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Abstract—In this paper, we investigate a posteriori error estimates of a mixed finite element method
for elliptic optimal control problems with an integral constraint. The gradient for our method belongs
to the square integrable space instead of the classical H(div; Ω) space. The state and co-state are
approximated by the P 2

0 -P1 (velocity–pressure) pair and the control variable is approximated by
piecewise constant functions. Using duality argument method and energy method, we derive the
residual a posteriori error estimates for all variables.
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1. INTRODUCTION

Optimal control problems governed by partial differential equations have been widely studied and
applied in the science and engineering numerical simulation. Many numerical methods have been de-
veloped to solve these optimal control problems, among them, the standard finite element approximation
of optimal control problems has been extensively studied in the literature. It is impossible to even give
a very brief review here. For the studies about convergence and superconvergence of finite element
approximations for optimal control problems, see [1, 6, 9, 15, 16, 25–29] for the standard finite element
method, see [4, 5, 7] for Raviart–Thomas mixed finite element method, and see [11] for splitting positive
definite mixed finite element method. A systematic introduction of finite element methods for PDEs and
optimal control problems can be found in, for example, [3, 18].

Adaptive finite element approximation is among the most important means to boost the accuracy
and efficiency of finite element discretizations. It ensures a higher density of nodes in a certain area
of the given domain, where the solution is more difficult to approximate. At the heart of any adaptive
finite element method is an a posteriori error estimator or indicator. In recent years, the adaptive finite
element method has been extensively investigated in optimal control [2, 13, 14, 19–24, 32, 33]. Sharp
a posteriori error estimators of finite element method for a class of distributed elliptic optimal control
problems are derived in [19]. The recovery type a posteriori error estimates of finite element approximation
are obtained for elliptic optimal control problems [20]. In [22], Li and Yan investigated a posteriori error
estimates of finite element method for an elliptic boundary control problem. They considered a posteriori
error estimates for optimal control problems governed by Stokes equations [23]. They also discussed a
posteriori error estimates of fully discrete finite element method for parabolic optimal control problems,
the backward Euler method and the discontinuous Galerkin method were used for time discretization
in [24] and [21], respectively. In [2], the authors analyzed finite element Galerkin discretizations for
a class of constrained optimal control problems that are governed by Fredholm integral or integro-
differential equations. The analysis in that paper focused on the derivation of a priori error estimates
and a posteriori error estimators for the approximation schemes. In [32], the authors derived equivalent a
posteriori error estimators with lower and upper bounds of finite element approximation of a constrained
optimal control problem governed by a parabolic integro-differential equation. In [14], Hou developed a
mixed discontinuous finite element method for linear parabolic optimal control problems, and derived a
priori and a posteriori error estimates.
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In recent years, Chen et al. [8] developed a new mixed finite element scheme and used a P 2
0 -P1

finite element pair for solving partial differential equations. The gradient of the primal variable for this
method belongs to the square integrable space instead of the classical H(div; Ω) space. Using this
method, we can derive two approximations for the gradient of the primal variable y, one is the numerical
approximation solution ph, the other is the derivative of the approximation solution yh.

The goal of this paper is to derive a posteriori error estimates of a new mixed finite element
approximation for elliptic control problems. We are interested in the following linear optimal control
problems for the state variables p, y, and the control u with an integral constraint:

min
u∈Uad

{
1
2
‖p − pd‖2 +

1
2
‖y − yd‖2 +

ν

2
‖u‖2

}
(1.1)

subject to the state equation

−div(A(x)∇y) = f + u, x ∈ Ω, (1.2)

which can be written in the form of the first-order system

divp = f + u, p = −A∇y, x ∈ Ω, (1.3)

and the boundary condition

y = 0, x ∈ ∂Ω, (1.4)

where Ω is a polygonal domain. Uad denotes the admissible set of the control variable, defined by

Uad =

⎧⎨
⎩u ∈ L2(Ω) :

∫
Ω

udx ≥ 0

⎫⎬
⎭ .

We assume that yd ∈ H1(Ω), pd ∈ (H1(Ω))2 and ν is a fixed positive number. The coefficient A(x) =
(aij(x)) is a symmetric matrix function with aij(x) ∈ W 1,∞(Ω), which satisfies the ellipticity condition

a∗|ξ|2 ≤
2∑

i,j=1

aij(x)ξiξj ≤ a∗|ξ|2, ∀ (ξ, x) ∈ R
2 × Ω̄, 0 < a∗ < a∗.

