =0,

T
(Gnet, vn) + (div qp, divvy) — (div gy, div o) / (div qn(s),divvy)ds
t

T
= (zp,divoy) — /(zh(s), divwop)ds — (znt, divoy) + (pn, — pa, vn) Yoy, € Vi,
t

qh(ﬂj',T) =0,

th(33>T) = 07
T
/(uh —div gy, + zp, up — uh)dt >0 Vuy, € Ky,
0

Similarly, inequality (2.52) can be rewritten as follows:

up, = max{0, z, — divgp} — (2, — div qy),

T

J [ (zn—div qp) dzdt
where z, —divg, = °°
J [ 1dzdt
0Q
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(2.49)

(2.50)
(2.51)

(2.52)
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A PRIORI ERROR ESTIMATES AND SUPERCONVERGENCE 23
3. A PRIORI ERROR ESTIMATES

In this section, we introduce some intermediate variables and derive a priori error estimates. First,
forany u € K, let us define a discrete state solution (py, (@), yn (), gn (@), zn(@)) with @ that satisfies the
following conditions:

(Pt (@), vp) + (div pp (1), div vy) + (div ppe(a), div vy) / (divpp(a)(s), divvy)ds
0
—(f + u, div ’Uh) Yo, € Vy, (31)
pn(1)(z,0) =11, Vyo(z), (3.2)
pri(@)(z,0) =, Vy (2), (3.3)
(@), w0n) — (div pi(@), wy) — (div pie(@), wp) + / (div i (@) (s), wy)ds
0
= (f +a,wp) Ywy € W, (3.4)
yn(1)(z,0) = Pryo(z), (3.5)
Yne()(z,0) = Prys(z), (3.6)
(2net (@), wn) = (Yn(@) — ya, wn) Y wp € W, (3.7)
zpe(@)(z, T) = 0, (3.9)
T
(e (@), 00) + (v (@), divon) — (v g (). divon) — | (@iv @u(@)(s).div ) ds

T
= (2 (@), divoy) — / (2 (@) (5), div vy )ds

—(2nt(1),divop) + (Pr() — pa, vn) Vop € Vy, (3.10)
qn()(z,T) =0, (3.11)
qne()(z,T) = 0. (3.12)

As we defined before, the exact solution and its approximation can be written in the following way:

(,y,9,2) = (p(u),y(v), q(u), 2(u)),

(Phs Yns Ghs 21) = (Pr(un), yn(un)s qn(un), 2n(un))-

NUMERICAL ANALYSIS AND APPLICATIONS Vol. 13 No.1 2020
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Lemma 3.1. Let (p,y,q,z) be a solution of (2.12)—(2.24) and (pp(u),yn(u),qn(u),zp(u)) be a
solution of (3.1)—(3.12) at u = u. Assume that y, p, q, and z have enough regularity for our
purpose; then we have

ly — yn (W)l Loo 2y + |P = Pr(w)|| oo (z2) + [|div (p — Pr(u))|| Loo(22) < Ch, (3.13)
2 = zn(u)l| Lo 22y + 1@ — @n(w)|| Loo (z2y + Idiv (g — gn(u)) || oo (z2) < Ch. (3.14)

Proof. Let

pr =pp—pp(u), p2=p—1pp, p3=y— Py, ps= Pry—yn(u),

=g —qn(u), ps=q—1nq, pr=2—PFPyz, ps= Prz—zp(u).

From (2.12)—(2.23) and (3.1)—(3.12), with the aid of (2.28) and (2.30) for any wy, € W}, and v, € V4,
we have the following error equations:

t
(paut + p1w,vp) + (div p1, divog) + (div p1e, divoy,) / (div p1(s),divvy)ds = 0, (3.15)
0
t
(patt, wn) — (div pr,wy) — (div pre, wp) + / (div p1(s), wp)ds = 0, (3.16)
0
(pstta 'U.)h) — (p47 'U.)h), (317)

T
(p6tt + psit, vi) + (div ps, divvy) — (div psg, div oy,) / (div p5(s), divvy)ds
t

