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Abstract—The study of Painlevé equations has increased during the last years, due to the awareness
that these equations and their solutions can accomplish good results both in the field of pure
mathematics and in theoretical physics. In this paper we introduced the optimal homotopy asymp-
totic method (OHAM) approach to propose analytic approximate solutions to the second Painlevé
equation. The advantage of this method is that it provides a simple algebraic expression that can be
used for further developments while maintaining good performance and fitting closely the numerical
solution.
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1. INTRODUCTION

Painlevé equations [1, 2] were found by Painlevé and his colleagues from the consideration of problems
for a class of nonlinear second-order differential equations. The main idea consisted in studying the
singularities of the solutions to obtain a possible classification of them. Another important idea was the
development and definition of new functions.

The study of Painlevé equations has seen a pronounced increase during the last years due to the
awareness that these equations and their solutions can accomplish good results both in the field of
pure mathematics and in theoretical physics. In general, it has been found that some of them appear
naturally from reductions of soliton-type ordinary differential equations (ODEs) [3] from nonlinear partial
differential equations (PDEs).

The first three of six Painlevé equations [4–7] are:

PI → w(z) : w′′ = 6w2 + z, (1)

PII → w(z, α) : w′′ = 2w3 + zw + α, (2)

PIII → w(z, α, β, γ, δ) : w′′ = w−1w′2 − z−1w′ + (αw2 + β)z−1 + γw3 + δw−1, (3)

where w = w(z), α, β, γ, and δ are constants.
Painlevé equations have connections from various fields of theoretical physics. Particularly, PI arises

from a solution in terms of the traveled wave z = x − ct, u(x, t) = y(z) in the Boussinesq equation
utt = uxx − 6(u2)xx + uxxxx, where c is an arbitrary constant and y(z) satisfies y′′ = 6y2 + (c2 − 1)y +
Az + B, for some values of the constants of integration A and B. PII can be obtained from the
Korteweg–de Vries (KdV) equation [8, 9] ft − 6ffx + fxxx = 0, making the scaling reduction z =
x(3t)−1/3 and f(x, t) = (3t)−2/3(w′ + w2); and the modified Korteweg–de Vries (MKdV) equation
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gt − 6g2gx + gxxx = 0, for a scaling reduction z = x(3t)−1/3 and g(x, t) = (3t)−1/3w, with α as an
integration constant, respectively. Finally, the third Painlevé equation arises from sine-Gordon equation
uxt = sin u, with the scaling reduction z = xt, u(x, t) = v(z), and then w(z) = exp(−iv) satisfies PIII

with α = −β = 1/2 and γ = δ = 0. Moreover, PII appears in statistical physics in the well-known
Tracy–Widom distribution [10] for the probability distribution of the normalized largest eigenvalue of
a random Hermitian matrix, in electrostatic theory [11, 12], and as a solution of a radiating particle in
Landau–Lifshitz theory [13].

Except PI, a Bäcklund transformation relates a Painlevé transcendent of one type either to another of
same type but with different parameter values, or to another type. This transformation looks like1 [4, 14]:

−w(z, α ± 1) = w(z, α) +
2α ± 1

2w(z, α)2 ± 2w′(z, α) + z
. (4)

Here it is obvious that α �= ±1
2 for the validity of (4), for α = ±1

2 the solutions for different values of
α coincide, which is not generally true, so the last equation provides a recursive relationship to obtain
several solutions from a first one.

For Eq. (2), there are many known solutions. An example of this is a variety of rational type solutions
[15]. Rational solutions of (2) exist for α = n(∈ Z) and are generated using the seed solution w(z, 0) = 0
and the Bäcklund transformations (4). The task of finding this is much simpler by considering the
solution of (2) for α = 0 and then using the recurrence relation in (4) to find all the others. In addition
to the property of symmetry with respect to α, it is only necessary to consider the case for α > 0, thus
starting with the seed solution w(z, 0) = 0, then the first three solutions are

w(z, 1) = −1
z
, w(z, 2) =

4 − 2z3

z(4 + z3)
, w(z, 3) =

3z2(160 + 8z3 + z6)
320 − 24z6 − z9

. (5)

In this case all subsequent solutions are of the order w(z, n) ∼ O(z−1).

