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Abstract—An approach to improving the stability of triangular decomposition of a dense positive
definite matrix with a large condition number by using the Gauss and Cholesky methods is consid-
ered. It is proposed to introduce additions to standard computational schemes with an incomplete
inner product of two vectors which is formed by truncating the lower digits of the sum of the products
of two numbers. The truncation in the process of decomposition increases the diagonal elements of
the triangular matrices by a random number and prevents the appearance of very small numbers
during the Gauss decomposition and a negative radical expression in the Cholesky method. The
number of additional operations required for obtaining an exact solution is estimated. The results of
computational experiments are presented.
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INTRODUCTION

The instability of solving a SLAE with a positive definite square matrix A of order n,

Ax = b, (1)

(the matrix A is assumed to be ill-conditioned owing to the fact that its rows are almost linearly
dependent) can lead, due to an increase in the rounding errors, to the appearance of very small diagonal
elements of the upper triangular matrix, up to zero ones, in the Gauss method and to a negative radicand
in the Cholesky method [1]. The generally accepted method of choosing pivot elements for positive
definite, and much less for ill-conditioned matrices, has no effect [2]. One way of increasing the stability
of solving a SLAE is an explicit or implicit method of preconditioning for the original matrix. In the
former case the matrix A is multiplied by a matrix that is inverse to some matrix M [3]. In the latter,
some operations that differ from the standard Gauss and Cholesky procedures are performed in the
calculation process. The result of this decomposition (called incomplete decomposition) are triangular
matrices whose product is the matrix M (called a split matrix):

M = A + N, (2)

where N is the matrix of errors of the decomposition. Incomplete decomposition is widely used for sparse
matrices to avoid the appearance in the decomposition of nonzero values of those elements that are zero
in the original matrix. In the Intel Math Kernel Library [4], implicit preconditioning consists in replacing
the diagonal elements that are zero or close to zero in the matrices obtained in the calculations by a given
small number.

In the present paper, a method for improving the stability of triangular decomposition is considered. It
consists in increasing the diagonal elements of triangular matrices by some number determined during
the decomposition.

*E-mail: vnlutay@sfedu.ru

388



IMPROVING THE STABILITY OF TRIANGULAR DECOMPOSITION 389

Complete triangular Gaussian and Cholesky decomposition forms triangular matrices LA, UA, and
HA such that

A = LAUA, A = HAH�
A .

The formulas for calculating their elements are as follows [5] (the diagonal terms have an additional
index A):

uAii = aii −
i−1∑

k=1

likuki, (3)

uij = aij −
i−1∑

k=1

likukj, lji =

(
aji −

i−1∑

k=1

ljkuki

)/
uAii,

i = 2, . . . , n, j = i + 1, . . . , n;

hAii =

√√√√aii −
i−1∑

k=1

h2
ik, i = 2, . . . , n; (4)

hji =

(
aji −

i−1∑

k=1

hikhjk

)/
hAii, j > i.

Once all elements of the matrices are obtained, we solve systems with triangular matrices:

UAx = L−1
A b, (5)

HAy = b, H�
A x = y. (6)

The number of operations is estimated as follows: for LU-decomposition, 2
3n3 to obtain a triangular

matrix and n2

2 for (5); for Cholesky decomposition, 1
3 n3 and n2 according to (6).

1. TRUNCATION AND INCOMPLETE INNER PRODUCT

In both methods of triangular decomposition, the most widely used operation is the inner product
of two vectors. A generally accepted method of calculating this product is to accumulate the products
of two numbers which have 2t digits the number of digits for a t-digit mantissa. This technique allows
decreasing the rounding errors in comparison with the accumulation of t-digit products. In this case,
the operations of assigning, dividing, and taking square roots are performed with the most significant t
digits of the resulting sum.

To use the discarded digits of the accumulated sum of products in the computation process, let us
introduce the following operation: divide a 2t-digit number by two and place these numbers in two
memory cells, each containing t digits. The first number consists of (t− τ ) significant digits of the initial
sum and is supplemented to t by zeroes on the right (τ is a positive integer smaller than t). The second
number consists of the τ digits truncated from the first number, and it is supplemented on the right by
the sum digits beginning with the (t + 1)th digit. Let [·]b and [·]r denote the first and second numbers,
respectively. Then for the inner product of two n-dimensional vectors we have

s =

[
n∑

i=1

aibi

]

b

+

[
n∑

i=1

aibi

]

r

. (7)
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If t-digit products are accumulated instead of 2t-digit ones (no double accumulation mode is available),
the first number contains t − τ significant digits of the inner product, and the second one, the remaining
τ digits.

