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Abstract—Randomized Monte Carlo algorithms are constructed by a combination of a basic proba-
bilistic model and its random parameters to investigate parametric distributions of linear functionals.
An optimization of the algorithms with a statistical kernel estimator for the probability density is
presented. A randomized projection algorithm for estimating a nonlinear functional distribution is
formulated and applied to the investigation of the criticality fluctuations of a particle multiplication
process in a random medium.
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INTRODUCTION

Numerical Monte Carlo methods are usually constructed on the basis of natural or artificially
formulated basic probabilistic models. They are especially efficient when the basic models have random
parameters and a combined statistical simulation of basic and parametric distributions is used to
estimate the sought-for quantities. In this, in fact, a product of the corresponding probabilistic spaces
is realized (possibly, many times). In the present paper, such Monte Carlo algorithms are called
randomized. The thus formulated “double randomization” method may be explained by considering the
integral

J(σ)
∫

W

g(w;σ)P (dw;σ)

with a random (possibly functional) parameter σ. Here P(dw;σ) is a probabilistic measure in W with a
parameter σ. Let us estimate the mean EJ(σ) and the variance DJ(σ). If a sufficiently exact estimator
J(σ) ≈ Ĵ(σ) is available, a numerically constructed sample {σi} yields statistical estimates of the
required quantities. However, this algorithm can be too costly for real problems. In this case it is
reasonable to use double randomization: simulate for a given σ only a small number of points ω according
to the distribution P(dw;σ), and then calculate and average the g(ω;σ)-values thus obtained.

Optimization of this algorithm on the basis of a criterion of computational cost is considered in
Section 1. A more complicated problem of optimizing a randomized algorithm is solved in Section 2
for the case of J(x) := J(σ;x), and it is necessary to estimate the function f(x) = EJ(σ;x).

The principle of constructing a double randomization algorithm to estimate DJ(σ) is not so evident.
Since EE(g2(ω;σ)|σ) �= EJ2(σ), at least two conditionally independent points ω (at fixed σ) must be
simulated here (see Section 2). Note that such an algorithm cannot be constructed and justified only
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on the basis of “physical considerations.” The Monte Carlo algorithm presented in Sections 3 and 4 to
estimate the distribution of a nonlinear function Φ(J(σ)) using a power series approximation is even
more complicated in this regard.

1. OPTIMIZATION OF ESTIMATION OF LINEAR FUNCTIONAL
PROBABILISTIC MOMENTS

Consider linear functionals of the form

Jk(σ) =
∫

Rm

ϕ(x;σ)hk(x;σ) dx.

Here x ∈ Rm, σ is a random (and, possibly, functional) parameter of the problem (“random medium”),
ϕ(x;σ) ∈ L1(Rm) is the solution to the problem with a parameter σ obtained by using a computer
probabilistic model, that is, by a basic ensemble of trajectories {Ω} in the phase space Rm, hk(x;σ) ∈
L∞(Rm).

The Monte Carlo method is used to construct unbiased estimators ξk(Ω;σ) of the functionals Jk(σ),
that is, at a fixed σ we have EΩξk(Ω;σ) = Jk(σ). To illustrate this scheme, one may consider the problem
of transfer of particles—radiation quanta—with scattering and absorption through a medium with a
random density σ(r), r ∈ R3 (see, for instance, [1, 2]). Here {Ω} is an ensemble of trajectories of quanta,
which can be defined by a homogeneous Markov chain of collisions of quanta with elements of the
substance. In this case the Monte Carlo method is used to average some functionals of the solution
of the integro-differential equation of radiation transfer through a random medium. In what follows,
randomized algorithms will be formulated for this problem of transfer of particles, although they can be
used for any ensembles {Ω} and parameters σ that are implemented numerically.

The double randomization method for the estimation of probabilistic moments of the linear function-
als {Jk(σ)} is defined by using the following relation, which is easy to verify [3]:

E

[
s∏

k=1

Jk(σ)

]
= E({Ωk},σ)

[
s∏

k=1

ξk(Ωk;σ)

]
. (1)

Here Ωk (k = 1, . . . , s) are conditionally independent trajectories of radiation quanta constructed to
realize a medium with density σ, and ξk(Ω;σ) are unbiased estimators of the functionals Jk(σ), that
is, EΩξk(Ω;σ) = Jk(σ).

