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Abstract—A survey of algorithms for approximation of multivariate functions with radial basis
function (RBF) splines is presented. Algorithms of interpolating, smoothing, selecting the smooth-
ing parameter, and regression with splines are described in detail. These algorithms are based on
the feature of conditional positive definiteness of the spline radial basis function. Several families
of radial basis functions generated by means of conditionally completely monotone functions are
considered. Recommendations for the selection of the spline basis and preparation of initial data for
approximation with the help of the RBF spline are given.
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INTRODUCTION

In this paper we discuss methods for approximating a multivariate function whose values are known
in a finite set of measurement nodes. In other words, in some domain Ω ⊂ R

d, d ∈ N, a non-regular
mesh of nodes is set in which the values of the function to approximate are known. The values can be
measured with an error, and, thus, the approximating function is not expected to accurately reproduce
(interpolate) the mesh data, i.e., methods of data smoothing are involved.

As a function approximation apparatus we will use splines constructed using some RBF. Under
certain conditions (see below), the RBF is a reproducing kernel of some (semi-)Hilbert space, called
a native space.1 This fact provides a theoretical justification of convergence of RBF splines at con-
densation of meshes; having studied the properties of the RBF, one can draw conclusions about the
smoothness of the functions of the native space and obtain estimates for the convergence of the RBF
splines. Presence of native space also enables consideration of the smoothing problem and selection
of the smoothing parameter with a natural criterion, when the quadratic deviation of the values of the
smoothing spline at the mesh nodes from the measured values reaches a predetermined error threshold.

In this review, we confine ourselves to spline approximation algorithms the author has made some
contribution to. Other approximation algorithms, as well as a comprehensive analysis of the theoretical
aspects of approximation of multidimensional data, are given, for example, in [3].

1. RBF SPLINE

We will construct an approximation in the form of an RBF spline (see, for instance, [4, 5]):

σ(x) =
N∑

i=1

λig(x, xi) + p(x). (1.1)

Here

*E-mail: rozhenko@oapmg.sscc.ru
1The term “native space” was apparently introduced in [1], and a way to build a native space was proposed in [2].
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• xi ∈ R
d, i = 1, . . . , N , are the datum nodes of the spline,

• g(x, y) = φ(|x − y|) is the univariate radial basis function (φ ∈ C[0,∞)),

• |x − y| is the Euclidean distance between points x, y ∈ R
d,

• λi ∈ R are the spline coefficients, and

• p ∈ P, where P is a given finite-dimensional space of functions in R
d, which is referred to as the

trend of the spline. Usually, P is a space of algebraic polynomials of some degree.

In the interpolation and smoothing methods, the mesh of datum nodes coincides with that of
measurement nodes, but in the general case these meshes are different. For example, in the spline
regression method [6] the mesh of datum nodes is not related to the mesh of measurement nodes,
whereas in the smoothing method with bilateral constraints [7, 8] the datum nodes of the spline are a
submesh of the measurement nodes.

To obtain a closed system of linear equations we require additionally that the coefficients λi from (1.1)
annihilate the trend of the spline:

N∑

i=1

λip(xi) = 0 ∀ p ∈ P. (1.2)

Then, having chosen some basis ui ∈ P, i = 1, . . . ,K, K = dimP, and writing down the trend function
p from (1.1) as

p(x) =
K∑

i=1

μiui(x),

under the interpolation conditions σ(xi) = zi, i = 1, . . . , N , we obtain the following system of linear
equations:

⎛

⎝ G U

U� 0

⎞

⎠

⎛

⎝λ

μ

⎞

⎠ =

⎛

⎝z

0

⎞

⎠ . (1.3)

Here G is an N × N matrix with coefficients gij = g(xi, xj), U is an N × K matrix with coefficients
uik = uk(xi), λ = (λ1, . . . , λN )� and μ = (μ1, . . . , μK)� are the vectors of the unknown spline coeffi-
cients, and z = (z1, . . . , zN )� is the vector of the values of the function at the measurement nodes.

We assume that all the nodes xi of the measurement mesh are different, which is necessary for
existence of a solution to problem (1.3).2 For problem (1.3) to be uniquely soluble, the conditions N ≥ K
and rankU = K must also be fulfilled. These conditions are also sufficient if the function g(x, y) satisfies
the conditions set out below.

2More precisely, if there are coinciding nodes, the measured values in them must also coincide. Otherwise, system (1.3)
would not have solutions. However, in this situation coincident measurement nodes can simply be omitted.
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2. CONDITIONAL POSITIVE DEFINITENESS

The function g : R
d × R

d → R is referred to as conditionally positively definite in Ω ⊂ R
d with

respect to P if for any finite mesh of distinct points yi ∈ Ω, i = 1, . . . ,M , M ∈ N,

M∑

i=1

M∑

j=1

ξiξjg(yi, yj) > 0, (2.1)

where {ξi ∈ R, i = 1, . . . ,M} are all nontrivial sets of values satisfying the conditions

M∑

i=1

ξip(yi) = 0 ∀ p ∈ P. (2.2)

The function g(x, y) is not necessarily symmetric with respect to x and y. For example, with d = 1
the function g(x, y) = (−1)m(x − y)2m−1

+ is conditionally positively definite with respect to polynomials
of degree m − 1, but it is not symmetric. Here and below (t)+ = max(t, 0).