The inner product s is called complete for any τ in the range t > τ ≥ 0. Let the first term in (7) for
τ > 0 be called an incomplete inner product and the second one, its complement, and let the operation
for obtaining them be called truncation. The signs and orders of both numbers are the same as those of
s. In magnitude, s is larger than the incomplete product which, in turn, is larger than the complement.
As τ increases, the incomplete product decreases and the complement increases.

We use the incomplete inner product to calculate one diagonal element of the triangular matrices U
and H :

uAii = aii −
[

i−1∑

k=1

likukj

]

b

−
[

i−1∑

k=1

likuki

]

r

, hAii =

√√√√aii −
[

i−1∑

k=1

h2
ik

]

b

−
[

i−1∑

k=1

h2
ik

]

r

.

If we take the following new values for the diagonal elements:

uii = aii −
[

i−1∑

k=1

likuki

]

b

, hii =

√√√√aii −
[

i−1∑

k=1

h2
ik

]

b

,

we have

uii = uAii +

[
i−1∑

k=1

likukj

]

r

, h2
ii = h2

Aii +

[
i−1∑

k=1

h2
ik

]

r

.

The off-diagonal elements of the triangular matrices are calculated, according to (3) and (4), with the
new values, uii and hii.

In positive definite matrices the diagonal elements of the corresponding triangular matrices are
positive. Therefore, uii and hii are larger than 0, and larger than uAii and hAii, respectively.

To determine the structure of the matrix N , we use a method of inverse analysis of LU-decomposition
errors [2]. Its main result is the following expression:

LU = A + N,

where N is a dense matrix whose elements are the errors of rounding of the results of calculation of the
elements of the triangular matrices to t digits.

Truncation will be considered as rounding of a number to (t − τ) digits without the commonly used
division of the resulting error by two. Assume that the only truncated element is uAii. In this case the

error is
[

i−1∑
k=1

likuki

]

r

, whereas all other elements of the triangular matrices are calculated exactly (the

ordinary rounding errors are not considered).
Let N1 denote the error matrix for one truncation. It has only one nonzero element n1

ii whose value
is equal to the number consisting of the truncated digits. In this case the elements of the triangular
matrices below the ith row will change in comparison to the elements of the matrix UA. Specifically, the
elements of the matrix L, according to (3), will decrease, whereas the diagonal elements participating in
the calculation will increase.

Assume that after the truncation for the element uii the truncation for the jth diagonal element
(j > i) was made in the process of decomposition. This means that the matrix A + N1 has incomplete
decomposition, whereas the matrix of decomposition errros N2 has one nonzero element n2

jj calculated

for the matrix A + N1 and equal to

[
j−1∑
k=1

ljkukj

]

r

.
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After k truncations we have

LU = A + N1 + N2 + · · · + Nk.

Similar reasoning can be used for the Cholesky method, with the only difference that an error appears in
calculating the square of a diagonal term [5, pp. 176, 177]. Thus, Eq. (2), where the decomposition error
matrix N has nonzero terms only in the main diagonal, holds for decompositions with the truncation
operation.

The largest number of elements in N is (n − 1); n11 is always 0. The quantity nii is part of the
corresponding inner product and ultimately depends on the elements of the matrix A.

If there is no double accumulation, all nii = 0 with τ = 0, and M , L, U , and H coincide with the
matrices A, LA, UA, and HA, respectively. If truncation is implemented as a software operation, τ can be
changed in the calculations by increasing its value for small diagonal elements of the triangular matrix.

The triangular matrices L, U , and H obtained in the process of incomplete decomposition make it
possible to calculate a vector x̃ which can be considered an approximate solution of the system (1):

Mx̃ = b. (8)

To further discuss the truncation effect, we will use a condition number of a matrix calculated as the
product of its norm by the norm of the inverse matrix, and as the ratio of the maximum eigenvalue of the
matrix to the minimum one. Decreasing the condition number of a matrix is one of the major reasons for
preconditioning.

It is generally assumed that in decomposing an ill-conditioned matrix into triangular factors the upper
triangular matrix is ill-conditioned and the lower triangular one is well-conditioned [1]. The condition
number of the matrix M under LU-decomposition is as follows:

cond (M) ≤ cond (L) cond (U). (9)

Since the eigenvalues of the upper triangular positive definite matrix U are the diagonal terms, increasing
all diagonal terms, or for least the smallest ones, will decrease the condition number of U in comparison
to that of UA, and that of M in comparison to that of A. This resoning can be used for the Cholesky
decomposition as well.