According to the rule of repeated averaging (that is, Fubini’s theorem), relation (1) is realized as fol-
lows: first construct a realization of the random medium (that is, generally speaking, of the field σ); then
construct, in this fixed medium, a series of independent (to be more exact, conditionally independent)
trajectories {Ωk}, k = 1, . . . , s, which contributes to statistical estimation of the quantity (1).

From a practical point of view, it is very important that in constructing an unbiased estimator of
the moment (1) for a given realization of σ, one only has to construct s elementary estimates of the
functional. Specifically, at s = 1 only one such estimate can be constructed, since E(Ω1,σ)ξ(Ω1, σ) =
EJ(σ). In this case the use of a series of conditionally independent trajectories can decrease the cost
of the estimate by using the formulas of a “splitting method” (see, for instance, [1]). Note that when
a trajectory Ω gets into a subdomain of the medium with already chosen values of σ, they cannot
be chosen again, otherwise there emerges an “error of overchoice” [2]. Note also that, according to
Fubini’s theorem, the right-hand side of relation (1) remains finite with ξ(Ωk;σ) replaced by |ξ(Ωk;σ)|.
At ξ(Ωk;σ) ≥ 0 relation (1) holds in any case. It is clear that with the above algorithm of estimating the
moment (1) one can also construct estimators of moments of order l < n. In this case it is reasonable to
use all subsequences of order l obtained from the sequence Ω1, . . . ,Ωs.

As noted above, the cost of the double randomization algorithm for estimating EJ(σ) = E (Ω;σ)ξ (Ω;
σ) can be decreased by using a series of conditionally independent trajectories {Ωk}k=1,...,n constructed
for a fixed σ, that is, by using the “splitting method” estimator [4]
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RANDOMIZED MONTE CARLO ALGORITHMS FOR PROBLEMS 157

ζn =
1
n

n∑
k=1

ξ(Ωk;σ).

In this case (see, for instance, [4])

Dζn = d0 + d1/n, where d0 = DσEΩξ(Ω;σ), d1 = EσDΩξ(Ω;σ).

Here the mean number of computational operations is given by the formula Tn = t0 + nt1, where t0
corresponds to a realization of σ, and t1, to a realization of Ω. The value of n minimizing (up to the
transition to the integer part) the cost Sn = DζnTn (see [4]) is

nopt =
√

t0
t1

d1

d0
, (2)

and (see, for instance, [1])

Snopt =
(√

t0d0 +
√

t1d1

)2
≤ T1. (3)

To estimate the efficiency of this randomized algorithm with splitting, consider a model problem of
transfer of particles with delta-scattering and absorption through a medium with a random optical
thickness of absorption σ uniformly (that is, with a density of 1/Δ) distributed over the interval (Σ,Σ +
Δ) at Σ,Δ � 1. The randomized algorithm is constructed to calculate the probability of passage
p = Ep(σ) averaged over the realizations of the medium. In this case p(σ) = e−σ, and an asymptotic
(at Σ,Δ → ∞) estimator p = Ep(σ) 
 e−Σ/Δ is possible. Here the elementary estimator ξ(σ; Ω) is a
“Bernoulli” one, that is, ξ(σ; Ω) = 1 with probability p(σ) and ξ(σ; Ω) = 0 with probability 1− p(σ). We
have

d0 
 p2 Δ
2

, d1 
 p, nopt 

√

t0
t1

2
pΔ



√

2
t0
t1

eΣ,

Snopt 

(√

Δ
2

p2t0 +
√

pt1

)2


 pt1 
 S1

(
1 +

t0
t1

)−1

,

since for the estimator without splitting S1 
 d1(t1 + t0) 
 p(t1 + t0). Thus, here the efficiency of
splitting is determined by the ratio t0/t1. For real problems this ratio may take large values, since t1
is bounded by the quantity C/pc in direct modeling of absorption of a particle under collision with a
given probability pc [5]. In this case the ratio between d0 and d1 and, hence, between Snopt and S1, may
be close to the above-obtained model ratio. On the other hand, this estimate shows that it is not always
reasonable to use n > 1.