In the absence of symmetry, we can talk about conditional symmetry of the function g in Ω with
respect to P:

M∑

i=1

M∑

j=1

ξiξjg(yi, yj) =
M∑

i=1

M∑

j=1

ξiξjg(yj , yi) (2.3)

under conditions (2.2).
In the case of conditional positive definiteness and conditional symmetry, it can be asserted that the

function g(x, y) is a reproducing kernel of some semi-Hilbert space [9, 10], which is called a native
space for the triple 〈g,Ω,P〉 and denoted as Nφ(Ω,P) when g(x, y) = φ(|x − y|).3

The idea of constructing a native space is very simple. In the subspace of all splines of form (1.1),
(1.2) that satisfy the condition p(x) ≡ 0 and are constructed on all sorts of finite meshes of datum nodes
from Ω, a bilinear form

(σ1, σ2)G =
N1∑

i=1

N2∑

j=1

λ
(1)
i λ

(2)
j g(x(1)

i , x
(2)
j )

will be positively definite and symmetric by virtue of conditions (2.1)–(2.3). Performing completion of the

linear space of such splines in the norm ‖σ‖G = (σ, σ)1/2
G , we obtain a Hilbert space, which we denote

by Gg(Ω,P). Then Ng(Ω,P) = Gg(Ω,P) + P is the required native half-Hilbert space, and ‖ · ‖G is a
seminorm in it with the kernel P.4

It follows that the matrix G from (1.3) will be symmetric and positively definite on the subspace
of vectors λ satisfying the condition U�λ = 0. This idea forms the basis of the algorithm for spline
construction via converting system of equations (1.3) into a system with a symmetric positively definite
matrix, also known as the Anselone–Laurent algorithm [11, 13].

Since g is a reproducing kernel of the function space Ng(Ω,P) in the seminorm ‖ · ‖G, spline (1.1),
(1.2) with coefficients satisfying system of equations (1.3) minimizes the seminorm ‖ · ‖G on the set
of all functions f ∈ Ng(Ω,P) that satisfy the interpolation conditions f(xi) = zi, i = 1, . . . , N (see, for
instance, [9, 10]).

3In [3] and other sources, a simplified notation Nφ(Ω) is used, in which the second parameter is omitted.
4If we represent this seminorm as ‖f‖G = ‖Tf‖Y , where T is a linear operator acting into some Hilbert space Y (T can
be, for example, a quotient map from Ng(Ω,P) into Gg(Ω,P) with a kernel of P), then g(x, y) will be the Green function
of the operator T ∗T (see, for instance, [11, 12]).
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Due to the minimization condition for the seminorm ‖ · ‖G on splines, we can also formulate the
problem of constructing the smoothing spline:

σα = arg min
f∈Ng(Ω,P)

(
α‖f‖2

G +
N∑

i=1

(f(xi) − zi)2

pi

)
. (2.4)

Here pi > 0 are some specified weight parameters proportional to the square of the measurement error
for zi values at the mesh nodes, and α > 0 is the smoothing parameter, which can be varied. If we
assume that system (1.3) has a single solution (N ≥ K and rankU = K), then problem (2.4) has a
unique solution, the coefficients of which satisfy the following system of equations:

⎛

⎝G + αP U

U� 0

⎞

⎠

⎛

⎝λ

μ

⎞

⎠ =

⎛

⎝z

0

⎞

⎠ . (2.5)

Here P = diag(p1, . . . , pN ) is the diagonal matrix of weights from (2.4). It is obvious that when α → 0,
the smoothing spline σα tends to the interpolation one, and when α → ∞, in the limit we have the

function from the trend P that minimizes the functional
N∑

i=1

(f(xi)−zi)
2

pi
. This brings up the question how

we should choose the smoothing parameter α?
Let

ρ(f) =
( N∑

i=1

(f(xi) − zi)2

pi

)1/2

(2.6)

denote the weighted quadratic deviation of the function f ∈ Ng(Ω,P) from measurements at the mesh
nodes. We will select the parameter α basing on the residual principle, solving the nonlinear equation
ρ(σα) = ε, where ε > 0 is the required weighted error threshold.

An algorithm for solving such an equation can be reduced to an iterative process, at each step of
which problem (2.5) is solved with α = αn, n = 0, 1, . . . . Here α0 is the initial approximation, and α1,
α2, . . . are approximations at subsequent steps of the iteration process. An algorithm for solving this
problem, which can be reduced to iterations of the Newton method of the second order of convergence,
was proposed in [14]; the optimal iteration method was justified in [15]; a combined algorithm using
iterations of the Newton method and a fractional-rational approximation was proposed in [16, 17].
Finally, an algorithm with a higher (predetermined) degree of convergence was justified in [18] and
brought to practical implementation in [19].

3. SELECTING THE SMOOTHING PARAMETER

We will describe the algorithm for choosing the smoothing parameter from the residual principle
in accordance with [17, 19]. We introduce the residual operator Rα, which relates the vector of
measurements z to the residual vector ζ = Rαz by the formula ζi = zi − σα(xi), i = 1, . . . , N , where
σα is smoothing problem solution (2.4). We also introduce a weighted scalar product in Z = R

N :

(u, v)Z =
N∑

i=1

uivi
pi

. Then the residual equation can be represented as follows:

ρ(σα) = ‖Rαz‖Z = ε. (3.1)

From the first group of equations in (2.5) we derive that Gλ + Uμ = z − αPλ. The left-hand side is the
vector of the values of the smoothing spline at the mesh nodes. Therefore, Rαz = αPλ.

