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Abstract—1In this paper, we present a two-grid scheme for a semilinear parabolic integro-differential
equation using a new mixed finite element method. The gradient for the method belongs to the
square integrable space instead of the classical H(div; ) space. The velocity and the pressure are
approximated by the PZ—P; pair which satisfies the inf-sup condition. Firstly, we solve an original
nonlinear problem on the coarse grid in our two-grid scheme. Then, to linearize the discretized
equations, we use Newton iteration on the fine grid twice. It is shown that the algorithm can achieve
asymptotically optimal approximation as long as the mesh sizes satisly h = O(HS[InH|?). As a
result, solving such a large class of nonlinear equations will not be much more difficult than the
solution of one linearized equation. Finally, a numerical experiment is provided to verify theoretical
results of the two-grid method.
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1. INTRODUCTION

Mixed finite element methods, which are used to approximate two different variables, have been
found to be very important for solving the partial differential equations [1, 12, 22]. Especially, the second
variable, which is usually related with some derivatives of the original variable, has its physical interest.
For example, in the elasticity equations, where the stress can be introduced to be approximated at the
same time as the displacement. In the recent years, Chen et al. [8, 23] developed a new mixed finite
element scheme and used P?—Py finite element pair to solve partial differential equations. The gradient
of the primal variable for this method belongs to the square integrable space instead of the classical
H (div; Q) space.

The two-grid method was introduced by Xu [27, 28] as a discretization method for nonsymmetric,
indefinite and nonlinear partial differential equations. The main idea is to use a coarse-grid space to
produce a rough approximation of the solution of nonlinear problems, and then use it as the initial
guess for one Newton-like iteration on the fine grid. After Xu’s work, a two-grid method was further
investigated by many authors (see, e.g., [2—6, 10, 26—29]). Dawson and Wheeler [10] analyzed a two-
grid finite difference scheme for nonlinear parabolic equations. Wu and Allen [26] presented a two-
step algorithm by using the two-grid idea for the semilinear reaction—diffusion equations with the
expanded mixed finite element method. Based on this work, Chen et al. [5] proposed a three-step
algorithm using the correction idea from reference [28]. Then, Chen et al. [6] presented a three-step
two-grid algorithm and a four-step two-grid algorithm for semilinear reaction—diffusion problems by
expanded mixed finite element method. Chen et al. [4] discussed a two-grid method for mixed finite
element methods of fully nonlinear reaction—diffusion equations. Bi and Ginting [2] studied two-grid
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finite volume element method for linear and nonlinear elliptic problems. They also investigated two-grid
discontinuous Galerkin method for quasi-linear elliptic problems in [3]. Xu and Zhou [29] presented a
two-grid discretization scheme for eigenvalue problems. There are many other efficient methods such
as multilevel algorithms for nonlinear elliptic equations and Ginzburg—Landau model, (see, e.g., [16,
17]). As far as we know there is no convergence analysis of two-grid method combined with mixed finite
element method [8] for parabolic integro-differential equations in the literature.

Integro-differential equations can arise from many physical processes in which there is deficiency (the
local characteristic) of the usual diffusion equations. Various numerical methods have been developed for
solving these problems. Finite element approximation of linear or nonlinear integro-differential equations
is extensively studied (see[7, 14, 18, 25]for standard finite element methods and [13, 19, 20, 24]for mixed
finite element methods). In this paper, we consider the following semilinear parabolic integro-differential
equations:

ye —divp = f(y), x € Q, t € J, (1.1)
t

p=AVy— /B(t,s)Vy(s)ds, ref, tel, (1.2)
0

y(z,t) =0, x €0, t € J, (1.3)

y(z,0) = yo(x), =€ Q, (1.4)

where Q € R? is a convex polygonal domain with the boundary 9Q, J = (0,T], f(y) = f(y,z,t) is
a given real-valued function on . We assume that the coefficient matrix A = A(z) = (ai;(x))2x2 €
Whee(Q; R?*?) is a symmetric 2 x 2 matrix and there are constants ¢y, co > 0 satisfying for any vector
X € R?, ¢ | X[|{: < X'AX < ]| X||Ry2- Moreover, B(t, s) = B(x,t, ) is also a 2 x 2 matrix. We also
assume that

f W)+ 1f"(w) <M, yeR.

In this paper, we will combine the two-grid method with the new mixed finite element scheme
[8] to solve the above-mentioned semilinear integro-differential parabolic equations based on the less
regularity of flux. We first solve a nonlinear problem on the coarse-grid space, then we use the known
coarse grid solution and a Taylor expansion to extrapolate the solution on the fine grid. On the fine grid
we only need to solve a linear system.

