
ISSN 1995-4239, Numerical Analysis and Applications, 2019, Vol. 12, No. 2, pp. 105–115. c© Pleiades Publishing, Ltd., 2019.
Russian Text c© The Author(s), 2019, published in Sibirskii Zhurnal Vychislitel’noi Matematiki, 2019, Vol. 22, No. 2, pp. 121–136.

Exact Algorithms of Search for a Cluster of the Largest
Size in Two Integer 2-Clustering Problems

A. V. Kel’manov1, 2*, A. V. Panasenko1, 2**, and V. I. Khandeev1, 2***

1Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences,
pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia

2Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090 Russia
Received May 15, 2018; in final form, June 26, 2018; accepted January 21, 2019

Abstract—We consider two related discrete optimization problems of searching for a subset in a
finite set of points in Euclidean space. Both problems are induced by versions of a fundamental
problem in data analysis, namely, that of selecting a subset of similar elements in a set of objects.
In each problem, given an input set and a positive real number, it is required to find a cluster (i.e.,
a subset) of the largest size under constraints on a quadratic clusterization function. The points in
the input set, which are outside the sought-for subset, are treated as a second (complementary)
cluster. In the first problem, the function under the constraint is the sum over both clusters of the
intracluster sums of the squared distances between the elements of the clusters and their centers.
The center of the first (i.e., the sought-for) cluster is unknown and determined as a centroid, while
the center of the second one is fixed at a given point in Euclidean space (without loss of generality,
at the origin of coordinates). In the second problem, the function under the constraint is the sum
over both clusters of the weighted intracluster sums of the squared distances between the elements
of the clusters and their centers. As in the first problem, the center of the first cluster is unknown and
determined as a centroid, while the center of the second one is fixed at the origin of coordinates. In
this paper, we show that both problems are strongly NP-hard. Also, we present exact algorithms for
the problems in which the input points have integer components. If the space dimension is bounded
by some constant, the algorithms are pseudopolynomial.
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INTRODUCTION
The subject of this paper is to study two closely related optimization problems of choosing (searching

for) a subset of the largest cardinality (size) in a finite set of points in Euclidean space. These simulate one
of the key problems of data analysis: choosing a subset of similar elements in a finite set of objects. The
goal of the paper is to analyze the computational complexity of the problems and construct algorithms
to efficiently solve these problems with guaranteed estimates of quality (accuracy and time complexity).

This study is stimulated, on the one hand, by the fact that these problems have been poorly studied
theoretically. No results on their computational complexity have been published so far, and there are no
rigorously justified algorithmic solutions. On the other hand, these problems are very important for some
applications (see the next section).

The paper is organized as follows. Section 1 provides formulations of the problems, their interpreta-
tions, some closely related problems, their distinctive features, and the available algorithmic results. It
also presents the results obtained in the present paper. In Section 2, the computational complexity of the
problems is analyzed. Section 3 provides some auxiliary results to justify the properties of the algorithms.
Section 4 contains a description of the algorithms and justification of some of their qualities (accuracy
and time complexity).
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1. PROBLEM FORMULATION AND INTERPRETATION; SIMILAR PROBLEMS;
OLD AND NEW RESULTS

Below R is the set of real numbers, d is the space dimension, ‖ · ‖ is the Euclidean norm, and 〈·, ·〉
is the inner product. The centroid (geometrical center) of a nonempty finite set (cluster) Y ⊂ R

d is the
point from R

d that is equal to the arithmetic mean of the elements of this set; the center of a cluster is
an arbitrary fixed point x ∈ R

d relative to which the squares of the distances from this cluster are added
together.

The statement of the first problem being considered is close (but not equivalent) to that of the
minimum sum-of-squares clustering (MSSC) problem, which is well known since the last century
under a different name of k-means (see [1–6]). The computational complexity of this problem was
analyzed in [7–10]. It was proved in [7] that even the simplest (basic) two-cluster version of this problem,
2-MSSC (or 2-means), is strongly NP-hard.