In real problems it is difficult to obtain analytical estimates of the coefficients in formula (2). Therefore,
as noted in [1], they should be estimated from preliminary statistical estimation of the quantities Dζn, Tn

for two values, n = n1, n2 (which should be as close as possible to nopt), that is, by solving the following
equations:

d0 +
d1

ni
= D̂ζni , t0 + niti = T̂ni , i = 1, 2. (4)

Any method based on (2) should be corrected in those cases where the realizations of σ are “completed”
at successive modeling of the trajectories Ωk [6]. Here the cost Sn depends on n nonlinearly (and in real
problems, in a complicated way), so that the efficient ratio t0/t1 and, hence, nopt decreases. However,
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it may be assumed that in the representation Tn = t0 + nϕ(n)t1 in a vicinity of nopt the function ϕ(n)
changes to a lesser extent than n. Hence, Eq. (4) with the expression (2) can be efficiently used to
correct the estimate of nopt. For instance, if after modeling of a trajectory Ωk the number of operations for
constructing Ωk+1 decreases by a comparatively small quantity t2, we may set ϕ(n) = 1 − t2(n − 1)/2.
In this case nopt decreases as a result of the corresponding decrease in t0. Note that the splitting
optimization method being proposed can be used for the moments (1) by means of repeating the
realization of the group of trajectories {Ωk} independently n times.

2. OPTIMIZATION OF ESTIMATION OF AVERAGED DISTRIBUTIONS

First let ϕ(x;σ) be a one-dimensional (in x) functional characteristic of the problem. It is necessary
to estimate the averaged function f(x) = Eϕ(x;σ) by a numerical simulation of the parameter σ and
the corresponding trajectories Ω. The Parzen–Rosenblatt universal statistical kernel estimator [7] with
a rectangular (“uniform”) kernel may be efficient for this purpose (see also [8]). It is constructed on the
basis of statistical estimation of functionals of the form

JΔ =
∫

f(x′)IΔ(x′) dx′ = E
∫

ϕ(x′;σ)IΔ(x′) dx′,

where IΔ(x′) is the indicator function of the interval Δ =
(
x − δ

2 , x + δ
2

)
. Assume that the problem

allows constructing a Bernoulli estimator of the functionals JΔ(σ) =
∫

ϕ(x′;σ) × IΔ(x′) dx′ by cal-
culating the number of trajectories Ω that entered the interval Δ and remained there. In problems of
particle transfer theory ϕ(x′;σ) is the stochastic density of the distribution of particles at the points of
their “death,” for instance, as a result of leaving the medium without coming back again. By virtue of
relation (1) we have the following statistical estimator:

JΔ = EJΔ(σ) ≈ nΔ

N
,

where nΔ is the number of trajectories of the particles that entered the interval Δ in a sample {(σi,Ωi)}
(i = 1, . . . , N), since EσEΩnΔ = NJΔ.

The mean squared error of the estimate f(x) ≈ nΔ/(Nδ) is (see, for instance, [8])

ε2(x;N, δ) = E
[
f(x) − nΔ

Nδ

]2

= D
(

nΔ

Nδ

)
+

(
f(x) − JΔ

δ

)2

≈ f(x)
Nδ

+ (f ′′(x))2
δ4

576
(5)

with a relative error decreasing to zero as N → ∞, δ → 0, and Nδ → ∞. By minimizing (5) according
to [8], we obtain

δ5
0(x) =

144 f(x)
N(f ′′(x))2

, ε2(x;N, δ0) ≈
5
4

f(x)
δ0(x)N


 N− 4
5 .

Note that in [9] to estimate f(x) and f ′′(x) a quadratic approximation was used for the function f(x) in
the interval Δ0 ⊃ Δ, which is the best in the L2 metric, with Legendre polynomials of orders 0, 1, and 2.
In [9] (as in [10]), a “microgrouped” sample with a spacing h 
 ε/maxx |f ′(x)| was used to optimize
the kernel estimator. In this case the average number of operations in the algorithm practically does not
depend on δ.