It is obvious that the function ρ(σα) increases monotonically, the monotonicity being strict if λ �= 0,
i.e., if the equation Uμ = z has no solutions (the measurement vector cannot be interpolated by a
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function from the trend). In other words, either ρ(σα) is a strictly monotonically increasing function
or ρ(σα) ≡ 0. In what follows we assume that ρ(σα) �≡ 0.

It is also obvious that Eq. (3.1) has a solution if ε ≤ εmax = ‖R∞z‖Z . We can obtain the εmax value
by solving the problem of weighted least squares on P or passing to the limit with α → ∞ in system of
equations (2.5) as follows: setting β = 1/α and λ̃ = αλ and multiplying the second group of equations
by α, we obtain an equivalent system of equations:

⎛

⎝βG + P U

U� 0

⎞

⎠

⎛

⎝λ̃

μ

⎞

⎠ =

⎛

⎝z

0

⎞

⎠ . (3.2)

Therefore, R∞z = Pλ̃ at solution to (3.2) with β = 0.
Let 0 < ε < εmax, α∗ be a solution to Eq. (3.1), and α0 be the initial approximation of the smoothing

parameter. According to [15], Eq. (3.1) should be converted to the form 1/ρ(σ1/β) = 1/ε, with which
the rate of convergence of the Newton method is maximal. The function 1/ρ(σ1/β) is strictly convex
upwards, and thus the iterations of the Newton method will converge if α0 ≤ α∗, i.e., ‖Rα0z‖Z ≥ ε. If
this condition is not met, then, as the first step, we construct a fractional-rational approximation ρ̃(α) of
the residual function from the three values: ρ(σα0), ρ′(σα0), and ρ(σ∞) = εmax, and choose α1 by solving
the residual equation ρ̃(α) = ε.

The formula for the step of the Newton method for ρ(σαn) ≥ ε is as follows:

αn+1 = αn
1 − ω(αn)

ρ(σαn)/ε − ω(αn)
, (3.3)

ω(α) =
(Rαz,R2

αz)Z
(Rαz,Rαz)Z

=
(Rαz,R2

αz)Z
ρ2(σα)

.

The formula for the step of the fractional-rational method with ρ(σαn) < ε is as follows:

αn+1 = αn
(1 − ρ(σαn)/εmax) − (1 − ρ(σαn)/ε) d(αk)

ρ(σαn)/ε − ρ(σαn)/εmax
, (3.4)

d(α) =
ρ(σα)/εmax − ω(α)

1 − ω(α)
.

At each step of the iterations by formulas (3.3) and (3.4), it is required to solve two systems of linear
equations of form (2.5) with the vectors z and Rαz in the right-hand side. When direct methods of
solving system of equations (2.5) are used, the time complexity of factorization of the matrix is much
higher than the time complexity of solving the system with a factorized matrix. Therefore, we can win
in the number of operations if we achieve a higher rate of convergence of the method via increasing the
number of problems of form (2.5) solved at each iteration.

Such method is based on the expansion of the operator Rα and its complementary operator Qβ

[17, 18]:

Rα = I −
∞∑

m=0

(α0 − α

α0

)m
Rm

α0
(I − Rα0) =

α

α0

∞∑

m=0

(α0 − α

α0

)m
Rm+1

α0
, (3.5)

R1/β =
∞∑

m=0

(β0 − β

β0

)m
Qm

β0
(I − Qβ0) = I − β

β0

∞∑

m=0

(β0 − β

β0

)m
Qm+1

β0
. (3.6)
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COMPARISON OF RADIAL BASIS FUNCTIONS 225

Replacing in these formulas the upper summation limit with L− 1 at some finite L, we obtain two-sided
approximations with the order L of the residual function in neighborhood of the points α0 and β0 [18],
and hence the algorithm using these approximations will have the order of convergence L. A detailed
study of ways of approximation by this method was performed in [19]. The results are presented below.

If ρ(σαn) ≥ ε, using the formula

R(L)
α =

α

αn

L−1∑

m=0

(αn − α

αn

)m
Rm+1

αn

and solving the equation ‖R(L)
α z‖Z = ε, we obtain αn+1.

If ρ(σαn) < ε, at the first step (n = 0) we select α1 by fractional-rational approximation method (3.4),

and with other n we calculate αn+1 = 1/βn+1 by solving the equation ‖R̂(L)
1/βz‖Z = ε, where

R̂
(L)
1/β =

L−1∑

m=0

(βn − β

βn

)m
Qm

βn
(I − Qβn).

It is easy to see that in both cases at each step it is required to solve L systems like (2.5) with different

right-hand sides. It is clear that when calculating ‖R(L)
α z‖Z (‖R̂(L)

1/βz‖Z) we can also calculate ‖R(l)
α z‖Z

(‖R̂(l)
1/βz‖Z ) for l < L. Based on this information, we can extrapolate approximations of the residual

function in L and refine its value for each α (β), i.e., accelerate the convergence. This method was applied
in [20] and then improved in [19].

4. ALGORITHM FOR SOLVING THE SMOOTHING PROBLEM

It is clear that the system of equations in interpolation problem (1.3) is a particular case of system
of smoothing equations (2.5). Therefore, it suffices to consider the general case. System (2.5) is not
symmetric if the function g(x, y) is not symmetric (the symmetry is obvious in the case of RBF splines).
Even if the matrix G is symmetric, the spectrum of this system is alternating (of course, with a nontrivial
trend P). Another shortcoming of this system is that the conditioning number of its matrix depends on
the choice of basis in P. Therefore, application of standard solution methods with a poor choice of basis
in P can make the solution less accurate by far.