Recall that in the 2-MSSC method it is necessary to find a 2-partition of a finite set Y ⊂ R
d

minimizing the sum

∑

y∈C
‖y − y(C)‖2 +

∑

y∈Y\C
‖y − y(Y \ C)‖2, (1)

where y(C) = 1
|C|

∑
y∈C

y and y(Y \ C) = 1
|Y\C|

∑
y∈Y\C

y are the centroids of nonempty nonintersecting

subsets C and Y \ C, respectively.
The statement of the second problem is close (but not equivalent) to that of the well-known quadratic

min-sum all-pairs 2-clustering problem (see [11–18]), in which it is necessary to find a 2-partition of
a finite set Y ⊂ R

d minimizing the sum

∑

y∈C

∑

x∈C
‖y − x‖2 +

∑

y∈Y\C

∑

x∈Y\C
‖y − x‖2.

The quadratic min-sum all-pairs 2-clustering problem is equivalent to the cardinality-weighted
minimum sum-of-squares 2-clustering problem or the cardinality-weighted 2-MSSC problem, in
which it is necessary to find a 2-partition of a finite set Y ⊂ R

d minimizing the sum

|C|
∑

y∈C
‖y − y(C)‖2 + |Y \ C|

∑

y∈Y\C
‖y − y(Y\C)‖2. (2)

Here, as in the 2-MSSC problem, y(C) and y(Y \ C) are the centroids of nonempty nonintersecting
subsets C and Y \ C, respectively. The equivalence of these problems follows from the fact that the well-
known equality 2|Y|

∑
y∈Y

‖y − y(Y)‖2 =
∑
y∈Y

∑
x∈Y

‖y − x‖2 is valid for any nonempty finite set Y ⊂ R
d.

This equality relates the cardinality-weighted total quadratic scatter of points from the set Y with respect
to its centroid y(Y) to the sum of squares of the pairwise distances between the elements of this set. A
hypothesis [12] that such problems are hard to solve was proved in [19, 20], in which a proof of strong
NP-hardness of the quadratic Euclidean max-cut problem was also given.

Both intracluster sums in the objective functions (1) and (2) are the total quadratic scatters of points
of the clusters with respect to their centroids. That is, in these problems both centers are unknown and
defined as centroids. In each of the problems formulated below, one of the intracluster sums includes the
total quadratic scatter of points of the cluster with respect to a fixed (given) point x ∈ R

d. Without the
loss of generality, this point is considered to be the origin of coordinates. The center of the other cluster
is assumed to be equal to its centroid. In other words, only one center is unknown in these problems,
which distinguishes these problems from those mentioned above.

The 2-partition problems with one unknown (and one given) center can be formulated as follows:
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EXACT ALGORITHMS OF SEARCH FOR A CLUSTER 107

Problem 1 (2-MSSC problem with a given center). Given: an N-element set of Y points in Euclidean
space of dimension d. Find: a 2-partition of Y into nonempty clusters C and Y \ C such that

F (C) =
∑

y∈C
‖y − y(C)‖2 +

∑

y∈Y\C
‖y‖2 → min .

In this problem, the sum of the intracluster sums of the squared distances between the elements of
the clusters and their centers is minimized over both clusters. The center of the cluster C is unknown
and defined as a centroid, and the center of the cluster Y \ C is fixed at the origin of coordinates. In the
2-MSSC problem, in contrast to Problem 1, both centers are unknown and defined as centroids. Strong
NP-hardness of Problem 1 was proved in [21, 22].

Problem 2 (cardinality-weighted 2-MSSC problem with a given center). Given: an N-element set
of Y points in Euclidean space of dimension d. Find: a 2-partition of Y into nonempty clusters C and
Y \ C such that

G(C) = |C|
∑

y∈C
‖y − y(C)‖2 + |Y \ C|

∑

y∈Y\C
‖y‖2 → min .