The plan of this paper is as follows. In Section 2, we construct our new mixed finite element
approximation scheme for the optimal control problem (1.1)–(1.4) and give its equivalent optimality
conditions. The main results of this paper are stated in Section 3. In this section, by using the duality
argument method and the energy method, we derive the residual a posteriori error estimates for all the
variables. In Section 4, we briefly summarize the results obtained and some possible future extensions.

In this paper, we adopt the standard notation W m,p(Ω) for Sobolev spaces on Ω with a norm ‖ · ‖m,p

given by

‖v‖p
m,p =

∑
|α|≤m

‖Dαv‖p
Lp(Ω),

and a semi-norm | · |m,p given by

|v|pm,p =
∑

|α|=m

‖Dαv‖p
Lp(Ω).

We set W m,p
0 (Ω) = {v ∈ W m,p(Ω) : v|∂Ω = 0}. For p = 2, we denote Hm(Ω) = W m,2(Ω), Hm

0 (Ω) =
W m,2

0 (Ω), and ‖ · ‖m = ‖ · ‖m,2, ‖ · ‖ = ‖ · ‖0,2. In addition, C denotes a general positive constant
independent of h, where h is the spatial mesh-size for the control and state discretization.
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2. MIXED METHODS FOR OPTIMAL CONTROL PROBLEMS

In this section, we shall construct our mixed finite element approximation scheme of the control
problem (1.1)–(1.4).

Let

V = (L2(Ω))2 and W = H1
0 (Ω).

As in [8], for (1.3), we get the following mixed variational form:

− (p,∇w) = (f + u,w), ∀ w ∈ W,

(A−1p,v) + (∇y,v) = 0, ∀ v ∈ V ,

where (·, ·) is the inner product of L2(Ω).
Now, we recast (1.1)–(1.4) as the following weak form: find (p, y, u) ∈ V × W × Uad such that

min
u∈Uad

{
1
2
‖p − pd‖2 +

1
2
‖y − yd‖2 +

ν

2
‖u‖2

}
(2.1)

− (p,∇w) = (f + u,w), ∀ w ∈ W, (2.2)

(A−1p,v) + (∇y,v) = 0, ∀ v ∈ V . (2.3)

Since the objective functional is convex, it then follows from [18] that the optimal control problem
(2.1)–(2.3) has a unique solution (p, y, u), and that a triplet (p, y, u) is the solution of (2.1)–(2.3) if
and only if there is a co-state (q, z) ∈ V × W such that (p, y,q, z, u) satisfies the following optimality
conditions:

− (p,∇w) = (f + u,w), ∀ w ∈ W, (2.4)

(A−1p,v) + (∇y,v) = 0, ∀ v ∈ V , (2.5)

(q,∇w) = (y − yd, w), ∀ w ∈ W, (2.6)

(A−1q,v) − (∇z,v) = (p − pd,v), ∀ v ∈ V , (2.7)

(νu + z, ũ − u) ≥ 0, ∀ ũ ∈ Uad. (2.8)

In [10], the expression of the control variable is given. Here, we adopt the same method to derive the
following operator:

u =
max{0, z̄} − z

ν
, (2.9)

where z̄ =
∫
Ω

z/
∫
Ω

1 denotes the integral average on Ω of the function z.

Let Th denote a regular triangulation of the domain Ω, hτ denotes the diameter of τ and h = max hτ .
Let V h × Wh ⊂ V × W be defined by the following finite element pair P 2

0 -P1 [8, 31]:

V h = {vh = (v1h,v2h) ∈ V |v1h,v2h ∈ P0(τ), ∀ τ ∈ Th},
Wh = {wh ∈ C0(Ω) ∩ W |wh ∈ P1(τ), ∀ τ ∈ Th}.

And the approximated space of control is given by

Uh := {ũh ∈ Uad : ∀ τ ∈ Th, ũh|τ = const}.
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Before the new mixed finite element scheme is given, we introduce three projection operators. Firstly,
we define the standard elliptic projection [3] Ph : W → Wh, which satisfies: for any φ ∈ W

(A∇(φ − Phφ),∇wh) = 0, ∀ wh ∈ Wh, (2.10)

‖φ − Phφ‖s ≤ Ch2−s‖φ‖2, ∀ φ ∈ Hs(Ω), s = 0, 1. (2.11)

Next, we define the standard L2 projection Πh : V → V h, which satisfies: for any q ∈ V

(q − Πhq,vh) = 0, ∀ vh ∈ V h, (2.12)

‖Πhq‖ ≤ C‖q‖, (2.13)

‖q − Πhq‖ ≤ Ch‖q‖1, ∀ q ∈ (H1(Ω))2. (2.14)

At last, we define the standard L2-orthogonal projection Qh : Uad → Uh, which satisfies: for any
u ∈ Uad