T
— (ps,divon) — / (ps(s), divon)ds — (pse, div o) + (o2 + p1, vn). (3.18)
t

Taking vy, = p1; in (3.15) and using the Cauchy inequality, we have

1d

9 dt(llpull2 +[ldiv pu][?) + [ldiv prel|* < O(llp2eel* + [lpre 1) + C/ Idiv p1(s)||*ds. (3.19)

Integrating (3.19) from 0 to ¢ and using the relation p1(0) = p14(0) = 0, Gronwall’s lemma, and (2.31),
we get

letH%OO(L?) + [|div Pl||?:oo(L2) + ||dinlt||%2(L2) < Ch2||Ptt||%2(H1)- (3:20)
Note that p; = f p1¢(s)ds. Then we have

Il <€ [ llpu()ds. (3.21)

NUMERICAL ANALYSIS AND APPLICATIONS Vol. 13 No.1 2020



A PRIORI ERROR ESTIMATES AND SUPERCONVERGENCE 25
From (3.20) and (3.21), we get

o1l poe 22y + lprell oo 22y + 1AV p1llpoe (n2y + |div p1ell 222y < ChllPeell 2y (3.22)
Taking wy, = p4e in (3.16) and using the Cauchy inequality, we have

1d

t
5 dt||p4t||2 < C(ldiv pu|® + [lpae|? + lldiv puel*) + C/ Idiv p1(s)||*ds. (3.23)
0

Integrating (3.23) from 0 to ¢, using the relation p4(0) = p4:(0) = 0, Gronwall’s lemma, and (3.22), we
get

||p4t||%oo(L2) < Oh2||ptt||%2(H1)- (3.24)
t
Since py = [ pat(s)ds, we have
0
t
lpall® < C/ || pat(s)||*ds. (3.25)
0

It follows from (3.24) and (3.25) that

pall oo (22) + lpatll oo (22) < ChlPecll 21y (3.26)
Selecting wy, = —pg; in (3.17) and using the Cauchy inequality, we have

1d

— sl < Clloal + Clos . (327)

T

Integrating (3.27) from ¢ to T, using the relation ps(T) = pst(T') = 0, ps = — [ pst(s)ds, Gronwall’s
t

lemma, and (3.26), we get

sl Lo L2y + llpstll Lo 22y < Chl|Peel| 2 (my- (3.28)
Taking v, = —ps¢ in (3.18) and using the Cauchy inequality, we have
Ld 2 . 2 . 2
— 5 o (losell” 4 [[div ps[|7) + [|div ps¢|
2dt
T

< Clllpeee|* + llpsell” + llosell® + losl* + lloall* + llp2 1) + C/(Hdiv ps(s)I” + llps(s)|*)ds. (3.29)
t

T
Integrating (3.29) from ¢ to T, using the relations p5(T) = ps:(T) = 0 and ps = — [ ps¢(s)ds, Gron-
t
wall’s lemma, (3.22), (3.28), and (2.31), we get

1051 Lo L2y + lp5tll oo 2y + 1 div ps| oo 2y < Ch(Peell 2y + llgeell 2y + Pl 22 (a1y)- (3-30)

Combining (3.22), (3.26), (3.28), (3.30), (2.29), (2.31), (2.32), and the triangle inequality, we
complete the proof of the lemma.
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26 XU

Set 81 = pp(u) — pn, B2 = yn(u) — yn, B3 = qn(w) — qn, and By = z,(u) — 2. From (3.1)—(3.12)
and (2.40)—(2.51), for any wy, € Wy, and vy, € V3, we get

¢
(Bitt, vp) + (div By, divoy) + (div By, divoy) / (div 51 (s),divop)ds = —(u — up, divvy), (3.31)
0

¢

(Batt, wp) — (div B, wp) — (div g, wp,) + /(div Bi1(s),wp)ds = (u — up, wp,), (3.32)
0

(Baze, wn) = (B2, wa), (3.33)