Under the assumptions of Section 2, the matrix G is symmetric and positively definite on the subspace
of vectors such that U�λ = 0. Therefore, we would like to take advantage of this fact and reduce
system (2.5) to an equivalent system of equations on the subspace with a symmetric and positively
definite matrix. Such a transformation was actually proposed in [13]: it was based on building a linear
operator H : R

N → R
N−K with rankH = N − K and HU = 0, i.e., this operator must be of full rank

and annihilate the image of the operator U . In the classical case of univariate polynomial splines of degree
2m − 1, the matrix of the operator H was collected from the coefficients of finite differences of the mth
order that annihilate polynomials of degree m− 1 on different submeshes. In the multivariate case, many
researchers used a similar approach, but the result was strongly dependent on the choice of submeshes
for constructing finite differences and did not guarantee that the conditioning of the initial system would
not worsen under such a transformation.

The author suggested in [21] an algorithm of purely algebraic construction of the operator H that
preserved the conditioning number of the matrix G (cond2G) on the subspace of vectors such that
U�λ = 0. We perform upper triangularization of the matrix U by the method of rotations or reflections:

QU =

⎛

⎝Ũ

O

⎞

⎠ . (4.1)
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Here Q is the transformation operator, consisting of a sequence of elementary operations of rotations or
reflections, Ũ is a K × K nondegenerate upper triangular matrix, and O is a zero block of dimension
(N − K) × K. It is clear that the image of the operator QU consists of vectors the nonzero elements of
which are in the first K positions, and to annihilate the image we should just omit the first K components
of the vector. Formally, we split the matrix of the identity operator I in R

N into two blocks:

I =

⎛

⎝J1

J2

⎞

⎠ ,

where J1 : R
N → R

K is composed of the first K rows of the matrix of the operator I, and J2 : R
N →

R
N−K of the rest N − K rows. Then the sought-for operator H is H = J2Q.

From the identity U�λ = 0 it follows that the vector λ belongs to the kernel of the operator U�, and
thus it is easy to represent the vector λ as H�ν, the vector ν ∈ R

N−K determined uniquely. Substituting
λ = H�ν into (2.5) and applying the operator H to the first group of equations, we obtain an equivalent
system of equations with respect to ν:

(A + αHPH�)ν = Hz, (4.2)

where A = HGH�. It is clear that (Aν, ν) = (Gλ, λ) and U�λ = 0 by virtue of the properties of the
operator H . So, we conclude that A is symmetric and positively definite. Its conditioning number is the
same as that of the matrix G on the subspace U�λ = 0 because orthogonal transformations are applied.

Having solved this system of equations, we find λ from the identity λ = H�ν as follows: We add
K zeros to the beginning of the vector ν, i.e., apply the transformation J�

2 , and then we execute the
sequence of transposed elementary operations composing the transformation Q, but in the reverse order.
We easily found the vector μ from the identity Uμ = z − (G + αP )λ via pre-multiplying it by J1Q and
substituting λ = H�ν:

Ũν = J1Qz − J1Q(G + αP )H�ν. (4.3)

The matrix of this system is upper triangular, and the vector J1Qz and matrix J1Q(G + αP )H� are
found “for free” in the course of the transformation of system (2.5) into (4.2).
Remark. The substitution algorithm can also be applied to solving a general system of equations with a

saddle point of the following form:

⎛

⎝ B U

U� 0

⎞

⎠

⎛

⎝λ

μ

⎞

⎠ =

⎛

⎝z

w

⎞

⎠ , (4.4)

where B is an N × N matrix and U is a full-rank N × K matrix, K ≤ N . We again use the orthogonal
transformation Q to reduce the matrix U to upper triangular form (4.1) and perform the substitution
λ = Q�ν to split the vector ν into two parts: ν1, which includes the first K components of the vector
ν, and ν2, which includes the rest (N − K) components. Pre-multiplying the first group of equations in
(4.4) by Q and decomposing QBQ� into four blocks Cij , i, j = 1, 2, with the diagonal blocks C11 and
C22 of the dimensions K × K and (N − K) × (N − K), respectively, we arrive at the following system
of equations:

⎛

⎜⎜⎜⎝

C11 C12 Ũ

C21 C22 0

Ũ� 0 0

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

ν1

ν2

μ

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

J1Qz

J2Qz

w

⎞

⎟⎟⎟⎠ .
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From the last group of equations with the lower triangular matrix Ũ� we find ν1; then from the second
group of equations with the square matrix C22 we find ν2; further, from the first group of equations with
the upper triangular matrix Ũ we determine μ; finally, we calculate λ = Q�ν.