The plan of this paper is as follows. In Section 2, we construct the fully discretized mixed finite
element approximation of the problem (1.1)—(1.4). We shall derive the optimal a priori error estimates
for all variables in Section 3. We will provide the two-grid algorithm and its error estimates in Section 4.
In Section 5, we present a numerical example to verify the theoretical result. In Section 6, we conclude
with a summary and possible extensions.

2. FULLY DISCRETIZED MIXED FINITE ELEMENT SCHEME

In this section, we will construct our new fully discretized mixed finite element approximation scheme
of the problem (1.1)—(1.4).

We adopt the standard notation W"™P?(Q) for Sobolev spaces on 2 with a norm || - |, , given by
ol = |Z 104,
al<m

a semi-norm | - |, p given by

A S 12

laf=m
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TWO-GRID METHODS FOR A NEW MIXED FINITE ELEMENT APPROXIMATION 139

We set WyP(2) = {v € W™P(Q) : v|gq = 0}. For p = 2, we denote H™(Q2) = W™2(Q), H*(Q) =
Wo (@), and || - llm = I - 2o |- 11 = 11 - llo2-
We denote by L*(J; W™P(Q)) the Banach space of all L* integrable functions from J into W™P(2)
T 1/s
with norm [[v|[ s (. wmp(0)) (f ||v||me( )dt) for s € [1,00), and the standard modification for

s = oo. For simplicity of presentatlon we denote [[v||zs(r.wmr)) bY V] Ls(wmpy. Similarly, one can

define the spaces H'(J;W™P(Q)) and C*(.J;W™P(Q)). In addition, C' denotes a general positive
constant independent of h and At, where h is the spatial mesh-size and At is time step.

Let

V = (L*(R))? and W = H}(Q).
Set M(t,s) = A"'B(t, s), as in [8], we get the mixed variational form of (1.1), (1.2):

(A7 'p,v) + [ (M(t,5)Vy(s),v)ds — (Vy,v) =0, Vv €V, (2.1)

o\N

(e, w) + (p, Vw) = (f(y), w), Vw e W, (2.2)

where (-, ) is the inner product of L?(Q).
Let by(t,s;-,-) and ba(t,s;-,-) be the bilinear forms defined on L2(Q2) x (H*(Q))? and W x V,

respectively, by
bi(t,s;0(s),v) := (v(s),div(M(t, s)), Vu(s) € L*(Q),v € (H(Q))?,
bo(t, s;0(s),v) := (M(t, s)Vu(s),v), Vu(s) e W,w eV,

where M (t,s) = M(t,s) or M(t,s) = My(t,s), M(t,s) = M*(t,s) or M(t,s) = M} (t,s), M*(t,s) be
the transpose of M (t,s) and M/ (t, s) be the transpose of M;(t, s). We assume that the bilinear forms
by(t,s;-,-) and ba(t, s; -, -) are continuous, i.e.,

bi(t,s;0(s),v) < ylvllllo(s)ll, ¥ u(s) € L2(Q),v € (H'(Q))?, (2.3)

ba(t, 550(s),0) < nl[Vo(s)| - [lvll, Vo(s) € Wiv eV, (2.4)

withy,71 € R™.
Let 73 denote a regular triangulation of the polygonal domain €2, h; denotes the diameter of 7 and
h = max h,. Let V};, x W), CV x W be defined by the following finite element pair PZ-P; [8, 23];

Vi = {vy, = (Vin,v2n) € V|vip,vop € Po(7), V7 € Th},
Wy, = {wy, € COUQ) NWlwy, € Pi(7), VT €Ty}

Before the new mixed finite element scheme is given, we introduce three projection operators. Firstly,
we define the standard elliptic projection [9] P, : W — W), which satisfies: for any ¢ € W

(V(¢ = Pho), Vwy) =0, Vwy € Wh, (2.5)
|6 — Puglls < CRZ%||@lla, s = 0,1, ¥V ¢ € H*(), (2.6)
¢ — Pugllo.oo < ChlInh|||d]l1.00, s = 0,1, ¥V ¢ € WH(0Q). (2.7)
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Next, we define the standard L? projection [1]II; : V — V,, which satisfies: for any ¢ € V

(g —TIng,vp) =0, Y, € Vy, (2.8)
[TTxg]l < Cllql, (2.9)
lg — Tagll < Chllglls, Vg€ (H'(2))*. (2.10)

At last, we define new mixed elliptic projection (Ryp, Rpy) € V), x Wy, by

(A"'(p — Rpp),vn) + /(M(t, s)V(y — Rpy)(s),vn)ds — (V(y — Rpy),vn) =0, Yo, € Vy, (2.11)
0