(u − Qhu, ũh) = 0, ∀ ũh ∈ Uh. (2.15)

We have the following approximation property:

‖u − Qhu‖−s,r ≤ Ch1+s|u|1,r, ∀ u ∈ W 1,r(Ω), s = 0, 1. (2.16)

Then the new mixed finite element discretization of (2.1)–(2.3) is as follows: find (ph, yh, uh) ∈
V h × Wh × Uh such that

min
uh∈Uh

{
1
2
‖ph − pd‖2 +

1
2
‖yh − yd‖2 +

ν

2
‖uh‖2

}
(2.17)

− (ph,∇wh) = (f + uh, wh), ∀ wh ∈ Wh, (2.18)

(A−1ph,vh) + (∇yh,vh) = 0, ∀ vh ∈ V h. (2.19)

As in the continuous case, the above optimal control problem has a unique solution (ph, yh, uh), and a
triplet (ph, yh, uh) is the solution of (2.17)–(2.19) if and only if there is a co-state (qh, zh) ∈ V h × Wh

such that (ph, yh,qh, zh, uh) satisfies the following optimality conditions:

−(ph,∇wh) = (f + uh, wh), ∀wh ∈ Wh, (2.20)

(A−1ph,vh) + (∇yh,vh) = 0, ∀vh ∈ V h, (2.21)

(qh,∇wh) = (yh − yd, wh), ∀wh ∈ Wh, (2.22)

(A−1qh,vh) − (∇zh,vh) = (ph − pd,vh), ∀vh ∈ V h, (2.23)

(νuh + zh, ũh − uh) ≥ 0, ∀ ũh ∈ Uh. (2.24)

For the variational inequality (2.24), we have the following conclusion.

Lemma 2.1 [10]. Assume that zh is known in the variational inequality (2.24). The solution of the
variational inequality (2.24) is

uh = Qh

(
−zh

ν
+ max

{
0,

zh

ν

})
, zh =

∫
Ω

zh∫
Ω

1
.

In the rest of the paper, we shall use some intermediate variables, we define the state solution
(p(uh), y(uh),q(uh), z(uh) ∈ (V × W )2 that satisfies
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−
(
p(uh),∇w

)
= (f + uh, w), ∀w ∈ W, (2.25)(

A−1p(uh),v
)

+
(
∇y(uh),v

)
= 0, ∀v ∈ V , (2.26)(

q(uh),∇w
)

=
(
y(uh) − yd, w

)
, ∀w ∈ W, (2.27)(

A−1q(uh),v
)
−

(
∇z(uh),v

)
=

(
p(uh) − pd,v

)
, ∀v ∈ V . (2.28)

3. A POSTERIORI ERROR ESTIMATES

In this section, we will discuss the residual type a posteriori error estimates for the optimal control
problems. In order to derive our estimators, we need the following three important lemmas.

Lemma 3.1 [3]. Let πh be the standard Lagrange interpolation operator. For m = 0 or 1 and q > 1
2 ,

|v − πhv|W m,q(Ω) ≤ Ch2−m|v|W 2,q(Ω). (3.1)

Lemma 3.2. Let π̂h be the average interpolation operator defined in [30]. For m = 0 or 1 and
1 ≤ q ≤ ∞,

|v − π̂hv|W m,q(τ) ≤
∑

τ̄ ′∩τ̄ �=∅
Chl−m

τ |v|W 1,q(τ ′), ∀ v ∈ W 1,q(Ω). (3.2)

Lemma 3.3 [17]. For v ∈ W 1,q(Ω) and 1 ≤ q < ∞,

‖v‖W m,q(∂τ) ≤ C

(
h
− 1

q
τ ‖v‖W 0,q(τ) + h

l− 1
q

τ |v|W 1,q(τ)

)
. (3.3)

Using the stability estimates, we have the following lemma.

Lemma 3.4. Let (p, y,q, z) and (p(uh), y(uh),q(uh), z(uh)) be the solutions of (2.4)–(2.7) and
(2.25)–(2.28), respectively. Then we have

‖y − y(uh)‖ + ‖∇(y − y(uh))‖ + ‖p − p(uh)‖ ≤ C‖u − uh‖, (3.4)

‖z − z(uh)‖ + ‖∇(z − z(uh))‖ + ‖q − q(uh)‖ ≤ C‖u − uh‖. (3.5)

As in [10, Lemma 3.2], we can prove that

Lemma 3.5. Let u and uh be the solutions of (2.4)–(2.8) and (2.20)–(2.24), respectively. Then we
have

‖u − uh‖2 ≤ Cη2
0 + C‖z(uh) − zh‖2, (3.6)

where

η2
0 =

∑
τ∈Th

‖zh − Qhzh‖2
L2(τ).