5. SPLINE REGRESSION ALGORITHM

Now we consider the case when the mesh of datum nodes of spline differs from the mesh in which
the values of the function to approximate are known. In the spline regression method, we will construct
a spline of form (1.1), (1.2), basing on the values zi given on the mesh yi, i = 1, . . . ,M , M > N . It is
clear that the system of interpolation equations and Eq. (1.2) is most likely to be disjoint, and only an

approximate solution that minimizes the weighted residual functional
M∑
i=1

(σ(yi)−zi)2

pi
can be obtained. In

terms of matrices, we need to deduce a pseudo-solution to the following system of equations:

D(Fλ + V μ) = Dz, (5.1)

where D = diag(p−1/2
1 , . . . , p

−1/2
M ) is the diagonal matrix of weighting coefficients, F is the M × N

matrix with the coefficients fij = g(yi, xj), and V is the M ×K matrix with the coefficients vik = uk(yi).
We will additionally require strict fulfillment of conditions (1.2), i.e., the vector λ is to satisfy the linear
constraints U�λ = 0. As a result, we arrive at the linear-equality-constraint least-squares problem.

Performing the substitution λ = H�ν, we get rid of the linear constraints and obtain the following
system of equations:

D(FH�ν + V μ) = Dz,

the solution of which is found by the usual method of least squares.
The spline regression method is useful when the number of points with measurements is too large for

construction of a smoothing spline on the entire mesh of measurements or if the mesh of measurements
is very uneven or the measurements are contradictory. This brings up the question how we should choose
the datum nodes of the spline.

One way is to thin out the measurement mesh. We choose some radius of thinning r0 > 0 and
require absence of other nodes from the measurement mesh in the r0 neighborhood of each node of
the thinned-out mesh. A decision on selection of the best node in the r0 neighborhood will be taken from
the measurement quality criterion calculated at each node. The quality criterion will be the probability of
the event that the measured value of the function in a node is a data outlier. The probability is evaluated
using the Grubbs statistical test [22].

Let ξi, i = 1, . . . , n, be a sample of n values of normally distributed random value, and ξ̃ be one of
the values in this sample. It is required to estimate the probability τ(ξ̃) of the event that this value is a
data outlier. We introduce Z = (ξ̃ − ξ̄)/s, where ξ̄ and s are the average value and standard deviation
obtained on this sampling, respectively. Then Z will be a data outlier with a significance level α > 0 in
one-sided Grubbs test if

Z2 >
(n − 1)2

n

t2α/n,n−2

n − 2 + t2α/n,n−2

,

where tα/n,n−2 is a solution to the equation tn−2(x) = 1 − α/n and tn−2(x) is the Student distribution
function with (n − 2) degrees of freedom. In this formula, it is the calculation of the significance level α
with respect to Z and n that is of interest to us.

With notation Y = Z2n
(n−1)2

, we obtain that
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1 − α

n
< tn−2

(√
Y (n − 2)

1 − Y

)
.

From this we deduce that the probability of data outlier is estimated as 1 − α, i.e., we set that

τ(ξ̃) = max

{
1 − n

(
1 − tn−2

(√
Y (n − 2)

1 − Y

))
, 0

}
.

In this formula it is assumed that n > 2 (for n = 2 we set that τ(ξ̃) = 0). It is easy to verify that Y = 1
in an extreme case, when other ξi except for ξ̃ are equal one to another. Then τ(ξ̃) = 1. Otherwise,
0 ≤ Y < 1 and τ(ξ̃) < 1.

Formally, the Grubbs test cannot be applied to estimating the probability of outlier in data obtained
on a mesh of nodes in R

d, but in this test, the exact value of the outlier probability is of no interest to us.
We want to compare the probabilities for different nodes in order to choose the best of them.

The Grubbs test can be applied to measurements the nodes of which are in the r1 neighborhood of
each node yi, and from this sample we calculate the probability of outlier in the node yi. We choose
a rather large estimation radius r1 > r0 and vary the radius r0, which allows us to thin out the mesh
with different levels of detailing. Experiments the author carried out to approximate the universal
characteristic of hydroturbine (unpublished so far) allowed us to conclude that the behavior of a spline
constructed by the spline regression method with a thinned-out mesh following this algorithm is rather
close to the behavior of a smoothing spline with a similar level of weighted quadratic deviation, the
smoothing results being still somewhat better than the spline-regression ones.

Note that a spline constructed by the spline regression method contains fewer coefficients than a
smoothing spline. Therefore, such a solution is more reliable and its predictive ability is higher than that
of a smoothing spline.5

6. SPLINE APPROXIMATION WITH EXTERNAL DRIFT
Let us extend the vector space of the trend P by supplementing it with some linearly independent

basis functions. We denote the extended vector space with Q. It is clear that if the function g(x, y) is
conditionally positively definite and symmetric with respect to P, then it is also conditionally positively
definite and symmetric with respect to Q. That is, g(x, y) will be a reproducing kernel of the space
Ng(Ω,Q), and all kinds of spline with the trend Q can be constructed. It is also obvious that Ng(Ω,P) =
Gg(Ω,P) + P and Ng(Ω,Q) = Gg(Ω,Q) + Q are in the following relation:

Gg(Ω,P) ⊃ Gg(Ω,Q), P ⊂ Q,

i.e., the spline part of the native space narrows as the trend is extended.
Usually P consists of polynomials of a certain degree, and quite arbitrary functions can be added in its

extension Q. For example, if it is possible to construct a rough estimate of function to approximate using
some methods, a rough estimation function or a set of such functions can be added to the basis of the
trend. Functions that describe a data gap can also be added, i.e., we get an opportunity to approximate
a function with discontinuities using RBF splines with a special extension of the trend. Such splines are
called splines with external drift by analogy with the dual Kriging method with external drift (see, for
instance, [24]).