(p — Rpp, Vwy) =0, Y w, € Wp,. (2.12)

We now consider the fully discrete mixed finite element scheme. Let At >0, N =T/At € Z, and
t, = nAt, n € Z. Also, let

n _ ,,n—1
Y= (@) = Pl ta), dgn ="

Then the fully discrete approximation scheme is to find (p},y!) € Vi, x Wy, n =1,2,..., N, such
that

(A_lp’,},vh) + ZAt(M(tn,ti_l)Vy,i_l,vh) — (Vyﬁ,vh) =0,V € Vh, (2.13)
1=1

(dtyy,wn) + (P, Vwn) = (f (yp) wr), Y wp, € Wh, (2.14)

yg = Rpyo(x). (2.15)

For the proof of existence and uniqueness of the solution for the nonlinear algebraic system (2.13)—
(2.15) see 1, L1].

3. OPTIMAL A PRIORI ERROR ESTIMATES

In this section, we will derive the optimal a priori error analysis for the problem (1.1)—(1.4). At first,
we recall a result from Grisvard [15].

Lemma 3.1 [15]. For every function F € L*(S), the solution ¢ of

—div(AVe) = F in Q, ¢lan =0, (3.1)
belongs to H} () N H?(Q). Moreover, there exists a positive constant C such that

[8ll2 < C||F|. (3.2)

Next, we will discuss a priori error estimates between the exact solutions and their mixed elliptic
projections in the following two lemmas.

Lemma3.2. Let (Rpp, Rypy) € V', x Wy, be the new mixed elliptic projection defined in (2.11), (2.12)
and (p,y) be the solution of (2.1), (2.2), respectively. Then we have

lp = Bipl + [V (y = Bay) |l < Ch(llyll2 + lIpll + ([l L21r2)) (3-3)

ly = Ruyll < Ch*(llyllz + Il + 1yl 2 ar2))- (3-4)
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Proof. Since VW}, C V', with the aid of (2.8), we subtract (2.11), (2.12) from (2.1), (2.2) to get

(A~ (Iyp — Ryp),vn) — (V(Pay — Ryy),vp) / V(y — Puy)(s),vp)ds
0

V(Pry — Rpy)(s),vn)ds + (V(y — Pry),vn) (3.5)

o\W

—(A™ p — Rpp),vp), Vv, € Vi,

(th — Ryp, th) =0,Y wy € Wy, (3.6)

Choosingvy, = lIpp — Rpp and wy, = Pry — Ry in(3.5) and (3.6), respectively, then, adding the two
resulting equations, using (2.3), (2.6), and (2.10), Cauchy inequality and the assumption on A, we have

ITnp — Ripll < Ch([|yll2(m2) + llyll2 + llpll) + C/ IV (Pry — Ruy)(s)lds. (3.7)

Setting v, = V(Pry — Rpy) in (3.5), by use of (2.3), (2.6), and (2.10), Cauchy inequality and the
assumption on A again, we find that

IV(Pry — Buy)l < Ch(llyll 22y + llyll2 + llplly)

+CILp ~ Ripl +C [ 19(Phy ~ R (s) s (38)
[t follows from (3.7), (3.8), and Gronwall’s inequality that

IThhp — Ripll + IV (Pry — Ray)ll < Ch(|lyll 22y + llyll2 + lIpll1)- (3.9)

Then, (3.3) can be derived by (2.6), (2.10), (3.9) and the triangle inequality.

Let ¢ be the solution of (3.1) with F' =y — Rpy, using (2.1)—(2.4), (2.6), (2.10)—(2.12), Cauchy
inequality and the assumption on A, we see that

ly — Ruyl* = (y — Ruy, —div(AV¢)) = (AV¢, V(y — Ruy))

= (V(y — Rpy), AVo — I1,(AV®)) + (A~ (p — Ryp), 11, (AV))
" / (M(t, 5)V(y — Ruy)(s), T (AV))ds

0
= (V(y — Rpy), AV — I, (AV¢)) + (A~1(p — Rpp), 11, (AV) — AVg)  (3.10)

+( — RBpp, V(¢ — Prg)) — /((y — Ruy)(s), div(M*(t,5) AV ¢))ds

0

+ V(y — Rpy)(s),11,(AV¢) — AV¢)ds

o\“
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t
< Ch|V(y — Ruy)| - |4ll2 + Ch / IV (y — Ruy)(s) | ds | ll2
0

t
+Chllp — Rap| - ]2 + C / Iy — Riy)(s) 1 ds6]2-
0

Combining (3.10), (3.2), (3.3) with Gronwall’s inequality, we derive (3.4). Thus, we complete the

proof of lemma.