T
(ﬂgtt, ’Uh) + (diV 53, div ’Uh) — (diV ﬂgt, div ’Uh / le ﬂgt diV 'vh)ds
t

T
= (B4, div vp) / ), divvp)ds — (Ba, divop) + (B1,vp). (3.34)
t

Using the stability analysis of Lemma 3.1, we have

Lemma 3.2. Let (ph, yn, qn, 2n) and (pn(w), yn(u), gn(u), zp(u)) be discrete solutions of (3.1)—(3.12)
at i = up and u = u, respectively. Then we have

lyn — yn (Wl Loo 2y + IPh — Pr(w) || oo (£2) < Cllu — upl[ 22y, (3.35)
20 = zn ()| Loe (£2) + l[an — @n(W)| Lo (r2) < Cllu — unl|r2(12), (3.36)
[div(pn — Pr(w)) Lo (£2) + [ div(gn — gn(u))|| Lo L2y < Cllu — unllp2(L2)- (3.37)

Lemma 3.3. Lef u be a solution of (2.12)—(2.24) and uy, be a solution of (2.40)—(2.52). Then

T
/ (div gp(u) — div gy — (zn(u) — 2zp), u — up)dt < 0. (3.38)
0

Proof. Take vy, = (33 in (3.31), wy, = B4 in (3.32), vy = —F1 in (3.34), and w;, = —F in (3.33),
respectively. Then integrating the four resulting equations from 0 to 7', we notice that

B1(0) = B1:(0) = B3(T) = B3(T) = 0,
B2(0) = B2:(0) = B4(T) = Bar(T) = 0,

T t T T
// (div B1(s), div 3) dsdt:// (div B3(s),div B1) ds dt,
0 0 0t

and
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A PRIORI ERROR ESTIMATES AND SUPERCONVERGENCE 27

T t T T
// (div 51(s), Ba) dsdt:// s),div 81) ds dt,
00 0 t

Then we find that

T
/(diV qn(u) — div gy — (2 (w) — 2p), u — up)dt = —||51||%2(L2) - Hﬁ2||%2(1;2), (3.39)
0

which gives (3.38).

Lemma 3.4. Let u be a solution of (2.12)—(2.24) and wuy, be a solution of (2.40)—(2.52). Then

|u —unllp2(z2) < Ch. (3.40)

Proof. Tt follows from (2.24), (2.28), and (2.52) that

T
HU_UhH%z(Lz) = /(u—uh,u—uh)dt
0

T
(u—divq+z,u—uh dt+/d1v q—qn(u +zh(u)—z,u—uh) dt
0

T
—i—/ (div (gn(v) — qn) — (2n(u) — 21),u — up) dt
0
A1
. . (3.41)
/(uh —divagy + zp,u — Phu dt — / (uh —divqh+zh,Phu—uh) dt
0 0
T
< [ (div(a = @ul) + 2n(w) — 20— wn) de
0
T
+ [ (v tante) = an) = (ula) = )0 = ) .
0
Using the Cauchy inequality, we see that
T
/ (div (g — gqn(u)) + zn(u) — 2z, u — up)dt
0
. 1
< |Idiv (g — an(w))lI72(2) + llzn(w) = 2[ 722y + ollu = unl|Za(r2)- (3.42)

Then (3.40) can be proved using (3.41), (3.42), and Lemmas 3.1 and 3.3.
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Using Lemmas 3.1, 3.2, and 3.4, and the triangle inequality, we get the following theorem.
Theorem 3.1. Let (p,y,q, z,u) and (pn, Yn, qn, 2n, un) be solutions of (2.12)—(2.24) and (2.40)—

(2.52), respectively. Assume that y, p, q, and z have enough regularity for our purpose. Then we
have

|y = ynllzoo(z2y + P = Prllpoo(z2y + 1div (P — Pr)ll oo (z2y < Ch, (3.43)

Iz = znllLeo(r2) + 1@ = GnllLoe(z2) + [|div (@ — gn)|[ Lo (z2) < Ch. (3.44)

4. SUPERCONVERGENCE

In this section, we will derive the superconvergence result for the control variable.