In this problem, the sum of the cardinality-weighted intracluster sums of the squared distances
between the elements of the clusters and their centers is minimized over both clusters. As in Problem 1,
the center of the cluster C is unknown and defined as a centroid, and the center of the cluster Y \ C is
fixed at the origin of coordinates. Strong NP-hardness of Problem 2 was established in [23, 24].

In the present paper, we investigate the following two problems closely related to Problems 1 and 2:

Problem 3. Given: an N-element set of Y points in Euclidean space of dimension d and a number
α ∈ (0, 1). Find: a subset C ⊂ Y of the largest size such that

F (C) ≤ α
∑

y∈Y
‖y − y(Y)‖2. (3)

In this problem, find a cluster C of the largest size under a constraint on the objective function F (C)
of Problem 1. This constraint is defined by the right-hand side of inequality (3), that is, by a fraction of
the total quadratic scatter of the points of the input set Y about its centroid y(Y).

Problem 4. Given: an N-element set of Y points in Euclidean space of dimension d and a number
α ∈ (0, 1). Find: a subset C ⊂ Y of the largest size such that

G(C) ≤ αN
∑

y∈Y
‖y − y(Y)‖2. (4)

In this problem, find a cluster C of the largest size under a constraint on the objective function G(C)
of Problem 2. This constraint is defined by the right-hand side of inequality (4), that is, by a fraction of
the total cardinality-weighted scatter of the points of the input set Y about its centroid y(Y).

The similarity of Problems 1, 2 to Problems 3, 4, respectively, and the difference between them are
reflected in the following remark. In Problems 3 and 4 F (C) and G(C) are not objective functions.
They only define some constraints on these problems. If C∗ is an optimal solution to Problem 1 (or 2),
F (C∗) ≤ F (C) in Problem 1 (or G(C∗) ≤ G(C) in Problem 2) for any C ⊂ Y . Therefore, in Problems 3
and 4, inequalities (3) and (4) define some subsets of the admissible solutions to Problems 1 and 2. This
means that in each of Problems 3 and 4 it is necessary to find a cluster of the largest size in the subset of
admissible solutions to Problems 1 and 2, respectively.

All of the above-formulated extremal problems can be treated as problems of approximation, com-
binatorial geometry, graph theory, and statistics. They can be applied to problems in data science,
data mining, pattern recognition, and machine learning. In these applications and research areas
clusterization algorithms are key tools for solving problems of computer assisted data analysis (see,
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108 KEL’MANOV et al.

for instance, [2–6, 25–31] and the references therein). The following single argument is sufficient
to demonstrate the importance of the problems being considered: It is well known that problems of
data mining and classical problems of mathematical statistics are closely related: Their major goal
is to determine the structural properties of some sets (data or samples). In classical statistics the
samples being analyzed are homogeneous, whereas in data mining the sample (experimental) data are
inhomogeneous.

A well-known statistical problem is verifying the hypothesis that the mean of a sample coincides (or
does not coincide) with a given value. There exist several classical criteria to solve this problem.

How to handle a situation when the sample is inhomogeneous, consists of elements of two distri-
butions, and no relation between the sample elements and the distribution is known? This situation
(with inhomogeneous sample data) is typical for data mining and, in particular, for big data problems.
It is clear that using the classical statistical methods requires solving the problem of partitioning the
data into homogeneous sets (samples). The above extremal problems simulate only few poorly studied
problems of this kind. The experience of studying extremal problems induced by problems similar to the
above ones has shown that most of them are difficult to solve. The questions of hardness of the induced
problems and the possible algorithms to approximate them are important mathematical problems.

The hardness of Problems 3 and 4 has not yet been determined, and no algorithmic results are
available by now. Below we present some results for closely related problems, namely, for Problems 1
and 2.

Recall some of the results published for Problem 1. These are results obtained for a version of
Problem 1 with given cardinalities of the clusters. This version is called the 2-MSSC problem with
a given center and cluster cardinalities (Problem 5 in Section 4). Strong NP-hardness of this version
of the problem follows directly from the strong NP-hardness of Problem 1 (without constraints on the
cardinalities of the clusters) proved in [21, 22]. However, the fact of NP-hardness was first established
in [33–35] before the results obtained in [21, 22].