Now, we shall derive our main results.

Theorem 3.1. Let (u, y,p, z,q) and (uh, yh,ph, zh,qh) be the solutions of (2.4)–(2.8) and (2.20)–
(2.24), respectively. Then we have
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‖u − uh‖2 + ‖∇(y − yh)‖2 + ‖p − ph‖2 + ‖∇(z − zh)‖2 + ‖q − qh‖2 ≤ C
2∑

i=0

η2
i , (3.7)

where η0 is defined in Lemma 3.5, and

η2
1 =

∑
τ∈Th

h2
τ‖f + uh‖2

L2(τ) +
∑

l∈∂Th

∫
l

hl[ph · n]2 +
∑
τ∈Th

‖A−1ph + ∇yh‖2
L2(τ),

η2
2 =

∑
τ∈Th

h2
τ‖yh − yd‖2

L2(τ) +
∑

l∈∂Th

∫
l

hl[qh · n]2 +
∑
τ∈Th

‖ph − pd − A−1qh + ∇zh‖2
L2(τ),

where l is an edge of an element τ , [vh · n]l is the normal derivative jumps over the interior edge
l, defined by

[vh · n]l = [vh|τ1
l
− vh|τ2

l
] · n,

where n is the unit normal vector on l = τ1
l ∩ τ2

l outwards τ1
l , hl is the maximum diameter of the

edge l.

Proof. For the sake of simplicity, let

ey = y(uh) − yh, ep = p(uh) − ph,

ez = z(uh) − zh, eq = q(uh) − qh.

From Eqs. (2.25)–(2.28) and (2.20)–(2.23), we can easily obtain the following error equations:

−(ep,∇wh) = 0, ∀wh ∈ Wh, (3.8)

(A−1ep,vh) + (∇ey,vh) = 0, ∀vh ∈ V h, (3.9)

(eq ,∇wh) = (ey, wh), ∀wh ∈ Wh, (3.10)

(A−1eq ,vh) − (∇ez,vh) = (ep,vh), ∀vh ∈ V h. (3.11)

It follows from the assumption on A, (3.8), (3.9), (2.20), (2.21), (2.25), (2.26), (3.2), (3.3), and
Cauchy inequality that

C‖ep‖2 ≤ (A−1(p(uh) − ph),p(uh) − ph)

= (A−1(p(uh) − ph),p(uh)) − (A−1p(uh),ph) + (A−1ph,ph)

= (∇y(uh),p(uh)) − (A−1p(uh),ph) + (∇y(uh),ph) − (∇yh,p(uh))

= − (f + uh, ey) − (A−1ph + ∇yh, ep) − (ph,∇ey)

= − (f + uh, ey − π̂hey) − (A−1ph + ∇yh, ep) − (ph,∇(ey − π̂hey))

= −
∑
τ∈Th

∫
τ

(f + uh)(ey − π̂hey) − (A−1ph + ∇yh, ep) −
∑

l∈∂Th

∫
l

[ph · n](ey − π̂hey)

≤ C‖η1‖2 + ε‖ey‖2
1 +

C

2
‖ep‖2. (3.12)

Moreover, using Poincare’s inequality and (2.26), it easy to see that
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‖ey‖2
1 ≤C‖∇ey‖2 = C‖ − A−1ep − (A−1ph + ∇yh)‖2

≤C‖A−1‖0,∞‖ep‖2 + C‖A−1ph + ∇yh‖2. (3.13)

For sufficiently small ε, using (3.12) and (3.13), we have

‖ey‖2
1 + ‖ep‖2 ≤ C‖η1‖2. (3.14)

Similar to (3.12) and (3.13), we have

C‖eq‖2 ≤ (A−1(q(uh) − qh),q(uh) − qh)

= (A−1q(uh),q(uh)) − (A−1qh,q(uh)) − (∇ez,qh) − (ep,qh)

= (yh − yd, ez) − (qh,∇ez) + (ep, eq) + (ey, ez)

+ (ph − pd + ∇zh − A−1qh, eq)

= (yh − yd, ez − π̂hez) − (qh,∇(ez − π̂hez)) + (ep, eq) + (ey, ez)

+ (ph − pd + ∇zh − A−1qh, eq)

=
∑
τ∈Th

∫
τ

(yh − yd)(ez − π̂hez) −
∑

l∈∂Th

∫
l

[qh · n](ez − π̂hez)

+ (ph − pd + ∇zh − A−1qh, eq) + (ep, eq) + (ey , ez)