Lemma4.1. Let (pp(Pru), yp(Pru), gn(Pru), zn(Pru)) and (pp(w), yn(u), gn(u), zn(uw)) be a discrete
solution of (3.1)—(3.12) at u = Pyu and u = u, Then we have

yn(Prw) — yn(u)|| oo L2y + [P (Pru) — Pr(w)| poo 12y = 0, (4.1)
lzn(Pru) = 2n (W)l Lo L2y + lgn(Pru) — gn(u)llpoe (r2) = 0, (4.2)
[div(pn(Pru) — pr(u))llLee (£2) + [|div(gn(Phu) — gn(u))l e (z2) = 0. (4.3)

Proof. Set ey = pp(Pru) — pr(u), e2 = yn(Pru) — yn(u), es = gn(Pru) — gn(u), and eq = z,(Pru) —
zp(u). From (3.1)—(3.12), for any v;, € V}, and wy, € W}, we get

t
(e1¢1,vp) + (divey,divoy) + (div eyy, divoy,) / (divey(s),divop)ds = —(Ppu — u,divoy), (4.4)
0

t

(eatt, wp) — (divey, wy) — (div ey, wy, —I—/ (divey(s),wp)ds = (Pyu — u, wy), (4.5)
0

(€4tt7 'U.)h) — (627 'U.)h), (46)

T
(eser, vp) + (dives,divoy) — (div esy, divvy) / (div ege(s), div vy)ds
t

T
= (e4,divoy) — /(64(8),div vp)ds — (ear, divoy) + (e1,vp). (4.7)

Note that (Ppu — u,wp) = 0 and (P,u — u,divvy,) = 0. Then using the stability analysis of Lem-
ma 3.1, we complete the proof of the lemma.
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Lemma 4.2. Let (p,y,q,z) be a solution of (2.12)—(2.23) and (pp(u),yn(u),qn(u),zp(u)) be a
solution (3.1)—(3.12) at u = u. Assume that y, p, q, and z have enough regularity for our purpose.
Then

1Pay — yn(w)l| oo (r2) + [Tap — Pr(w) || o 12y < CR?, (4.8)
1Poz — 20 (u)| oo 2y + 1ThG — @n(u)|| oo (r2) < CH2, (4.9)
[div (I — pr(w))l| L2 (r2) + |div (Thg — gn(w))l| 212y < Ch2. (4.10)

Proof. From [8] we know that forany p € V and vy, € V},

(p — Iup, vp) < CH*(|[pll2l|vn]l + [Ip1]|div vy]). (4.11)

Using the same estimates as in Lemma 3.1, we complete the proof of the lemma.

Lemma4.3. Let u be a solution of (2.12)—(2.24) and wuy, be a solution of (2.40)—(2.52). Then

T
/ (div gp(Ppu) — div gy, — (zp(Pru) — 2p), Phu — up)dt < 0. (4.12)
0

Proof. Let
a1 = pu(Phu) — pr, a2 = yp(Pou) —yn, a3 = qn(Pou) —qn, o4 = zp(Pru) — 2.
Similarly to Lemma 3.3, we find that
T
/ (div gn(Pyu) — div g — (2a(Phu) — 2n), Pou — up)dt = —[laa||[o 2y = loallZ2z2y,  (4.13)
0
which gives (4.12).

Lemma4.4. Let ube a solution of (2.12)—(2.24) and uy, be a solution of (2.40)—(2.52). Assume that
all the conditions in Lemmas 4.1—4.3 are valid. Then we have

||Phu—uh||L2(L2) < Ch2. (4.14)

Proof. Taking @ = uyp, in (2.24) and @, = Pju in (2.52), we have

T T
/(uh —divgy + 2z, —u+divq — z, Pyu — up)dt + /(u —divg + z, Pyu — u)dt > 0. (4.15)
0 0