2. EXACT SOLUTION

To obtain an exact solution by using truncated numbers, in (1) we use left preconditioning:

M−1(M − N)x = M−1b. (10)

Denoting Z = (I − M−1N) and using (8), we write (10) in the following form:

Zx = x̃, (11)

where I is a unit matrix. Z is not singular and has the following form:

Z =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 −y11 · · · − y1k

0 1 −y21 · · · − y2k

0 0 1 − y31 · · · − y3k

...
...

...
...

0 0 −yn1 · · · 1 − ynk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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The columns yl form a dense rectangular matrix, which can be obtained by multiplying M−1 by N
and rearranging the columns. First, the system (8) is solved. This has an operation count typical for
triangular decompositions. The second stage in finding a solution to (1) is solving the system (11). Its
implementation requires additional operations. They are used to form the matrix Z and determine the
vector x.

When finding the vectors yk, instead of inverting the matrix M (since it does not exist in explicit
form), it is sufficient to solve k systems of LAEs with triangular matrices obtained for the first stage and
columns with a single nonzero element in the right-hand side:

Myl = nl, l = 1, . . . , k.

For this we need kn2

2 operations in the LU-decomposition and twice as many operations in the Cholesky
decomposition.

In finding the vector x we use a standard LU-decomposition. When (10) is solved by an iterative
method for large cond (A), one cannot guarantee that the condition ||M−1N || < 1, which is necessary
for convergence of the process, is satisfied. We need 2

3k3 operations to bring the matrix Z to triangular

form, and additional k2

2 operations to solve the thus obtained triangular system. On the whole, the
operation count for the second stage is 2

3k3 + O(n2) + O(k2) operations, and for k < n it is smaller
than that for the triangular decomposition.

Let us estimate the ratio of the condition numbers of the matrices M and Z. Since it follows from
(10) that

A−1 = Z−1M−1, (12)

we have

cond (Z) ≥ cond (A)
cond (M)

. (13)

Since cond (A) does not depend on truncations, a decrease in cond (M) leads to an increase in cond (Z).
There are several methods of truncation: for instance, the diagonal elements of triangular matrices

are controlled as follows: if they successively decrease, a truncation is used for the next element. For the
Cholesky method, truncation can be used when a radicand becomes less than zero.

3. RESULTS OF EXPERIMENTS

These computational experiments were performed for LAE systems with well-known ill-conditioned
matrices in double format with t = 17. An LU-decomposition was made using the Crout–Doolittle
algorithm [2]. That is, this HH�-decomposition was made using a “left to right, top to bottom” scheme.
The condition numbers were calculated as the products of the Euclidean norms of corresponding
matrices, and the norms of vectors, as ∞-norms.

The following SLAEs were used for the LU-decomposition:
(a) A system of two equations known as the Wilkinson test problem [9]:

A =

∣∣∣∣∣∣
0.780 0.563

0.913 0.659

∣∣∣∣∣∣
, b =

∣∣∣∣∣∣
0.217

0.254

∣∣∣∣∣∣
. (14)

The exact solution of the system: x1 = 1, x2 = −1; the condition number of the matrix: 106. The norm
of A−1 is large because the A-rows are almost linearly dependent. Actually, the ratio a11/a21 is equal to
a12/a22 to the fifth decimal place. The results of the calculations are presented in Table 1.
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Table 1. Results of truncation for the Wilkinson problem

τ n22 u22 cond (M) cond (Z) ‖rx‖

0 0 1.3 · 10−6 106 2 1.2 · 10−11

13 9.9 · 10−5 9.9 · 10−5 2.2 · 104 77 4.0 · 10−13

15 9.0 · 10−3 9.0 · 10−3 241 7.0 · 103 1.4 · 10−16

16 5.8 · 10−2 5.9 · 10−2 50 6.0 · 105 1.4 · 10−16

Table 2. Results of truncation for LU-decomposition (n = 8, k = 3)

τ ‖N‖ max Lij u88 cond (M) cond V (Z) ‖rx‖

0 0 5.65 5.7 · 10−9 1.7 · 1010 8 6.5 · 10−8

13 8.8 · 10−5 3.33 1.6 · 10−5 7.3 · 105 1.1 · 106 9.8 · 10−12

15 1.1 · 10−3 3.71 6.1 · 10−4 1.26 · 105 7.1 · 106 2.0 · 10−12

16 1.1 · 10−2 3.71 6 · 10−3 1.2 · 105 1.6 · 108 4.3 · 10−13

It follows from Table 1 that the diagonal element u22 of the triangular matrix incereases with
increasing τ . Cond (M) decreases, and cond (Z), according to (13), increases. The residual of the
solution r = Ax − b, for the same number of significant numbers as for τ = 0, decreases.