Here our goal is to minimize the cost of the estimator according to (5). This is done by using the
splitting method with a parameter n in Section 1. It is reasonable to average relation (5) with respect to
x, that is (by analogy with [8]), to minimize the quantity
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ε2(N, δ) =
∫

ε2(x;N, δ) dx =
d

Nδ
+ f0δ

4,

where d =
∫

f(x) dx, f0 =
∫
(f ′′(x))2 dx/576, with N replaced by Nn.

Theorem 1. The minimum of

S∗(n, δ) = ε2(Nn, δ)Tn =
(

d

Nnδ
+ f0δ

4

)
(t0 + nt1)

is reached at

δ = δ∗ =
(

t1
t0

d

16f0N

)1
5

, n = n∗ =
(

t0
t1

d

f0

1
(δ∗)5N

)1
2

= 4
t0
t1

,

and

ε2(Nn∗, δ∗) =
5
16

t1 d

t0 N δ∗

 N− 4

5 .

Proof. Since it is assumed that t0 and t1 do not depend on δ, the quantity δ∗, on simple transformations
according to (3), is obtained from the equation

∂

∂δ

(√
f0δ4t0 +

√
t1d

Nδ

)2

= 0.

Next, n∗ is obtained from (2) at d0 = f0(δ∗)4, d1 = d/(Nδ∗).

Recall that for the analog of Bernoulli’s estimator of the functional JΔ we use d =
∫

f(x) dx. For the
unbiased weight modification in all expressions beginning with (5), the symbol f(x) according to [9] is
replaced by fw2(x) if the auxiliary weight of a particle w is limited, that is, w ≤ C < +∞. Here fw2(x) is
the distribution density of the squared weight. Note that absorption may not be “put into play” in the
problem of transfer of particles, and the auxiliary weight is exp(−τc), where τc is the “optical” trajectory
length with respect to the absorption coefficient (see, for instance, [2, 5]).

Now consider an exact formulation of the problem of optimizing the randomized kernel estimator. For
this we need

Lemma 1. Assume that the mean squared error of a statistical functional estimator with
parameter β is D(β)N−α, and the average number of operations to calculate the sampled value
of the estimator is t(β), where N is the sample size. Then the optimal (according to the criterion
of computational cost) value of β is

arg min
β

D1/α(β)t(β) = arg min
β

D(β)tα(β).

Proof. By definition (see [4]) the computational cost is the mean number S of computational operations
required to achieve a given error ε. According to the conditions of the lemma ε2 = D(β)N−α, whence
N = D1/α(β)ε−2/α and

S(β) = D1/α(β)t(β)ε−2/α.
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Thus, we have the following theorem:

Theorem 2. The cost of the randomized kernel estimator of the function f(x) is determined
asymptotically over N by the parameters n∗

0 and δ∗0 minimizing the quantity

ε2(Nn, δ)(t0 + nt1)4/5.

In this case the asymptotics of ε2(Nn∗
0, δ

∗
0) 
 N−4/5 is preserved.

The problem of minimization presented in Theorem 2 can be solved numerically. As a first approxi-
mation n∗

0 ≈ n∗, δ∗0 ≈ δ∗, since

S∗
0(n, δ) ≤ S∗(n, δ)t

− 1
5

0

and (t0 + nt1)
1
5 is a weakly varying function of the argument n.

Additional studies have shown that S(1, δ0)/S(n∗, δ∗) = 0.8(1 + t0/t1), and the use of n∗
0 and δ∗0 can

increase this estimate only up to 1 + t0/t1 (see the example in Section 1).
Note that if Tn = t0 + nt1 nonlinearly depends on n (the case considered in Section 1), n∗ and, hence,

the ratio t0/t1, can be corrected by numerically optimizing the splitting algorithm for the functional
J =

∫
f(x) dx on the basis of relations (4).