According to (4.15), (2.28), and (2.30), we have
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”Phu—uh”%g(LQ) = (Phu—uh,Phu—uh) dt

e e

T
(Pru — u, Pou — up) dt + /(zh — 2z —divgy +divg, Pyu — uy) dt
0

T
+/(—divq+divqh+u+z—uh—zh,Phu—uh)dt
0

T
(Pru — u, Pou — up) dt + /(zh — z —div gy + divq, Pyu — uy) dt
0

(VAN
O\H

T
—|—/(u—divq+z,Phu—u)dt
0

(4.16)
T
= /(div (IThq — qn(u)) — (Prz — zp(w)), Phu — up) dt
0
T
+ [ div (@u(u) = @u(Pr) = Gnlu) = 20(Pyu), Pra = un) d
0
T
+ [ div (@u(Pr) = ) = ((Pr) = ), P = ) e
0
T
+/(u—divq+z,Phu—u)dt
0
= L+ 1+ I3+ I4.
Using the Cauchy inequality and Lemmas 4.1 and 4.2, we have
. 1
1 < C(ldiv (g — an() ) + B0 = n(@)Fa0) + 1P = iy (417)
and
I, = 0. (4.18)
Using (2.25), we find that
T
I, = max{0, z — divg} - //(Phu —u)dzdt = 0. (4.19)
0 Q

Combining (4.16)—(4.19) with (4.12), we complete the proof of the lemma.
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Similarly to Lemma 3.2, we have

Lemma 4.5. Let (pr(Pru), yn(Pru), qn(Pru), zn(Pru)) and (P, yn, qn, 2n) be solutions of (3.1)—
(3.12) at © = Pyu and t = up, respectively. Then

lyn(Pru) = ynllpoe(z2) + 1P (Phw) — Pallpoe(r2y < |1Phu — unllp2(z2), (4.20)
2 (Prhw) — 2nllpeo(r2) + ll@n(Pru) = @nllpoo(r2) < |1Pow — unllr2(22), (4.21)
[div(pn(Phu) — pa)llpee(r2) + |div(gn(Pau) — @n)llzeoz2) < |Phu — unllr2(z2)- (4.22)

Combining Lemmas 4.1—4.5 and the triangle inequality, we have the following lemma.

Lemma4.6. Lef (p,y, q, z) be a solution of (2.12)—(2.24) and (pn, Yn, qn, z1) be a solution of (2.40)—
(2.52). Assume that all the conditions in Lemmas 4.1—4.5 hold. Then

1Poy — ynllzoo(r2) + 1Tap — ol (r2y < CR?, (4.23)
1Poz — 25l oo (r2y + ITIhG — @ull oo 2y < CH2, (4.24)
|div (Thp — pn) || Lo 22y + [|div (g — gn) || Lo 22y < CR*. (4.25)

In order to improve the global accuracy of the approximation, let us firstly construct the recovery
operator Gy. Let Gpv be a continuous piecewise linear function (without zero boundary constraint). The
nodal values of Gpv are defined by the least-squares argument on the element patches surrounding the
nodes; see details in the definition of Ry, in[12].

Now we can derive the following superconvergence result for the control variable.

Theorem 4.1. Let u and uy, be solutions of (2.12)—(2.24) and (2.40)—(2.52), respectively. Assume
that all the conditions in Lemmas 4.1—4.5 hold. Then

lu — Grup|r2(z2) < CH®. (4.26)
Proof. Note that

[u = Grup|| < [Ju— Gpull + |Ghu — GrPyul| + |GrPru — Grug||. (4.27)

According to[12, Lemma 4.2}, we have

lu— Gpul < CR®. (4.28)

Using the definition of G}, we have
Gru = Gp Pyu, (4.29)
|GrPru — Grupl|| < ||Pru — up|. (4.30)

Combining (4.27)—(4.30) with Lemma 4.4, we complete the proof of the theorem.
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5. CONCLUSIONS

In this paper, we investigate a priori error estimates and superconvergence of splitting positive

definite mixed finite element methods for optimal control problems (1.1)—(1.6). Our theoretical results
of semidiscrete splitting positive definite mixed finite element approximation for pseudo-hyperbolic
integro-differential control problems seem to be new.

In the next work, we will discuss a posteriori error estimates. Moreover, we will consider fully discrete

splitting positive definite mixed finite element methods for parabolic and hyperbolic integro-differential
optimal control problems.
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