(b) A SLAE with a Hilbert matrix, which is symmetric positive definite and ill-conditioned, with
a condition number increasing abruptly with increasing n [2]. Systems with such a matrix are often
used to verify the effeciency of computational algorithms. Its elements are calculated by the formula
aij = 1/(i + j − 1). The ratio of any elements of the kth and lth rows is (l − 1 + j)/((k − l + j)): even
for small k and l it depends but slightly on j. As a result, the elements of the triangular matrix U become
very small with increasing subscripts, and the elements of the inverse matrix, very large. The order of the
matrix was taken equal to 8, and the number of digits in the representation of the coefficients of A and b
was 10. The vector of free terms was chosen so that the unit vector is a solution to the system. Truncation
was used under the condition aii < ai−1,i−1 < ai−2,i−2. In our case this takes place for i = 5, 6, 8. Table 2
presents the norm of the matrix N , the maximal element of the triangular matrix L, the last diagonal
element of the matrix U , the condition numbers of the matrices M and Z, and the norm of the residual
vector.

It follows from Table 2 that as τ increases, the elements of the matrix L decrease considerably and the
diagonal elements of the matrix U increase beginning from the fifth one (the last diagonal element is the
smallest). The condition number of the matrix M decreases, and that of the matrix Z increases. As in
the previous experiment, an admissible relation between cond (M) and cond (Z) is reached for τ = 15.
The norm of the solution residual decreases with increasing τ .

(c) The same system with a Hilbert matrix and the unit vector as a solution for n = 8 was used for the
Cholesky decomposition. The number of digits in the representation of the matrix and vector coefficients
of the initial system was taken equal to 8. This choice was made because when the number of digits
is larger than 8 the computation process terminates normally. Abnormal termination when the number
of digits is equal to 16 (almost complete word length) takes place only for n = 13. This confirms the
statement [10] that the rounding errors for ill-conditioned matrices play a lesser role than the errors in
representing the matrix elements. When solving by a standard method, the calculations terminate for
h88. The method of truncation used for the LU-decomposition yielded here similar results: an increase
in the diagonal elements of the triangular matrix H , a decrease in cond (M), and an increase in cond(H)
under normal termination of the calculations. The number of truncations was three.

Table 3 presents the results of solving two SLAEs with a Hilbert matrix for n = 8 and n = 10 (for
n = 10 cond(A) = 1013) by the Cholesky method. The inner product was truncated for the diagonal
element for which the radicand was negative. At n = 8 truncation was made once, and for n = 10, three
times. The condition numbers of the matrices M and Z were smaller than cond (A).
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Table 3. Results of truncation for Cholesky decomposition (τ = 15)

n Termination
of calculations

k Truncation at nii cond (M) cond (Z)

8 h88 1 h88 6.7 · 10−4 8 · 108 6.7 · 105

10 h88 3 h88; h99; h10 10 6.7 · 10−4; 8.2 · 10−4; 6.3 · 10−4 6.7 · 108 3.5 · 108

Let us find out whether the algorithm being proposed can be simplified if (instead of truncation)
small diagonal elements of the triangular matrix are replaced by a prespecified number. In library [4] this
number, ε, is equal to 10−13 for nonsymmetric matrices and 10−8 for symmetric ones. For large sparse
matrices, for which this library is designed, the resulting solution error is assumed to be insignificant;
otherwise it is proposed to use iterative correction.

In our case ε must be large enough to decrease the condition number of a matrix. However, it is
difficult to choose its value a priori. For instance, for the Wilkinson matrix, as is clear from Table 1,
we can take ε = 10−2 according to u22. However, the same value for the Hilbert matrix will lead to a
too large cond (Z). This is because the diagonal elements of the triangular matrix U in the Wilkinson
system are larger than those of the Hilbert matrix and, as a result, the numbers of truncated digits are
different for the same τ . In addition, if the true value of a diagonal element of the triangular matrix cannot
be calculated (as in the case of a negative radicand in the Cholesky decomposition), it is also impossible
to obtain the corresponding value of the matrix N , which is necessary for calculating the exact value.

CONCLUSIONS

In this paper, the following results have been obtained: It has been shown that truncation of the least
significant digits of the innear product in the LU-decomposition and Cholesky decomposition increases
the diagonal elements of the triangular matrices. This improves the stability of the decomposition
process. In particular, it prevents termination in the calculation process of the Cholesky decomposition.
Solving the initial equation with an ill-conditioned matrix of coefficients is reduced to successively
solving two systems of equations whose matrices are better conditioned than that of the initial system.
The size of the second system can be much smaller than that of the initial one. The number of
needed additional operations is not as large as the number of operations in the standard triangular
decomposition.
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