Lemma3.3. Let (Rpp, Rpy) € V1, x W), be the new mixed elliptic projection defined in (2.11), (2.12)

and (p,y) be the solution of (2.1), (2.2), respectively. Then we have

I = Rep)ell + IV (y = Bry)ell < Ch(llyllz + llpll + llyell2 + el + [yl 22 (ar2))

1ty = Bay)ell < CR2(llyll2 + lIplh + llyellz + el + 1yl 22 (22))-
Proof. Differentiating Egs. (3.5), (3.6) with respect to ¢, we get

(A~ (Iup — Rip)t,vi) — (V(Pry — Ruy)i,vn) = — /(Mt(ta s)V(y — Pyy)(s),vy)ds
0

—(M(t,t)V(y — Ray),vn) + (V(y — Pry)t,vn)
(A7 (ILyp — Rpp),vn), Vv, € Vi,

((IIpp — Ryp)t, V) = 0,Y wy, € W,
Similar to (3.7) and (3.8), it is easy to see that

(I — Bip)ell < Ch(llyell2 + [lpell) + ClIV(y = Ray)ll + ClIV(y — Bry)llr2(r2)

and

IV(Pry — Rry)ell < Ch(llyell2 + [lpell1) + CIIV(y — Ruy)ll 22
+C|(Ipp — Rpp)t|| + CIV(y — Ryy)|.

Using (2.6), (2.10),(3.3), (3.15), (3.16), and the triangle inequality, we derive (3.11).
Let ¢ be the solution of (3.1) with F' = (y — Rpy)s, similar to (3.10), we conclude that

[(y — Ruy)ell* = ((y — Ruy)e, —div(AV)) = (AV, V(y — Ruy)e)

= (V(y = Rpy)t, AVY — I (AV@)) + (M (2, 1)V (y — Rpy), 111, (AV))

+ /(Mt(t s)V(y — Ryy)(s), 1 (AV))ds + (A7 (p — Ryp)s, 11 (AV9))

0

= (V(y — Rpy)t, AV — T1,(AV®)) + (A~ (p — Ryp):, 114 (AV¢) — AV )

+ / (My(t,3)V (5 — Ray)(s), Tl (AV) — AVG)ds
0
+(M(t,t)V(y — Rpy), 11, (AVe) — AVQ) + ((p — Rpp)t, V(¢ — Pro))

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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t

- /((y — Rpy)(s), div(M{ (t, s) AVP))ds — (y — Rpy, div(M*(t, 1) AV P))
0
< Ch(|IV(y = Bry)ell + (e — Rup)ell + IV (y — Ray) Dl €12

+CLV(y = Bay)llL22)l10ll2 + Clly — Rayllr2(r2) + Iy — RaylDlloll2-
Using (3.2)—(3.4), (3.11), and (3.17), we have (3.12). The proof is completed.

Now, we will discuss the optimal a priori error estimates between the exact solutions and their
numerical solutions in the following two theorems.

Theorem 3.1. Let (p},y;}) € Vi, x W), be the solution of (2.13), (2.14) and (p,y) be the solution
of (2.1), (2.2), respectively. Assume that the exact solution (p,y) has enough regularities for our
purpose. Then, for At small enough and 1 <n < N, we have

1" = yill < C(At +h?). (3.18)

Proof. For convenience, let

p" —py = (0" — Rpp") + (Bpp" —py) =1y + &,

Y* —yp = (" — Rpy") + (Bay" —yp) =iy + &
Using (2.13),(2.14),(2.1),(2.2) and (2.11), (2.12), we have the following error equations:

tn n

(A7' vp) + /(M(tn, $)VRyy(s),vp)ds — Z AL(M (tn, tio1)Vy) o) — (VE),v,) =0, (3.19)
0 i=1

(dt&y,wn) + (&, Vwn) = (F(y") — [(yr), wn) + (dty™ — yi'swn) — (dtny, wp), (3.20)

forall vy, € V', and wy, € W),
Setting vy, = V& in (3.19), we have

tn

Iven|2 = / (M (b, $)V Ruy(s), VEds — S AtM (to, ti1)V Ry, VEY)
0 i=1 (3.21)

HATLG,VED) + D AUM (tn, 1) VE !, VEY).

i=1

Noticed that

2

tn n
[ Mt )V R (s)s = 30 AU (b, ti) PRy
0 =1

. (3.22)
< C(Aty? / (IR ()| + [V Ra(s) [2)ds.
0

Using Cauchy inequality, (3.21), (3.22), (2.4), and the assumption on A, we obtain
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tn