In what follows, when describing the existing algorithmic solutions, M is the cardinality of the cluster
with an unknown center given as the input of the problem, and D is the maximum absolute value of the
coordinates of the input set points.

It follows from [36] that the problem can be solved in time O(d2N2d), which is polynomial if the
dimension d of the space is fixed (bounded from above by a constant). A fast exact algorithm of hardness
O(dNd+1) was proposed in [37]. An exact algorithm for the problem with integer inputs was proposed
in [38]. The time complexity of this algorithm is O(dN(2MD + 1)d). If the space dimension is fixed, this
algorithm is pseudopolynomial.

A 2-approximate polynomial algorithm with hardness O(dN2) was justified in [39].

A polynomial-time approximation scheme (PTAS) with hardness O(dN2/ε+1(9/ε)3/ε), where ε is
relative error, was proposed in [40].

It was established in [41] that if P 	= NP, no fully polynomial-time approximation scheme (FPTAS)
exists for this problem. Paper [41] presents an algorithm for finding a (1 + ε)-approximate solution in
time O(dN2(

√
2q/ε + 2)d) for a given ε ∈ (0, 1). If the dimension d of the space is fixed, the hardness of

the algorithm is O(N2(1/ε)q/2) and it implements a FPTAS scheme. In paper [42], a faster algorithm

with time O
(√

dN2
(

πe
2

)d/2(√2/ε + 2
)d) was justified. This algorithm implements an FPTAS scheme

with hardness O(N2(1/ε)d/2), if the dimension d of the space is fixed, and it remains polynomial if
d = O(log N), that is, if the dimension of the space is a slowly increasing function of the input set

cardinality. In this case it implements a PTAS scheme with hardness O
(
NC

(
1.05+log

(
2+
√

2/ε
)))

, where

C is a positive constant.
A randomized algorithm was proposed in [43]. If M ≥ βN , where β ∈ (0, 1) is a constant, at given

ε > 0 and γ ∈ (0, 1) the algorithm finds a (1 + ε)-approximate solution to the problem with a probability
not less than 1 − γ in time O(dN). In the same paper, conditions are established at which the algorithm
finds a (1 + εN )-approximate solution to the problem in time O(dN2) with a probability not less than
1 − γN , where εN → 0 and γN → 0 as N → ∞. Hence, these are conditions at which the algorithm
is asymptotically exact. To date this algorithm has record quality, since it can find, with a probabilistic
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EXACT ALGORITHMS OF SEARCH FOR A CLUSTER 109

guarantee, an approximate solution in a time that is linear in N and d and obtain an asymptotically exact
solution in a time that is quadratic in N and linear in d.

The above results can be used to solve the main problem with unknown cardinalities. In fact, by
exhaustive search of not more than N possible combinations of the cardinalities of two clusters, one can
construct a family of N solutions of the problem version with given cardinalities and choose in this family
the best solution in terms of the objective function. Of great interest are some approximate algorithms
for solving Problem 1 without exhaustive search of the cardinalities, since these algorithms are O(N)
times faster. Such a polynomial approximate algorithm was proposed in [32]. It finds a 2-approximate
solution in O(dN2) operations. For comparison, an algorithm from paper [39] with an exhaustive search
of admissible combinations of the cardinalities finds it in O(dN3) operations.

Recall the results available for Problem 2. The problem has been only recently formulated (in [23,
24]). Therefore, there are much less algorithmic solutions for this problem than for Problem 1, which has
been studied for a much longer time. In the above-cited papers, in addition to presenting a proof of the
solution hardness, it was shown that no FPTAS scheme is available for Problem 2 if P 	= NP.