Other solutions have been explored with a variety of methods given solutions in terms of special
functions and asymptotic approximations for real variable (see [16] and references therein). In [17] the
author used the method of analytic continuation to find numerical solutions for problem (2). Recently,
Dehghan and Shakeri solved problem (2) by means of the Adomian decomposition method (ADM),
homotopy perturbation method (HPM), and Legendre tau method (LTM) [18]. Likewise, very recently,
the authors of [19] solved this problem using the homotopy analysis method (HAM). Also, the solution
of the second Painlevé equation is presented by means of two known techniques in reference [20],
sinc-collocation method and variational iteration method (VIM). The application of the perturbation
method has limitations relative to the choice of a small parameter to be used, so that in some cases
its development for some applications may not be convenient and not directly applicable. This can
be corrected with HPM or HAM, however, a small parameter should be considered. The substantial
difference with the optimal homotopy asymptotic method (OHAM) [21–25] is that this difficulty is solved
from the principle without the need of incorporating any parameter, resulting in a powerful method to
solve nonlinear problems. This paper is devoted to studying a class of algebraic-like solutions of PII, for
the equation written as

u(t, μ) : u′′ = 2u3 + tu + μ, u(0) = 1, u′(0) = 0. (6)

In this study, second Painlevé equation (6) is solved with OHAM. For the numerical solution, it is
compared with the fourth-order Runge–Kutta method and also other solving methods. This method
has been used to solve the first Painlevé equation obtaining very good approximations to the numerical
solution [26].

1See: http://dlmf.nist.gov/32.7.
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2. BASIC IDEAS OF OHAM

Consider the following general differential equation:

L[u(t)] + g(t) + N [u(t)] = 0, (7)

that satisfies the initial/boundary conditions

B

[
u(t),

du(t)
dt

]
= B

[
u(t), u′(t)

]
= 0, (8)

where t denotes the independent variable, u(t) is a function to solve, g(t) is a given function, L, N , and
B are linear, nonlinear and boundary operators, respectively.

Applying OHAM to the given problem, a general deformation (homotopy) equation is presented as:

(1 − ε) (L [H(t, ε)] + g(t)) = h(ε) [L [H(t, ε)] + g(t) + N [H(t, ε)]] , (9)

and

B

[
H(t, ε),

∂H(t, ε)
∂t

]
= 0, (10)

where ε ∈ [0, 1] is an embedding parameter, h(ε) is a nonzero auxiliary function for ε �= 0 and h(0) = 0,
H(t, ε) is an unknown function. Clearly, when ε = 0 and ε = 1, it holds H(t, 0) = u0(t) and H(t, 1) =
u(t), respectively.

Thus, as ε changes from 0 to 1, the solution H(t, ε) changes from u0(t) to the solution u(t), where
u0(t) is obtained from Eq. (9) for ε = 0:

L [u0(t)] + g(t) = 0, B
[
u0(t), u′

0(t)
]

= 0. (11)

Now, we propose the auxiliary function h(ε) to be of the form:

h(ε) = εK1 + ε2K2 + ε3K3 + · · · + εmKm =
m∑

i=1

εiKi, (12)

where Ki are constants. For actual applications Ki, are finite, say, i = 1, 2, 3, . . . ,m.
Expanding H(t, ε) into a Taylor’s series about ε, we obtain:

H(t, ε) = u0(t) +
∞∑
i=1

un(t,Ki)εn. (13)

Substituting (13) into (9), and equating the coefficient of like powers of ε, we obtain that the zero-
order problem is given by (11), while the first- and second-order problems are given by

L [u1(t)] = K1N0 [u0(t)] , B
[
u1(t), u′

1(t)
]

= 0, (14)

L [u2(t)] − (1 + K1)L [u1(t)] = K2N0 [u0(t)] + K1N1 [u0(t), u0(t)] , B
[
u2(t), u′

2(t)
]

= 0. (15)

It is then possible to write

L [un(t)]−L [un−1(t)] = KnN0 [u0(t)] +
n−1∑
i=1

Ki [L [un−i(t)] + Nn−i [u0(t), u1(t), . . . , un−1(t)]] , (16)
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B
[
un(t), u′

n(t)
]

= 0. (17)