Ve 12 < C(at)? /(IIVRhyt(S)II2 +IVRay()|*)ds + G112+ C Y _IVE At (3.23)
0 i=1

Apply the discrete Gronwall’s inequality to (3.23), we can see that
IVES Il < Cl& 1| + CAL(IV Ryl r2(12) + [VRryl 22(22)), (3.24)

where

IV Ruytl o2y + IVBayllLzey < V(e — Ruye)llz 2y + IV(y — Rry)llz2 L2
VYl z2z2y + IVl L2 L2y

(3.25)

Choosing v, = &, in (3.19) and wy, = &} in (3.20), respectively, adding the two resulting equations
we have

(digp, &) + (A7'gp,6) = ZAt (tn tic1)VE 1, &0)

+ZAt (tn,tic1)VRyy' &)

(3.26)
tn
- [tV Ria5).5)ds
0
+(fW") = fyp), &) + (diy™ —yi', &) — (ding, &)
[t is easy to see that
1
(atgy. &) > L (g1 = g 1)- (3.27)

Multiplying At and summing over n from 1 to ! (1 <1 < N) at both sides of (3.26), using (3.27), the
assumption on A, and 52 = 0, we have

l
ey 1%+ > gy 1P A

n=1

1 n tn
<C> At (Z AtM (tn,t; 1)VRyy ™! — / M(t,, s)VRhy(s)ds,gg)
n=1 =1 0

(3.28)
n l
O ALY MMt tien) VETLE) + O ST AHIG") — FOR).E)

n=1
l 5

l
+CD At(dty" —yp, &) — C Y At(diny &) =D I

n=1 n=1 i=1

Now we estimate the right-hand terms of (3.28), for I1, using Cauchy inequality and (3.22), we have
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!
1 n
11| < CA*(IVRryllze 2y + IV Rl T2 (12) + 3 > llgPat. (3.29)
n=1

For I, using (2.4), Cauchy inequality and (3.24), we see that

l n l
o 1 n
Bl <CY Al PAr 3 A
n=1 i=1 n=1

+C(A(IVBryllT2 12y + IV BrYel T2 12y)-

(3.30)

For I3, by mean value inequality, Cauchy inequality and the assumption on f, we conclude that

l
13| = CY AU G - vh), &)
n=1

l l
<O (€17 + lmg 1M At +C Y lley )P At (3.31)

nlzl . n=1
<Y lmplPAt+C ) lgrPAL,
n=1 n=1

where g is located between y™ and y;'.
For 1y, from the results given in [21], we have

1
L] < CAD yl2a )+ C S I€N2AL, (3.32)

n=1

For I, it follows from Cauchy inequality that

1t l l
5| <0y / (y)elPdt +C Y NIERIPAL < Cl(my)illF22) + C D & 1P AL, (3.33)
n:lt n=1 n=1

n—1

Now, for sufficiently small At, combining (3.28)—(3.33) with the discrete Gronwall’s inequality, we
conclude that

l N
IS+ SN IPAL < CAD(IY RiyrlZag) + IV Rl z) + C 3 g 1240

n=1 n=1

+C(A?[|yeel 22y + Cl(my)ell T2 r2)-

Thus, (3.18) follows from (3.34) and Lemmas 3.2, 3.3.

(3.34)

Theorem 3.2. Let (p},y;}) € Vi, x W), be the solution of (2.13), (2.14) and (p,y) be the solution
of (2.1), (2.2), respectively. Assume that the exact solution (p,y) has enough regularities for our
purpose. Then, for At small enough and 1 < n < N, we have

V"™ —yp)ll + [[p" —ppll < C(At + h). (3.35)
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Proof. Take the difference in time of (3.19) to obtain

(A —1dt§g,vh) - (thgg,vh)
—Z tn1,ti1)VE on) = > (M (tn, ti1)VE, ! 0p)

=1
tn
i—1 (3.36)
ZAt(M(tn,ti_l)VRhy ) — [ (M(tn, s)VRyy(s),vp)ds
=1 0
tn—1
= AHM (tn-1,ti 1)) VRrY " vp) + /(M(tn—I,S)VRhy(S)’vh)ds :
=1

0

Choosingvy, = £, in(3.36) and wy, = dt&;; in(3.20), respectively. Adding the two resulting equations
and using the inequality

(A digg, ) > (AT~ am3g ), (3:37)
we have
nl|2 1 —Llsn 2 —ln—1 2
lateg|® +, \ AT &I = lA726770)
n—1 n
< [Z(M(tn_l,ti_l)Wé‘l,ES) - Z(M(tmti_l)vﬁé_l,ﬁﬁ)]
i=1 i=1
ZAt (tnstic1)VRRY ™, &) — / (M (tn,s)VRpy(s), &p)ds (3.38)
n—1 tn_lo
= AHM(tn-1,ti)VRyY T G) + / (M(tn-1,5)VRpy(s), é,’})ds]
i=1 o

+(f (") = fyp), dt&y)) + (dty™ — yit, dt§y)) — (diny, dtsy)).