5In the methods of machine learning they try to use approximation with a minimum number of variable coefficients. Of
course, increasing the complexity of the approximator (the number of variable coefficients), one can better approximate the
function values on a training sample, but this can be tied with “the overfitting” effect, when the approximation accuracy
on a test sample deteriorates much. Therefore, if two approximators give results of similar accuracy, it is preferable to
use the approximator of less complexity. On the other hand, if there are several fundamentally different approximators,
their combination can result in a more reliable approximator. Namely this approach was used by the team that won the
prize of the Netflix company [23]. Two dominating teams combined their algorithms and achieved the necessary prediction
accuracy.
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7. CONDITIONAL COMPLETE MONOTONICITY

In what follows we assume that the boundary of the domain Ω of the function to approximate is not
essential for the approximation, an thus we set that Ω = R

d. Let P d
n denote a vector space of multivariate

algebraic polynomials in R
d of degree n. We set that P d

−1 = {0}. At d = 1, we write simply Pn.

Provided that conditions (2.1) are satisfied and P = P d
m−1, m ∈ Z+, a function g(x, y) is called

conditionally positively definite of order m. From Section 6 it follows that conditional positive
definiteness will also hold for any integer n > m.

A function φ ∈ C[0,∞) is also called conditionally positively definite in R
d if its respective radial

basis function g(x, y) = φ(|x− y|) is conditionally positively definite in R
d. The symmetry of radial basis

function is obvious.
Let Rd

m denote the set of all functions φ ∈ C[0,∞) that are conditionally positively definite of order
m in R

d. It is clear that Rd1
m1

⊂ Rd
m at m1 ≤ m, d1 ≥ d. We introduce the following notation:

R∞
m =

∞⋂

d=1

Rd
m.

The nonemptiness of the set R∞
m will follow from the reasoning below.

Functions from R∞
m can be used for construction of splines with any number of variables using a

polynomial trend of the same degree m − 1. For example, with m = 2 the trend will consist of linear
functions, and the dimensionality of the space P d

1 depends linearly on d. Thus, using such splines we can
avoid “the curse of dimensionality” when the complexity of approximating function grows exponentially
with d.

The support of functions from R∞
m is nonlocal [3, Corollary 9.3], and the spline value by formula (1.1)

has to be calculated via summation over all datum nodes. With a finite d, in Rd
m there are functions with

local support, an effective algorithm for constructing which is described, for example, in [3].

A function f : R+ → R is called completely monotone6 of order m if f ∈ C∞(0,∞) and
(−1)kf (k) ≥ 0 for all k ≥ m. We denote the set of such functions by Mm, m ∈ Z+. The sets R∞

m and
Mm are closely tied:

• f ∈ Mm \ Pm and |f(0)| < ∞ =⇒ f(r2) ∈ R∞
m ;

• φ ∈ R∞
m =⇒ φ(

√
· ) ∈ Mm \ Pm.

Sufficient conditions for belonging to the set R∞
m , as well as necessary conditions at m = 0, were

obtained in [25]. Later the necessary conditions were proved for all m (see details in [3]).

If f ∈ Mm, then bf(a2(t + c2)) + pm−1(t) also belongs to Mm at a �= 0, b > 0, pm−1 ∈ Pm−1. This
results in the following generation rule for a function φ ∈ R∞

m :

f ∈ Mm \ Pm =⇒ φ(r) = bf(a2(r2 + c2)) + pm−1(r2) =⇒ φ ∈ R∞
m , (7.1)

and c �= 0 if the function f is unbounded at zero.
In approximation with RBF splines, the following functions are often used in the construction of

radial basis functions:

• multiquadric: φ(r) = (−1)�ν�+1(r2 + c2)ν , ν ∈ R+ \ Z+;

• inverse multiquadric: φ(r) = (r2 + c2)ν , ν < 0;

6We use the terms “completely monotone” and “complete monotonicity” as synonyms of the terms “completely continuous”
and “complete continuity”.
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• polyharmonic RBF [26, 27]: φ(r) = (−1)n+1r2n ln r, n ∈ N;

• power RBF [26, 27]: φ(r) = (−1)�ν�+1r2ν , ν ∈ R+ \ Z+;

• RBF of DMM spline [28, 29]: φ(r) = (−1)n+1(r2 + c2)n ln(r2 + c2), n ∈ Z+.

All these RBFs are generated with the help of the following family of conditionally completely
monotonic functions:

fν(t) =

⎧
⎪⎨

⎪⎩

Γ(−ν)tν , ν ∈ R \ Z+,

(−1)ν+1tν ln t, ν ∈ Z+,

fν ∈ M(�ν�+1)+ . (7.2)

Here and below Γ(a) is a gamma function. Recall that (k)+ = max(k, 0). At ν ≤ 0 the function fν is
unbounded at zero, and, thus, the Hardy parameter c in the generation of RBF must be non-nil in this
case.

8. COMBINING RADIAL BASIS FUNCTIONS

Let φi ∈ Rdi
mi

, i = 1, . . . , n, and φ =
n∑

i=1
aiφi at ai > 0. Then φ ∈ Rd

m, where m = maxi mi, d =

mini di. Some linear combinations of the RBFs with nonpositive coefficients also lead to conditionally
positively definite RBFs. For example, radial basis functions of tension splines and regularized splines
[30, 31] can be obtained via subtraction of several RBFs.

A proof of conditional positive definiteness of radial basis functions of certain tension splines and
regularized splines from [30] was presented in [32] and generalized in [33]; the algorithm for obtaining
radial basis functions of completely regularized splines from [33] was generalized in [34].