Consider a generalization of the results obtained for the multidimensional case, that is, for x ∈ Rm.
As in the one-dimensional case, for the corresponding kernel estimator with a “hypercubic” kernel (with
side length δ), according to [11] we have the following expressions:

ε2
m(x,N, δ) ≈ f(x)

Nδm
+ Fm(x)δ4, ε2(N, δ) =

d

Nδm
+ f

(m)
0 δ4,

where Fm(x) =
( m∑

i=1
f ′′

i (x)
)2/ 576, f

(m)
0 =

∫
Fm(x) dx.

Hence, we have

δm+4
0 (x) =

mf(x)
4NFm(x)

, ε2
m(x;N, δ0) = δ−m

0

f(x)
N

4 + m

4

 N− 4

4+m .

By analogy with the above, for the algorithm with splitting we have

δ∗m =

(
m2

16
t1d

t0f
(m)
0

1
N

) 1
m+4

, n∗ =
4
m

t0
t1

, ε2(Nn∗, δ∗) =
t1dm(4 + m)
16t0N(δ∗)m


 N− 4
4+m ,

and asymptotically exact optimization is obtained by minimizing the quantity

ε2
m(Nn, δ)(t0 + nt1)4/(4+m).

This generalization corresponds to the case of vector coordinates x = (x(1), . . . , x(m)) “on the same
scale.” Otherwise, as usual, some scaling δ(k) = ckδ (k = 1, . . . ,m) should be used. In this case,

in the relations obtained f(x) is replaced by f(x)
/ m∏

k=1

ck, and f ′′
i (x) is replaced by c2

i f
′′(x). Here

S(1, δ0)/S(n∗, δ∗) = 4(4 + m)−1(1 + t0/t1).
Finally note that according to (1) the randomized projection method proposed by Chentsov for

numerical statistical modeling [12] can be extended to the estimation of averaged distributions. However,
calculations show that this method can be efficient only in the case of a sufficiently smooth one-
dimensional function or its ratio to some additional probability density (see, for instance, [13]). In this
case any multidimensional generalization is rather difficult.
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3. ESTIMATION OF NONLINEAR FUNCTIONAL MOMENTS

3.1. Here we consider nonlinear random functionals of the form

L(σ) = Φ(J(σ)), (6)

where Φ is a nonlinear function, and J(σ) is the linear functional considered in Sections 1 and 2.

Randomized algorithms for estimating the moments ELi(σ) (i = 1, . . . ,m) can be constructed
by analogy with [14] (in which the function Φ(J) = n

√
J was considered) by using the power series

approximation

Φi(J(σ)) ≈ Φ(i)
n (J(σ)) =

n∑
s=1

a(i)
s

(
J(σ) − Ĵ

)s
, (7)

where

a(i)
s =

1
s!

dsΦi(x)
dxs

∣∣∣∣
x=Ĵ

,

and Ĵ is a preliminarily constructed sufficiently exact statistical estimator of the quantity EJ . Note that
here the estimator Ĵ is considered as a deterministic one. This does not violate the convergence over n

in (7) and allows obtaining the variance of the statistical estimator of EΦ(i)
n in the ordinary way. From

(7) we obtain

ELi(σ) ≈
n∑

s=1

a(i)
s E

(
J(σ) − Ĵ

)s
.

Randomized estimators ζ
(s)
n of the moments E(J(σ)− Ĵ)s are constructed according to (1) by using a

basic series of conditionally independent trajectories {Ωk} (k = 1, . . . , n), with ξk(Ωk;σ) in (1) replaced
by ξ̂(Ωk;σ) = ξk(Ωk;σ) − Ĵ . In this case it is reasonable to use all the various sequences of the order s
obtained from the basic series.