[t Tollows from (3.19) that {2 = 0. Multiplying At and summing over n from 1 to (1 <1 < n) at both
sides of (3.38), using {2 = 0 and the assumption on A, it is easy see that

[
€012+ Nty At

n=1
n—1

l n
SCOY ALY (M, ti))VET ) =D (M (tn1,ti1)VE, f;;)]
n=1

l
+Cy
n=1

i=1 i=1
ln

> AHM (tn,ti) VR G - /(M(tn,s)VRhy(s),é;})ds

e o (3.39)
_ZAt(M(tn—lyti—l)VRhyi_lafg)+ /(M( n—1,5)VRyy(s), é{;)dS]

=1 0

l

+ Y CAHFY) = ), dtey) + > At(dty™ -y, dtg))

n=1 n=1

n=1

l 5
= At(dtn),dtg)) =Y Q.
=1
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Now, we estimate the right-hand terms of (3.39). For @)1, using Cauchy inequality and (2.4 ), we see that

! n—1
Q1= C'Z At Z((M(tn—l,ti—l) — M(tn, ti1))VET &) = (M(tn, tn1)VE &)
n:ll 121_1 } I (340)
<O ALY IVETPAL+CY G IPAL+CY Ve PAL,
n=1 =1 n=1 n=1
where we used
M(tp_1,8) — M(tn,s) = AtMy(tn=, 8), th1 < tn+ < t. (3.41)

For D2, using (3.41), (2.4), and Cauchy inequality, we have

tn

(AEM (t, b1 )V Ry €7) — / (M(tn, )V Ry (s), £0)ds

l
Q2 = C'Z
n=1

tr
n—1 ' '

+ Z A((M (tn, ti1) = M(tn—1,ti1))VRry' ™, &)
1=1
tn—1

- / (Mt 5) — M{tn_s, 5))V Ray(s), €0)ds
0

l
=C > AUM (tn, tn—1)VRyY" ™" = M(tn, $n)VRyy(5n), &) (3.42)
n=1
l n—1 '
+CD AL AUMi(tye,ti 1) VR &)
n=1 =1
tn—1

- / (Mt(tn*,S)VRhy(S),Eﬁ)dS]
0

l
< C(At)2(HVRhy”%2(L2) + HVRhyt”%2(L2)) +C 21 Hfﬂ!?At,

where we also used

tn
/ M (ty, s)VRyy(s)ds = AtM (ty, sn)VRLY(sn), th-1 < Sp <ty
n—1

tn—

and

n—1 tn—1

> At i)V = [ Miltae, )V Bag(s)ds
=1 0

< CAU||VRpyl 22y + IV Ryl 2(12))-
Similarly to (3.31)—(3.33), we estimate Q3—Q5 as
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l l
n n 1 n
Qs < CY (g7 + Iy 1% At + A > lldtgy (1P At, (3.43)
n=1 n=1

1 l

Qa1 < C(AL?[lystll 722y + A > gl |* A, (3.44)
=1
1 1

Qs < Cll(ny)ell 722y + 4 > lldeey (P A, (3.45)

n=1

Now, for sufficiently small At, using (3.24), (3.34), (3.39), (3.40), (3.42)—(3.45), Lemmas 3.2, 3.3,
and the discrete Gronwall’s inequality, we complete the proof of theorem.

4. A PRIORI ERROR ESTIMATES OF TWO-GRID ALGORITHM

In this section, we will present the main algorithm of the paper. The fundamental ingredient of the
algorithm is another mixed finite element space Vg x Wy C V', x W}, defined on a coarser mesh. The
algorithm has the following three steps:

Step 1. On the coarse grid 7y, compute (p%,y}) € Vu x Wy to satisfy the following original
nonlinear system:

(A_lp’}{,vH) + ZAt( (tn, iz 1)VyH ) — (Vyg,vg) =0, Vog € Vi, (4.1)
=1

(dtyyy, wa) + P, Vo) = (f(yi), wn), Y wa € W, (4.2)

yir = Rayo, (4.3)

where Ry is defined in the same way as Ry, defined by (2.11), (2.12).
Step 2. On the fine grid 73, compute (pj;, ;') € Vi, x W), to satisly the following linear system:

(AP wn) + > AUM (tn, i)V}, ' on) — (ViR,vp) =0, Vo, €V, (4.4)
=1

(dtgy,wn) + Bk, Vwn) = (f () + /(i) Gk — v, wn), ¥ wh € W, (4.5)

h = Ruyo. (4.6)

Step 3. On the fine grid 7, compute (p}, y;') € Vi, x W), to satisly the following linear system:

(A~1p} vp,) ZAt (tn,tio1) Vet vp) — (ViR vs) =0, Yo, € Vi, (4.7)
(dtgy.wn) + @, Vwn) = (f(Gr) + @) T — Ir)swa), ¥ ws € Wh, (4.8)
U = Ruyo. (4.9)

Now, we will discuss the error estimates of the above two-grid algorithm.
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Theorem 4.1. Let (py,,5) € Vi, x W), be the solution of (4.1)—(4.6) and (p,y) be the solution of
(2.1), (2.2), respectively. Assume that the exact solution (p,y) has enough regularities for our
purpose. Then, for At small enough and 1 < n < N, we have

IV = gi)ll + Ip" = Bhll < C(At+ b+ H?|ln H]). (4.10)

Proof. From (4.4),(4.5)and (2.1), (2.2), we have the following error equations:

tn "
(A"Y(Rpp™ — p}), vp) + /(M(tn, s)VRyy(s),vy)ds — Z At(M (tn,tio1)VF  vp)
4 i=1

(4.11)
_(V(Rhyn - gﬁ))”h) = 07 vvh € Vha
(A By = G5 n) + (Ba” = B, Fun) = (F™) = ) + S GRGE =i wn) 1o
+(dty™ — yi',wp) — (dE(y™ — Rpy™), wp), Y wp, € Wh.
Notice that a Taylor expansion about y7; yields
1
FO™) = i) + F Wi " = vi) + @O = vi)® (4.13)
for some function y. Then

F™ = i) = i) @ =) = i) @ =30 + 3 "0 @" = yh)? (4.14)

= f(y})(y" — Rpy™ + Rpy™ — G + 3 " (@) ("™ — yy)>.

Thus, except the theoretical analysis in Theorems 3.1 and 3.2, we only need to estimate the error
Ity = yi)?|1%. Since

2”2

IN

ly™ — v I oo lly™ — v 112

(ly™ = Pay™lo,co + || PrY"™ — REY"|0,00 (4.15)

HIRy" = ylloco)lly™ =y,

1(y"™ = yg)

IN

where Py is defined in the same way as P}, defined by (2.5). By (2.6), (2.7), (3.4) and (3.18), and the
inverse estimate, we get

1" = yi)?IIP < C(H|InH| + HVH? + H™H (At + H?))* (At + H?)?

(4.16)
< C(H|lnH|At+ H3|In H| + H Y(At)? + 2HAt + H?).
We choose H and At such that H~'At < C, then we have
I(y" = y)?|I> < C(At+ H*In |H|)*. (4.17)

Thus, we complete the proof of theorem.
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Theorem 4.2. Let (p},y) € Vi, x W), be the solution of (4.1)—(4.9) and (p,y) be the solution of
(2.1), (2.2), respectively. Assume that the exact solution (p,y) has enough regularities for our
purpose. Then, for At small enough and 1 < n < N, we have

IV =gl + lIp" = Byl < C(At +h + H°|In HJ). (4.18)

Proof. Similar to (4.11), (4.12), we have the following error equations:

tn n
(A=Y (Rpp™ — D)), vp) + /(M(tn, s)VRyy(s),vp)ds — Z At(M (tn,tim1)VY,  v8) (4.19)
0 =1 .

—(V(Rpy™ — y),vn) =0, Vo, € Vi,

(dt(Rpy™ — g3)swn) + (Rap™ — b, Vwn) = (f(y") — f(@5) + ' @G3) @G5 — 93), w)
+(dty™ — yit,wp) — (dt(y"™ — Rpy™), wp), Y wp, € W,

(4.20)

Now, a Taylor expansion about g;’ yields

™) = f@) = )@y — o)
=L@ + PG =0 + o O™ =507 = F@R) - FaD@E —ap) (42D
= PG = 9h) + 2 /" O) " = 37)?
for some function 6. As in Theorem 4.1, we need to estimate the error ||(y™ — §)?||%. Using the
embedding ||v||o,4 < C|v]]1, the Poincare’s inequality ||v|| < C||Vv|| and (4.10), we have

1™ = 302117 = ly" = illoa < CIVE" —gi)ll* < C(At+h+ H?In H|)". (4.22)

Now, using (4.22) and the same analysis as Theorems 3.1 and 3.2, we complete the proof.