Most available algorithmic solutions have been obtained by using efficient techniques of constructing
algorithms for Problem 1. Some of the algorithms have been obtained for the version of Problem 2
with given cardinalities of the clusters: the cardinality-weighted 2-MSSC problem with a given
center and cluster cardinalities (Problem 6 in Section 4). The available estimates of quality of these
algorithms are essentially the same as those presented above for Problem 1. Therefore, they are only
mentioned here but not considered separately.

A 2-approximate algorithm was constructed in [44]. An exact algorithm for the integer version of
the problem was proposed in [45]. A (1 + ε)-approximate algorithm implementing an FPTAS scheme
for a fixed space dimension was considered in [46]. A modification of this algorithm providing faster
performance was proposed in [42]. This modification implements a PTAS scheme if the space dimension
is a slowly increasing function of the input set cardinality (d = O(log N)). A randomized algorithm was
justified in [47].

In conclusion of the review it may be said that the construction of algorithms for Problems 1 and
2 without exhaustive search through N admissible cardinalities of the sought-for clusters remains a
topical issue.

The present paper gives first results on new data clusterization Problems 3 and 4. Specifically, it is
found that both problems are strongly NP-hard. Some exact algorithms are justified for these problems
if the points of the input set have integer coordinates. If the space dimension is fixed, both algorithms are
pseudopolynomial.

2. COMPUTATIONAL COMPLEXITY ANALYSIS

Before analyzing the computational complexity of Problems 3 and 4, note that the right-hand sides
of (3) and (4) do not depend on the sought-for cluster C and are constants for the given input. We set

A = α
∑

y∈Y
‖y − y(Y)‖2, B = αN

∑

y∈Y
‖y − y(Y)‖2. (5)

Let us formulate Problems 3 and 4 as verification procedures of their properties.

Problem 3A. Given: An N-element set Y of points in Euclidean space of dimension d, a natural
number M , and a real number A > 0. Question: Does there exist in Y a subset C with a cardinality
not less than M such that

F (C) ≤ A? (6)

Problem 4A. Given: An N-element set Y of points in Euclidean space of dimension d, a natural
number M , and a real number B > 0. Question: Does there exist in Y a subset C with a cardinality
not less than M such that
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G(C) ≤ B? (7)

A complexity analysis of these problems is performed in the following

Statement. Problems 3A and 4A are strongly NP-complete.

Proof. It is easy to see from (3) and (4) that both problems, 3A and 4A, belong to the NP-class.
Let us formulate optimization Problems 1 and 2 as verification procedures of their properties.

Problem 1A. Given: an N-element set Y of points in Euclidean space of dimension d and a real number
A > 0. Question: does there exist in Y a subset C such that inequality (6) is valid?

Problem 2A. Given: an N-element set Y of points in Euclidean space of dimension d and a real number
B > 0. Question: does there exist in Y a subset C such that the inequality (7) is valid?

It is easy to see that at M = 1 the answer is positive in Problems 3A and 4A if and only if it is positive
in Problems 1A and 2A. Therefore, the theorem is valid, since the strongly NP-complete Problems 1A
and 2A are special cases (at M = 1) of Problems 3A and 4A, respectively.

It follows from this theorem that optimization Problems 3 and 4 are strongly NP-hard.

3. FUNDAMENTALS OF THE ALGORITHMS

To construct the algorithms for solving Problems 1 and 2 and to analyze their quality, we will need
some auxiliary problems, statements, sets, and algorithms.

First, we need the following problems (mentioned in Section 2):

Problem 5 (2-MSSC with a given center and cluster cardinalities). Given: an N-element set Y of
points in Euclidean space of dimension d and a natural number M . Find: a subset C ⊂ Y of cardinality
M minimizing the function F (C).

Problem 6 (cardinality-weighted 2-MSSC with a given center and cluster cardinalities). Given:
an N-element set Y of points in Euclidean space of dimension d and a natural number M . Find: a subset
C ⊂ Y of cardinality M minimizing the function G(C).