Let Qs =
{
F

(s)
1 , . . . , F

(s)
q

}
= {{l1, . . . , ls}j} be the set of various series of indices, that is, F

(s)
j ⊂

{1, . . . , n}. The number of F (s)
j in Qs is equal to the number of combinations q = Cs

n. Hence, we can use

the following unbiased estimator of the moment E(J(σ) − Ĵ)s:

ζ(s)
n =

1
Cs

n

Cs
n∑

j=1

∏
k∈F

(s)
j

ξ̂(Ωk, σ). (8)

Thus, we obtain the estimator

ELi(σ) ≈ E
n∑

s=1

a(i)
s ζ(s)

n , (9)

which can be realized by double randomization. As shown in Section 1, first a realization of the
parameters σ is constructed. Then a series of trajectories {Ωk} (k = 1, . . . , n) is simulated, and an
elementary sample value of the statistical estimator of (9) is calculated. Averaging of these values and
their squares yields a statistical estimator of the moment ELi(σ) and its root-mean-square error.
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3.2. Although the terms in (8) are not independent, the use of this expression (as shown by calculations
in [14]) can considerably decrease the statistical error of the resulting estimator in contrast to using
only one set, Ω1, . . . ,Ωs. This can be explained in the following way. It is easy to see that if J(σ) =
EΩξ(Ω;σ) ≡ J , at Ĵ = J , the terms in the sum of (8) are pairwise conditionally uncorrelated. Therefore,
under the conditions when small perturbations (assumed in [14]) can be applied, that is, when J(σ) ≈
J ∀σ, we have

D
(
ζ(s)
n

∣∣ σ
)
≈ 1

Cs
n

D

( ∏
k∈F

(s)
1

ξ̂(Ωk, σ)

)
.

Note that in the equality

D
(
ζ(s)
n

)
= DE

(
ζ(s)
n

∣∣σ)
+ ED

(
ζ(s)
n

∣∣ σ
)
,

under the conditions of applicability of small perturbations the second term usually dominates.

Therefore, taking into account the above discussion, to implement the estimator (9) it is reasonable

to simulate (n + 1) trajectories, that is, use the estimator of Φ(i)
n+1 without the last term, for which the

sum in (8) is unity.

3.3. In [14] Lotova constructed an efficient algorithm for a successive calculation of the quantities

ζ
(1)
n , . . . , ζ

(s)
n for a sequence of the partial sums:

S
(1)
k =

n∑
j=k

ξ̂(Ωj , σ), S
(2)
k =

n−1∑
j=k

ξ̂(Ωj, σ)S(1)
j+1,

S
(s)
k =

n+1−s∑
j=i

ξ̂(Ωj , σ)S(s−1)
j+1 , k = 1, . . . , (n + 1 − s).

In [14] mathematical induction was used to show that

S
(s)
1 =

Cs
n∑

j=1

∏
k∈F

(s)
j

ξ̂(Ωk, σ), ζ(s)
n = S

(s)
1

/
Cs

n.

Note that the trajectories Ωk, . . . ,Ωn are used to calculate S
(n)
k .

A logically simpler algorithm consists in a successive construction of products from (8) in the
following way: as soon as a trajectory Ωi is simulated, the sequence of products of the order s + 1 is
supplemented by the products of the order s multiplied by ξ̂(Ωi, σ) (s = 1, . . . , i − 1). Finally, as soon
as the basic series {Ωk} is simulated, all obtained sequences (in contrast to the algorithm from [14])
are summed up independently. This greatly increases the cost of the simple algorithm. It is evident

that the number of final additions in this algorithm is
n∑

s=0
Cs

n = 2n, and the number of multiplications

is determined by the following relation:

n∑
s=1

(s − 1)Cs
n =

n∑
s=0

sCs
n − 2n + 1 = [(1 + x)n]′x=1 − 2n + 1 = (n − 2)2n−1 + 1.
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4. ESTIMATION OF DISTRIBUTION FUNCTIONS OF NONLINEAR FUNCTIONALS

4.1. The probability P(Φ(J(σ)) < x) cannot be estimated by using randomization. Therefore, here it is
reasonable to use some global estimator of the distribution. However, it should be taken into account
that practically (especially under the conditions of small perturbations) a Gaussian approximation of
the distribution of the functional J(σ) may be efficient with the use of a corresponding orthogonal
decomposition. Hence, it is appropriate to use the relation

P (Φ(J(σ)) < x) = P
(
J(σ) < Φ−1(x)

)
,

and, for the distribution density f(y) of the random quantity J(σ), the approximation

f(y) ≈ fM (y) = fnorm(y; a, d2)

(
ψ0 +

M∑
i=1

ciψi([y − a]/d)

)
, ψ0 ≡ 1. (10)

Here a and d2 are estimates of the mean and variance of the random quantity J(σ), {ψi} are orthonormal
Hermite polynomials with the weight

fnorm(y; a, d2) =
exp(−(y − a)2/(2d2))√

2πd2
.