The results of the generalization are given below in accordance with [34] and are stated in terms of
generators of conditionally completely continuous functions.

Kernels of Sobolev’s Spaces and Their Generalization

Let us consider a family of functions

hν(t) = tν/2Kν(
√

t), ν ∈ R, t ∈ (0,∞).

Here Kν(x) is a modified Bessel function of the second kind of order ν [35]. The function hν generates a
reproducing kernel of Sobolev’s space Hk(Rd) at ν = k − d/2, which is known as the Whittle–Matérn
RBF [36].

Here the generalization consists in extending the representation hν to any ν, including negative ones.
The functions hν belong to M0 for all ν ∈ R and are bounded at zero when ν > 0.

Generalization of Tension Splines and Regularized Splines

Let us consider an auxiliary family of functions

h̃ν(t) =

⎧
⎪⎪⎨

⎪⎪⎩

Γ(−ν)tν

2ν+1
, ν ∈ R \ Z+,

(−1)ν+1 tν [ln(t/4) − ψ(1) − ψ(ν + 1)]
ν! 2ν+1

, ν ∈ Z+,

where ψ(n) = −γ +
n−1∑
k=1

k−1 is the logarithmic derivative of the gamma function, and γ is the Euler

constant. Comparing h̃ν with fν from (7.2), we can note easily that they differ by a positive factor, and
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when ν ∈ Z+, a constant is also added, which does not affect the properties of the conditional complete
monotonicity. It is clear that h̃ν ∈ M(�ν�+1)+ and h̃ν are bounded at zero when ν > 0.

We define a two-parameter family of functions hν,n, ν ∈ R, n ∈ Z+, by the following formulas:

hν,0(t) = h̃ν(t) − hν(t);

hν,n(t) =
h̃ν+n(t)
n! 2n

− hν,n−1(t), n = 1, 2, . . . .

The functions hν,n belong to M(�ν�+n+1)+ and are bounded at zero when ν + n + 1 > 0. The functions
h1−d/2,0 with d = 1, 2 generate a radial basis of the tension spline, and the functions h1−d/2,1 with
d = 2, 3 generate a radial basis of the regularized spline in R

d that were suggested in [30].

Exponential Integral Kernels and Their Generalization

Let us consider a family of functions

gν(t) = tνΓ(−ν, t), ν ∈ R.

Here Γ(a, t) =
∞∫
t

e−xxa−1 dx is an incomplete gamma function. With ν ∈ Z we obtain the following

known exponential integral functions [35, Sections 5.1.45, 5.1.46]:

gn(t) =

⎧
⎨

⎩
α−n−1(t), n < −1,

En+1(t), n > −1,
g−1(t) = α0(t) = E0(t) =

e−t

t
.

Again, the generalization here consists in extending this representation to arbitrary ν ∈ R. In
common with hν , the functions gν belong to M0 for all ν ∈ R and are bounded at zero with ν > 0.

Generalization of Completely Regularized Splines

Let us consider an auxiliary family of functions

g̃ν(t) =

⎧
⎪⎨

⎪⎩

Γ(−ν)tν , ν ∈ R \ Z+,

(−1)ν+1 tν [ln t − ψ(ν + 1)]
ν!

, ν ∈ Z+,

which is similar to the family fν , and set that

gν,0(t) = g̃ν(t) − gν(t);
gν,n(t) = gν+1,n−1(t) − gν,n−1(t), n = 1, 2, . . . .

The functions gν,n belong to M(�ν�+n+1)+ and are bounded at zero at any ν ∈ R and n ∈ Z+. The
functions g1−d/2,0 generate a radial basis of the completely regularized spline in R

d with d = 2, 3
suggested in [31].
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9. COMPARISON OF RADIAL BASIS FUNCTIONS

When one is choosing a suitable radial basis function and a basis of the trend of an RBF spline,
requirements to the smoothness of the solution play an essential role, and besides that, it is important
to know the properties of the variational functional ‖f‖2

G minimized by the RBF spline. The table shows
the form of variational functional for some known RBF splines with application of the following notation:

‖Dkf‖2
Y =

∑

|α|=k

k!
α!

‖Dαf‖2
Y , k ∈ Z+.

For example, a thin plate spline [37] that minimizes the norm of the second derivative in L2(R2) is
obtained using the function f1(r2) (m = d = 2). A cubic spline in R

1 is matched by the function f3/2(r2)
(m = 2, d = 1). The Whittle–Matérn spline that minimizes a norm in Sobolev’s space is obtained
using the function hν . Tension splines and regularized splines are obtained using the function hν,n and
minimize the weighted sum of the norms of two neighboring derivatives, and the contribution of each of
the derivatives can be regulated via the control parameter. There is a special case of the completely
regularized spline generated by the function gν,0. Its native space consists of infinitely differentiable
functions. Using a nonzero Hardy parameter c in formula (7.1) also generates a native space of infinitely
differentiable functions.

The rate of convergence of splines when the mesh of nodes is condensed is determined by the order of
smoothness of the radial basis function at zero. We define a linear operator Tν , which relates the function
f to the remainder term of its expansion at zero into a Taylor series of degree less than ν:

Tνf(t) = f(t) −
∑

k∈Z+, k<ν

f (k)(0)
k!

tk.

Note that Tνf = f at ν ≤ 0.