The computational basis of the algorithms proposed in the present paper are some algorithms for
solving these problems. The algorithms for solving Problems 5 and 6 are based on the following two
Lemmas, 1 and 2, whose proofs can be found in [39] and [45], respectively.

For an arbitrary point x ∈ R
d, we set

rx(y) = 〈y, x〉 , y ∈ Y, (8)

hx(y) = (2M − N) ‖y‖2 − 2M 〈y, x〉 , y ∈ Y, (9)

and

fx(C) =
∑

y∈C
‖y − x‖2 +

∑

y∈Y\C
‖y‖2, C ⊆ Y, (10)

gx(C) = M
∑

y∈C
‖y − x‖2 + (N − M)

∑

y∈Y\C
‖y‖2, C ⊆ Y. (11)

Lemma 1. The minimum of the function (10) over all subsets C ⊆ Y of cardinality M is reached
on a subset consisting of M vectors of the set Y with the greatest values of the function (8).

Lemma 2. The minimum of the function (11) over all subsets C ⊆ Y of cardinality M is reached
on a subset consisting of M vectors of the set Y with the smallest values of the function (9).

NUMERICAL ANALYSIS AND APPLICATIONS Vol. 12 No. 2 2019
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In what follows, it is assumed that the points of the set Y have integer coordinates. That is, we
consider special (integer) cases of the problems. Let an auxiliary set be defined as the totality of nodes
(points) of a uniform grid with a rational step:

D =
{

x
∣∣ (x)j =

1
M

(v)j , (v)j ∈ Z, |(v)j | ≤ MD, j = 1, . . . , d
}

, (12)

where

D = max
y∈Y

max
j∈{1,...,d}

|(y)j |, (13)

and let (∗)j be the jth coordinate of the point ∗.
Note that

|D| = (2MD + 1)d .

Let us present an algorithm for the integer case of Problem 5.

Algorithm A1.
Input: the set Y and the natural number M .

Step 1. Find D and construct the nodes of the lattice D by formulas (13) and (12).

Step 2. For every x ∈ D, construct a set C(x) consisting of M points y ∈ Y with the largest values of
the function (8). Calculate fx(C(x)) by formula (10).

Step 3. Find the point xA = arg minx∈D fx(C(x)) and the corresponding subset C(xA). As a solution
to the problem, take CM

A1
= C(xA). If there are several solutions, take any of them.

Output: the set CM
A1

.

Remark 1. It was proved in [38] using Lemma 1 that if the coordinates of all points of the input set Y
are integer and lie in the interval [−D,D], algorithm A1 finds the optimal solution to Problem 5 in time
O(dN(2MD + 1)d).

Finally, we need an algorithm for finding a solution to the integer Problem 6. The following algorithm
differs from algorithm A1 only in step 2.

Algorithm A2.
Input: the set Y and the positive integer number M .

Step 1. Find D and construct the nodes of the lattice D by formulas (13) and (12).

Step 2. For every x ∈ D, construct a set C(x) consisting of M points y ∈ Y with the smallest values of
the function (98). Calculate gx(C(x)) by formula (11).

Step 3. Find the point xA = arg minx∈D gx(C(x)) and the corresponding subset C(xA). As a solution
to the problem, take CM

A2
= C(xA). If there are several solutions, take any of them.

Output: the set CM
A2

.

Remark 2. It was proved in [45] using Lemma 1 that if the coordinates of all points of the input set Y
are integer and lie in the interval [−D,D], algorithm A2 finds the optimal solution to Problem 6 in time
O(dN(2MD + 1)d).
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4. THE ALGORITHMS

The idea of the algorithms being proposed is simple: the grid approach is used to approximate the
unknown centroid of the largest sought-for cluster by one of the nodes of a uniform grid with a rational
step. For every grid node, on the basis of Lemma 1 (in solving Problem 3) or Lemma 2 (in solving
Problem 4) algorithms A1 and A2 are used to construct a family of admissible solutions—subsets. In
the thus constructed family of admissible subsets, a subset of the largest size satisfying the constraint (3)
(for Problem 3) or the constraint (4) (for Problem 4) is chosen.