5. NUMERICAL EXPERIMENTS

In this section, we are going to validate the priori error estimates for two-grid discretization method
for nonlinear parabolic integro-differential equations. To simplify the calculation, we shall consider the
two-step two-grid scheme (4.1)—(4.6) instead of the scheme (4.1)—(4.9), and choose h = H? in the
following numerical example.

We consider the following semilinear parabolic integral differential equation:

t
yr — div(A(t)Vy) + /diV(B(t, $)\Vy)ds = 3> + g(x,t), t €Q, t € J,
0

y(x,t) =0, 2 € 0Q, t € J,
y(z,0) = yo(x), x € Q,
with Q@ = [0,1]? and J = [0, 1]. For simplicity, we let A(t) = I, B(t, s) = I with I be the identity matrix
in numerical implementation. We choose g(x,t) in a way such that the exact solution is
y(z,t) = sin(wt) sin(mwz ) sin(mzsy).

Then, the explicit formulation of g(x, t) is

NUMERICAL ANALYSIS AND APPLICATIONS Vol. 12 No.2 2019



TWO-GRID METHODS FOR A NEW MIXED FINITE ELEMENT APPROXIMATION 151

g(z,t) =(m cos(nt) 4 2m% sin(nt)(cos(nt) + 2) + 21 (cos(nt) — 1)) sin(mwzy ) sin(7was)
— (sin(mt) sin(mzy ) sin(mag))3.
First, in Tables 1, 2, we show the numerical errors of |V (y™ — y?)|], |lp" — pl|, [V (y™ — g}*)|| and

lp" — pj || solved by mixed finite element method (MFEM) and two-grid method, respectively.

We can easily see that the two-grid method and the mixed finite element method have the same
convergence order. These numerical results coincide with the theoretical analysis. Second, comparing
the computing time of two methods in Tables 3, 4, we find that the computing time for the two-grid

Table 1. The results of || V(y"™ — y}!)|| and ||[p™ — p}|| by using MFEM (n = N/2)

h= At IV (" — y)l Rate Ip" —py | Rate
1/16 2.5505¢-1 — 1.5227¢-1 —

1/36 1.1434e-1 0.99 6.7827e-2 1.00
1/64 6.4482¢-2 1.00 3.8239¢-2 1.00
1/100 4.1313e-2 1.00 2.4479e-2 1.00

Table 2. The results of ||V (y™ — g!)| and |p™ — p}, || by using two-grid method (n = N/2)

H h = At V("™ =)l Rate [p" — Byl Rate
1/4 1/16 2.5645¢-1 — 1.5282-1 —
1/6 1/36 1.1473e-1 0.99 6.8078¢-2 1.00
1/8 1/64 6.4617e-2 1.00 3.8291e-2 1.00
1/10 1/100 4.1370e-2 1.00 2.4501e-2 1.00

Table 3. The computing time of MFEM (h = 1/16) and two-grid method (H = 1/4, h = 1/16)

Time level Computing time (MFEM) Computing time (two-grid)
4 65 s 92s
8 92s 37s
12 74 s 42's
16 56's 34s

Table 4. The computing time of MFEM (h = 1/36) and two-grid method (H = 1/6, h = 1/36)

Time level Computing time (MFEM) Computing time (two-grid)
6 893 s 688 s
12 741 s 347 s
18 729s 264 s
24 804 s 287 s
30 1311s 401 s
36 1043 s 354 s
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Fig. 3. The profile of the two-grid solution of y on a 36 x 36 triangle mesh at ¢ = 0.5.

method is significantly less than that for MFEM. Finally, in Figs. 1—3, we plot the graphs of the exact
solution y, the mixed finite element solution of y and the two-grid solution of y on a 36 x 36 triangle
mesh at ¢ = 0.5, respectively.

6. CONCLUSIONS

In this paper, we present a two-grid algorithm for semilinear parabolic integro-differential equations
discretized by a new mixed finite element method. The gradient for the method belongs to the square
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integrable space instead of the classical H(div; ) space. The key ingredient of the two-grid method
in this paper is that we use two Newton iterations on the fine grid. We show that when the coarse grid
and the fine grid satisfy h = O(H®|InH|?), the two-grid algorithm can achieve the same accuracy of
the mixed finite element solution. In our future work, we will consider the more complicated two-grid
algorithms for (1.1)—(1.4) and give some numerical experiments for these algorithms.
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