In this case ci = Eψi([J(σ) − a]/d). Therefore, it is reasonable to use (10) with previously estimated
parameters. This is confirmed by numerical testing of estimates of the probability P = P(J(σ) > 1)
obtained on the basis of (10) for a model problem considered in [14].

It is difficult to use the estimator (10) due to its slow convergence over M at low smoothness of
the density f(y). A heuristic criterion for choosing M may be that of coincidence, within the required
accuracy, of estimates of the sought-for probability for M and M + 1.

It is also reasonable to determine the approximation order in (10) by using sufficiently accurate
numerical-analytical estimates of the values of J for some simplified model of the problem. In [14], the
diffusion approximation for homogenized realizations of the medium was used for this purpose. The
calculations have shown that to retain the arithmetic accuracy and to estimate the variances Dc̃i the
corresponding sampled values (and their squares) must be averaged; the estimates of the moments
EJs(σ) (i = 1, . . . ,M) must not be used for this. In the case of statistical modeling of the process,
the required result is obtained by randomized estimation of ci, i = 1, . . . ,M , with M conditionally
independent trajectories.

4.2. Paper [14] studies the fluctuations of the coefficient k(σ) of particle multiplication in a medium
with random density σ(r), r ∈ R3. The coefficient k is the leading eigenvalue of the corresponding
positive integral operator: kf = Kf (see, for instance, [15]). The standard Monte Carlo algorithms for
the estimation of k, in fact, realize Kellogg’s method (see, for instance, [15, 16]), that is, the limiting
relation

k = lim
m→∞

(Km+1f0, h)
(Kmf0, h)

. (11)

As shown in [14], such algorithms are not efficient for randomized estimation of the quantities Ek(σ),
Dk(σ), and P(k(σ) > 1). Therefore, the following limiting relation was proposed in [14]:

k = lim
m→∞

km, km = m
√

(Kmf0, h). (12)

Paper [14] provides a proof of the limit (12), by analogy with the proof of the limit (11) presented in [15].
The value of m in the approximate formula k ≈ km is selected on the basis of preliminary calculations,
possibly using a semianalytic estimator [14]. In (12) the operator K depends on σ, and one can assume
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that (Kmf0, h) = J(σ), since to estimate the moments E(Kmf0, h)s, one can use randomized Monte
Carlo algorithms (see Section 1). Thus, relation (12) is reduced to the form (6). Hence, the above is a
generalization and an explanation of the results of [14].

Note that [17] considered the various aspects of construction and investigation of algorithms to
estimate some probabilistic moments of solving the equation of radiation transfer through a random
medium. Realistic computational models were presented for exponentially correlated nonnegative homo-
geneous isotropic random fields of density σ(r) of the medium. Their realizations are close to continuous
ones, and the one-dimensional distributions are close to Gaussian ones. The realistic character of the
models was confirmed by the illumination field for radiation passing through the medium calculated on
this basis.

These models have the form

σn(r) =
n∑

i=1

σ
(n)
i (r),

where {σ(n)
i } are independent realizations of an “elementary mosaic” nonnegative random field with an

exponential correlation function and one-dimensional “beta”-distribution. Boundedness of the field σ
(n)
i

allows simulating the free path length l of a radiation quantum by the “maximum cross section” (also
called “delta-scattering”) method [18]. In this case the free path length in the corresponding realistic
field σ(r) is obtained by the formula l = mini li. As shown in [19], this method of modeling the free path
length (including the “delta-scattering” method) follows directly from the invariance of Poisson random
point flows with respect to the operations of combination and random “Bernoulli” thinning. Note that
corresponding algorithms for the above realistic models of σ(r) were developed in [6]. These models
and algorithms turned out to be useful, in particular, for solving the practically important problem of
averaging the equation of radiation transfer through a random medium [2].
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