The following algorithm for solving Problem 3 is proposed:

Algorithm A3.
Input: the set Y and the number α.

Step 1. Calculate A by formula (5).

Step 2. For every M = 1, . . . , N , using algorithm A1, find an exact solution CM
A1

of Problem 5, and
calculate the objective function F (CM

A1
) for this solution.

Step 3. In the family {CM
A1

,M = 1, . . . , N} of sets obtained in step 2, find a set CA1 of the largest
cardinality for which F (CA1) ≤ A.

Output: the set CA1 .

The algorithm for solving Problem 4 is similar; its major difference from algorithm A3 is in construct-
ing the admissible solution to the problem in step 2.

Algorithm A4.
Input: the set Y and the number α.

Step 1. Calculate B by formula (5).

Step 2. For every M = 1, . . . , N , using algorithm A2, find an exact solution CM
A2

of Problem 6, and
calculate the objective function G(CM

A2
) for this solution.

Step 3 In the family {CM
A2

,M = 1, . . . , N} of sets obtained in step 2, find a set CA2 of the largest
cardinality for which G(CA2) ≤ B.

Output: the set CA2 .

We have the following

Theorem. Let the points of the input set Y have integer coordinates lying in the interval [−D,D].
Then algorithms A3 and A4 find exact solutions to Problems 3 and 4 in time O(dN2(2ND + 1)d).

Proof. Let us prove that the solution obtained by algorithm A3 is optimal. Let C∗
1 be the optimal solution

to Problem 3, M∗
1 = |C∗

1 |. Note that algorithm A3 finds an admissible solution of Problem 5 at M = M∗
1 .

Since CM∗
A1

is the optimal solution to this problem,

F (CM∗
A1

) ≤ F (C∗
1) ≤ A.

Thus, the set CM∗
A1

was considered in step 3 of the algorithm, and the set {CM
A1

,M = 1, . . . , N | F (CA1) ≤
A} is not empty. From the definition of step 3 we have

|CA1 | ≥ |CM∗
A1

| = M∗
1 = |C∗

1 |.
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On the other hand, since CA1 is an admissible solution of Problem 1, we have |CA1 | ≤ |C∗
1 |; hence,

|CA1 | = |C∗
1 |.

The proof of optimality of the solution obtained by algorithm A4 is constructed similarly to the proof
of optimality of the solution obtained by algorithm A3.

Let us estimate the time complexity of algorithm A3. Step 1 is made in O(dN) operations. The
hardest step 2 requires O(dN2(2ND + 1)d) operations, since for every M = 1, . . . , N algorithm A1

is executed in O(dN(2MD + 1)d) operations. Finally, step 3 is executed in O(N) operations. By
adding together the computational costs in all steps, we obtain the estimate of the time complexity of
algorithm A3 presented in the theorem. The time complexity of algorithm A4 is estimated in the same
way.

Remark 3. If the space dimension is fixed, algorithms A3 and A4 are pseudopolynomial, since in this
case the time of their execution can be estimated as O(N2(ND)d).

CONCLUSIONS

In the present paper, strong NP-hardness has been proved for two optimization problems of clus-
terization that are closely related and important for some applications. For the first time, algorithms
constructed in a similar way have been proposed to solve these problems. These algorithms make
it possible to find exact solutions if the coordinates of the input points are integer. If the space
dimension is bounded from above by a constant, the algorithms are pseudopolynomial. In other words,
pseudopolynomial solvability of integer versions of the problems has been demonstrated if the space
dimension is fixed (is not part of the input).

It is clear that the algorithms proposed can be used to solve practical problems of only small dimen-
sion. Nevertheless, these algorithms may serve as a starting point for obtaining improved algorithmic
solutions.

For further studies it is important to justify the efficient approximate algorithms with guaranteed
estimates of quality for some problems that are difficult to solve.
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