We use the notation u ≈ v if lim
t→0

u(t)
v(t) = C �= 0 and u ∼ v if C = 1 in this formula. According to [33],

Tνhν ∼ h̃ν , Tν+n+1hν,n ∼ h̃ν+n+1

(n + 1)! 2n+1
, Tνgν ∼ g̃ν .

Since fν ≈ h̃ν ≈ g̃ν , the functions hν(r2), gν(r2), fν(r2), and hν−n−1,n(r2) generate splines with close
convergence properties. Their differences show in the minimum required order m of the polynomial trend:

• m = 0 for hν and gν ,

• m = (�ν� + 1)+ for fν ,

Table

Functional φ(r) Restrictions Spline

‖Dmf‖2
L2

fm−d/2(r2) m − d/2 > 0 Spline in Lm
2 (Rd)

‖Dmf‖2
H̃s

fm+s−d/2(r2) m > m+s−d/2 > 0 Spline in D−mH̃s(Rd) [37]

‖f‖2
L2

+ ‖Dmf‖2
L2

hm−d/2(r2) m − d/2 > 0 Spline in Hm(Rd)

ϕ2‖D1f‖2
L2

+ ‖D2f‖2
L2

h1−d/2,0((ϕr)2) 2 − d/2 > 0 Tension spline [37]

‖D2f‖2
L2

+ τ2‖D3f‖2
L2

h1−d/2,1((r/τ)2) 3 − d/2 > 0 Regularized spline [30]
∞∑

k=1

‖Dkf‖2
L2

ϕ2k(k−1)!
g1−d/2,0((ϕr/2)2) — Completely regularized spline [31]
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• m = (�ν�)+ for hν−n−1,n,

as well as the behavior at infinity: hν(r2) ≈ rν−1/2e−r, and gν(r2) ≈ e−r2
/r2, while the other

functions do not decrease exponentially.

10. PREPARATION OF DATA FOR APPROXIMATION WITH RBF SPLINES
In conclusion, we present recommendations on preparation of data for approximation with RBF

splines. When preparing data, it is important to take into account the type of measurement error for
the function to approximate: the values can be measured with absolute error z ± ε or relative error
z(1 ± ε).

Virtually all approximation methods minimize the norm of the approximation absolute error vector,
and, thus, if the approximate values were measured with a relative error, then it is necessary to
set appropriately the weights in functional (2.6). We can also apply calibration of the function to
approximate, which converts the relative error into the absolute one, for example z �→ z̃ = ln z. After
constructing the spline from the calibrated values, we calculated the values of the original function using
a reverse transformation, for example z̃ �→ z = exp z̃.

If the values the function to approximate must lie in a certain range, then it is desirable to use a
calibration that eliminates the restrictions. For example, a physical process efficiency varying in the
range of [0, 100] can be subjected to the calibration z �→ z̃ = tg π(z/100 − 0.5).

Independent variables measured with relative error also have to be converted into a form with
absolute measurement error. For example, a dependence of the form S = aP b with the parameters
a and b unknown, in which S and P are given with relative error, can be converted to the form
ln S = ln a + b ln P , in which the variables ln P and ln S are measured with absolute error.

Usually, then an affine transformation of the coordinate system is performed with the aim of bringing
the independent variables to a common scale and placing the origin within “the cloud” of the points of
the mesh. The need to reduce the variables to a common scale is due to the fact that “the influence” of
the basis function of RBF spline propagates radially, and the shift of the origin into the cloud of the points
of the mesh can significantly affect the accuracy of calculating the basis functions of the spline trend. Of
course, the scaling is required only if the independent variables are of different nature.

Usually, geometric or statistical scaling is applied. When geometric scaling is used, a parallelepiped
surrounding the set of the mesh nodes is converted into a cube with the center at the origin. With
statistical scaling, independent variables are transformed so that the average value of each coordinate of
the nodes of the transformed mesh equals to zero, and the standard deviation is equal to unity. Due this
scaling, one can consciously choose parameters of radial basis function. For example, a Hardy parameter
c = 0.01 will mean 1% of the root-mean-square spread of mesh coordinates in the case of statistical
scaling.

If the number of mesh nodes is rather large, then in experiments it would be useful to break them into
two parts: a learning sample and a test one. In this case, experiments on approximation of function are
carried out on the learning sample, and the test sample is used in analysis of the quality of approximation
(the cross-check method). For example, this approach may be useful for scaling a mesh: experimenting
with different scaling parameters, we choose them such that the deviation of the interpolating spline
constructed on the learning sample is minimal on the test sample.

In problems relating to statistical or medical information, the number of independent variables can
be very large and approximation with RBF splines constructed in consideration of all variables has
practically zero predictive potential, i.e., it approximates data only in a small neighborhood of the mesh
nodes, whereas outside the nodes the accuracy of the approximation tends to zero. In such problems,
they try to construct a simplest approximation, for example, using linear regression.

To reduce the complexity of RBF splines, one should first reduce the number of independent variables,
for example, via discarding variables that are in weak correlation with the target attribute. Correlation
analysis of independent variables, in which only one of several strongly correlated variables is left and the
rest are discarded, could also be of use. Finally, the principal component method [38] can be applied to
reducing the coordinate system of the transformed mesh to the main directions and, secondary directions
discarded, decreasing the dimensionality of the space of independent variables. After the reduction in the
number of independent variables, it makes sense to use spline regression with selection of datum nodes
of spline, for example, using the algorithm described in Section 5.
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