≤ C‖η2‖2 + ε‖ez‖2
1 +

C

2
‖eq‖2 + C‖ep‖2 + C‖ey‖2 (3.15)

and

‖ez‖2
1 ≤C‖∇ez‖2 = C‖A−1q(uh) − p(uh) + pd −∇zh)‖2

≤C‖A−1‖0,∞‖eq‖2 + C‖ph − pd + ∇zh − A−1qh‖2 + C‖ep‖2. (3.16)

For sufficiently small ε, using (3.15) and (3.16), we have

‖ez‖2
1 + ‖eq‖2 ≤ C(‖η1‖2 + ‖ey‖2 + ‖ep‖2). (3.17)

Now, combining (3.14), (3.17), Lemmas 3.4 and 3.5, we complete the proof.

Next, we recall a result from Grisvard [12].

Lemma 3.6 [12]. For every function F ∈ L2(Ω), the solution φ of

−div(A∇φ) = F in Ω, φ|∂Ω = 0, (3.18)

belongs to H1
0 (Ω) ∩ H2(Ω). Moreover, there exists a positive constant C such that

‖φ‖2 ≤ C‖F‖. (3.19)

Theorem 3.2. Let (u, y,p, z,q) and (uh, yh,ph, zh,qh) be the solutions of (2.4)–(2.8) and (2.20)–
(2.24), respectively. Then we have

‖u − uh‖2 + ‖y − yh‖2 + ‖z − zh‖2 ≤ C

(
η2
0 +

2∑
i=1

η̂2
i

)
, (3.20)
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where η0 is defined in Lemma 3.5 and

η̂2
1 =

∑
τ∈Th

h4
τ‖f + uh‖2

L2(τ) +
∑

l∈∂Th

∫
l

h3
l [ph · n]2 +

∑
τ∈Th

h2
τ‖A−1ph + ∇yh‖2

L2(τ),

η̂2
2 =

∑
τ∈Th

h4
τ‖yh − yd‖2

L2(τ) +
∑

l∈∂Th

∫
l

h3
l [qh · n]2 +

∑
τ∈Th

h2
τ‖ph − pd − A−1qh + ∇zh‖2

L2(τ).

Proof. First, let φ ∈ H2(Ω) ∩ H1
0 (Ω) be the solution of (3.18) with F = y(uh) − yh. We can see that

‖ey‖2 = (A∇φ,∇ey)

= (A∇φ,∇y(uh)) − (A∇φ,∇yh + A−1ph) + (ph,∇φ)

= (∇yh + A−1ph,Πh(A∇φ) − A∇φ) + (ph,∇φ) + (f + uh, φ)

= (∇yh + A−1ph,Πh(A∇φ) − A∇φ) + (ph,∇(φ − πhφ)) + (f + uh, φ − πhφ)

≤ C‖φ‖2η̂1, (3.21)

where we used (3.8), (3.9), (2.20), (2.21), (2.25), (2.26), (3.1), (3.3), (2.14), and Cauchy inequality.

Second, let φ ∈ H2(Ω) ∩ H1
0 (Ω) be the solution of (3.18) with F = z(uh) − zh. Similar to (3.21), we

have

‖ez‖2 = (A∇φ,∇ez)

= (ph − pd − A−1qh + ∇zh,Πh(A∇φ) − A∇φ) − (qh,∇φ)

+ (yh − yd, φ) + (ey, φ) − (ep, A∇φ)

= (yh − yd, φ − πhφ) − (qh,∇(φ − πhφ)) − (∇yh + A−1ph,Πh(A2∇φ) − A2∇φ)

+ (ey, φ) + (ey , div(A2∇φ)) + (ph − pd − A−1qh + ∇zh,Πh(A∇φ) − A∇φ)

≤ C‖φ‖2(η̂1 + η̂2 + ‖ey‖). (3.22)

Using (3.19), (3.21), (3.22), and Lemmas 3.4 and 3.5, we complete the proof of the theorem.

4. CONCLUSIONS

In this paper, we discussed a posteriori error estimates of a new mixed finite element method for a
linear elliptic optimal control problem (1.1)–(1.4). Notice that the gradient of the primal variable for
this method belongs to the square integrable space instead of the classical H(div; Ω) space. Using this
method, we can derive two approximations for the gradient of the primal variable y, one is the numerical
approximation solution ph, the other is the derivative of the approximation solution yh. Our a posteriori
error estimates for linear elliptic optimal control problems by the mixed finite element method seem to be
new. In our future work, we will investigate a priori and posteriori error estimates for parabolic optimal
control problems.
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