In the last equation Nm [u0(t), u1(t), . . . , un−1(t)] is the coefficient of εm in the expansion of N [H(t, ε)]:

N [H(t, ε,Ki)] = N0 [u0(t)] +
∞∑

m=1

Nm[u0(t), u1(t), . . . , um(t)]εm. (18)

Here, convergence of series (13) depends upon the constants Ki, i = 1, 2, 3, . . . .
When ε = 1, Eq. (13) can be written as

ū(t,Km) = u0(t) +
n∑

i=1

ūi(t,Km), (19)

and the sum converges, because in practical applications n is finite in order to find an approximate
solution. Substituting (19) into (9), we obtain the residual:

R(t,Km) = L[ū(t,Km)] + g(t) + N [ū(t,Km)]. (20)

If R = 0, then ū yields the exact solution. However, this does not happen in general, especially when
dealing with nonlinear problems.

In order to determine Ki, there are various methods like the Ritz method, Galerin’s method, and
collocation method, or the method of least squares,

J(t,Km) =

b∫
a

R2(t,Km)dt, (21)

with the residual R = L[ū] + g(t) + N [ū], and

∂J(t,Km)
∂Ki

= 0, (22)

with a and b properly chosen to locate the desired Ki. Knowing these constants, the approximate solution
(of order m) is well defined.

3. APPROXIMATE SOLUTION OF THE SECOND PAINLEVÉ
EQUATION USING OHAM

Here we develop a solution for Eq. (6) using OHAM. First we note that in this case we can make the
identification

L[A] :=
d2

dt2
A, g(t) := 0, N [A] := −2A3 − tA − μ. (23)

The zero order of approximation is given by

u′′
0(t) = 0, u0(0) = 1, u′

0(0) = 1, (24)

with solution u0(t) = 1. For the first-order problem, we obtain

u′′
1(t) + K1[(μ + 2) + t] = 0, u1(0) = 0, u′

1(0) = 0, (25)

with solution u1(t) = −K1
6 t2[3(μ + 2) + t].
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Fig. 1. A plot of the third-order approximation of u(t, 1) (left) and u′(t, 1) (right) obtained by OAHM for μ = 1,
compared with numerical solution.

Fig. 2. A plot of relative error for u(t, 1) and u′(t, 1) with respect to numerical solution μ = 1 (left). Residual estimation
for the approximate solution with OHAM for Eq. (26) (right).

For the second order of approximation, we can see that u2(t) is a higher-order polynomial function.

Actually, u2(t) is of the form u2(t) = Q2(t) =
11∑

n=2
bntn, with the coefficients bn expressed in terms of K1

and K2, provided by (14) and (15). Higher orders of approximation are given by functions with a higher
order of powers in t.

Using this method, after a convenient redefinition of the unknown coefficients Ki for the third order
of approximation, solutions of the problem (6) are calculated for the case μ=1, and the numerical results
are reported in Tables 1 and 2, and in Figs. 1 and 2. These results are then compared with the results
given in [20] obtained by the sinc collocation and variational iteration method (VIM):

u(t, μ = 1) = 1 + a1t
2 + a2t

6 + a3t
10 + a4t

14 + a5t
20 + a6t

28 + a7t
30, (26)

with parameters a1 = 1.697070917, a2 = 2.609390039, a3 = −1.256388359, a4 = 2.426875319, a5 =
−0.4717678848, a6 = −0.1347675836, and a7 = 0.4351224665.

Figure 1 presents the approximate solution (left) and first derivative (right) of approximate solution
with OHAM method in comparison with numerical solution for u(0) = 1, u′(0) = 0. Our solution is in
good according with these. Figure 2 shows the relative error with respect to the numerical solution (left),
and in the right side we shown an estimation of residual solution due to (20), we can see that this residual
solution of OHAM solution does not exceed 6.5 × 10−2 for 0.05 < t < 0.95. For large t > 0.5 the mean
value of this residual is equal to 8.9 × 10−3 in concordance with Tables 1 and 2.

4. CONCLUSIONS

In this paper we introduced the OHAM approach to propose analytic approximate solutions to the
second Painlevé equation. The procedure is valid even if the nonlinear equation does not contain small
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Table 1. Comparison of the values of u(t, μ) and u′(t, μ) by different methods at μ = 1

t Approximation First derivative

Sinc-collocation VIM OAHM Sinc-collocation VIM OAHM

0.05 1.003775662 1.003775569 1.00424272 0.151646889 0.151630056 0.16971198

0.10 1.015243802 1.015243537 1.01697332 0.308080645 0.308099940 0.33957073

0.15 1.034708564 1.034708876 1.03821381 0.471990948 0.471982114 0.51030970

0.20 1.062615730 1.062614651 1.06804971 0.646296100 0.646258916 0.68383199

0.25 1.099569958 1.099567603 1.1067028 0.834541894 0.834535606 0.86377743

0.30 1.146377520 1.146376034 1.15463133 1.041286365 1.041324413 1.05604558

0.35 1.204103691 1.204104479 1.21265429 1.272396475 1.272440758 1.26922961

0.40 1.274150163 1.274152278 1.28209418 1.535574210 1.535576514 1.51491186

0.45 1.358366629 1.358367333 1.36493065 1.841214574 1.841156613 1.80781229

0.50 1.459216534 1.459213319 1.46396018 2.203597241 2.203659640 2.16592221

0.55 1.580028132 1.580020743 1.58297065 2.643787352 2.643721101 2.61108408

0.60 1.725383228 1.725374098 1.7269769 3.191606484 3.191604952 3.17110846

0.65 1.901736804 1.901728548 1.90264234 3.893152468 3.893170320 3.88556235

0.70 2.118441811 2.118431139 2.11915382 4.820785615 4.820621693 4.81887202

0.75 2.389524420 2.389493077 2.39004689 6.093740305 6.092992360 6.08637240

0.80 2.736942571 2.736846427 2.73683163 7.919898095 7.917916630 7.90224947

0.85 3.197020966 3.196770263 3.19593384 10.68888596 10.68432635 10.66978262

0.90 3.834408328 3.833780746 3.83251635 15.20368342 15.19170680 15.18928243

0.95 4.776251311 4.774527172 4.77324886 23.34167691 23.30560345 23.30622457

Table 2. Relative error for u(t, μ) and u′(t, μ) with respect to numerical solution at μ = 1 for 0.5 ≤ t ≤ 0.95

t Our method Numerical solution Error, % Our method Numerical solution Error, %

0.50 1.46396018 1.45921345 0.32529381 2.16592221 2.16592221 −0.01712666

0.55 1.58297065 1.58002119 0.18667166 2.61108406 2.61108408 −0.01234942

0.60 1.7269769 1.72537551 0.09281355 3.17110751 3.17110846 −0.00643236

0.65 1.90264234 1.90173279 0.04782699 3.88554687 3.88556235 −0.00197782

0.70 2.11915382 2.11844343 0.03353355 4.81869967 4.81887202 −0.00041477

0.75 2.39004689 2.38952654 0.02177633 6.08486153 6.08637240 −0.00119519

0.80 2.73683163 2.73693549 −0.00379485 7.89117363 7.90224947 −0.00219606

0.85 3.19593384 3.19700418 −0.0334794 10.59948225 10.66978262 −0.00178345

0.90 3.83251635 3.83440022 −0.04913079 14.79386518 15.18928243 −0.00096346

0.95 4.77324886 4.77622801 −0.06237453 21.30160718 23.30622457 −0.00149028
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(or large) parameters. The proposed construction of homotopy is different from other approaches in
the presence of parameters an, which ensure a very rapid convergence of the solutions. In the range
0.05 ≤ t ≤ 0.95, the approximate solution is very close to the value of the numerical solution, with errors
beginning to grow (smoothly) in the lower range of the variable t. The average error is 2.53 × 10−3

and the maximum error does not exceed 7.20 × 10−3. Moreover, the derivative for the approximate
solution is quite close to the value of the numerical derivatives, i.e., u′(t = 1) = 40.307 compared with
u′

Num(t = 1) = 40.378. In this case the error in x = 1 does not exceed 1.7%.
The advantage of the method we have just shown resides in the fact that it provides a simple

algebraic expression that can be used for further developments. This allows one to treat the problem
as an analytical system and use its solution in a variety of concrete applications, while maintaining good
performance and fitting closely the numerical solution.
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