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Abstract—In this paper, some peculiarities of parallel implementation of a discrete stochastic
model simulating water permeation through a porous substance (soil) with complex morphology are
studied. The model simulates fluid flow along pore curves and filling wets and cavities. The discrete
stochastic model of the process, which was proposed earlier, is a stochastic cellular automaton
(SCA) whose functioning is represented by a set of elementary local operators acting in the cellular
space and imitating displacements (by diffusion, convection, adsorption) and transformations (by
reactions, phase transitions) of abstract or real particles. The microlevel representation of the
process requires a cellular space of huge size. Hence, the computations have to be implemented
on supercomputers. The main problem is that obtaining an acceptable parallelization efficiency
is possible only by introducing some determinism into the computation algorithm, that is, by
decreasing the model stochasticity. Although stochastic models have been intensively investigated,
parallel implementation methods for them have been poorly studied. This gap is partially filled by the
results of computational experiments presented in this paper. These allow assessing the advantages
and shortcomings of various methods of implementation on a multicore cluster of the discrete
stochastic model of water permeation through a porous medium.
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1. INTRODUCTION

Mathematical models of spatially distributed natural processes based on partial differential equa-
tions imply that the space-time functions describing the process being simulated are continuous and
differentiable. There is a growing interest in science and in the industry in the development of new
materials and technologies. For this it is necessary to simulate phenomena that are mostly nonlinear
and discontinuous, for instance, chemical reactions, formation of crystals, electric discharges in gases,
growth and division of cells in living organisms, etc. These are processes of the “reaction-diffusion” type
(RD-processes) [1–3]. Such processes may be dissipative, contain phase transitions, and take place in
spaces with complex discontinuous geometry. To simulate such processes, attempts have been made
to study the capabilities of event-stochastic methods of simulation. This approach has been used for
several decades, with methods of different names in different scientific fields. The first method was that of
simulating the reaction of chemical oxidation of carbon monoxide (the ZGB-reaction [4]). This method
initiated the development of a direction of research called by chemists the “kinetic Monte Carlo method”
(KMC-method) [5–8]. A similar method, called the “method of probabilistic cellular automata,” is used
in material science to simulate the destruction of materials [9–11]. The term “asynchronous cellular
automaton” [12, 13] or “stochastic cellular automaton” [14] is most often used in the simulation of
biological self-organization phenomena [12] and the formation of spatial and surface structures. These
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A DISCRETE STOCHASTIC MODEL OF WATER PERMEATION 5

names exactly correspond to the standard classification of mathematical models of space dynamics. They
also comply with a modern method of representing models in the form of rules (rule based models),
which has been implemented in a programming language called “Wolfram language” [15] and used in
the popular programming system Mathematica [16].

In discrete stochastic methods, the mathematical description of RD-processes is usually made using
a set of elementary local operators (transition rules) acting on abstract or real particles capable of moving
(by diffusion, convection) in a discrete space and undergoing various transformations in discrete time (by
reactions, phase transitions). The local operators have the form of probabilistic substitutions reflecting
the local changes in the state of the simulation space under certain conditions. The simulation space
is an ordered set of cells. A cell is characterized by its space coordinates and state. The cell states may
be integer numbers or symbols reflecting the presence of particles of a certain type at a given time.
The actions of substitutions on the cells are stochastic: at any discrete moment of time, a randomly
chosen substitution (time stochasticity) is applied to a randomly chosen cell (space stochasticity or
asynchronism) [13, 14].

Although stochastic models have been widely used, very few methods of their parallel implementation
on supercomputers have been developed. However, a simulation of real processes is reasonable at
such sizes of cellular spaces only if it is performed on modern computer systems with parallel archi-
tectures. The parallel implementation of SCA-models is not trivial at all. The problem is that their
space stochasticity calls for very fast transfer of every change in a boundary cell to a neighboring
processor. Therefore, the domain decomposition method cannot be efficiently used when implementing
the models on supercomputer clusters. First attempts to construct acceptable parallel implementation
algorithms [17, 18] led to cumbersome and impractical implementations. A method of transition from an
asynchronous mode to a block-synchronous one [19] turned out to be more efficient and convenient for
the simulation of complex stochastic processes [14]. It has been successfully used in some investigations
[20, 21]. However, this method is heuristic and needs additional justification, which can be obtained in
experimental studies of the following features of a stochastic model [13]:

1. Acceptable efficiency of parallel implementation can be achieved only by introducing synchro-
nization, that is, by decreasing the stochasticity of the model.

2. Introduction of synchronization into the calculation process must be coordinated in all processors
participating in the parallel implementation.

3. Interrelation between the calculation time and interprocessor exchanges makes deep paralleling
inefficient because of simplicity of local CA operators.

These features impose some constraints on the choice of parameters of the parallel algorithm for
implementation of the model on supercomputers. In this paper, an attempt is made to qualitatively
estimate the above constraints and verify the estimates obtained by computational experiments. As a
representative example we take a stochastic CA model of a convection-reaction process of permeation
of a liquid through a porous material with a complex intricate structure of the pores.

This paper consists of four sections. Section 2 provides a formal presentation of a stochastic CA
model of an RD-process. Section 3 is devoted to an SCA model of permeation of a liquid into the soil
and problems of its parallel implementation. The results are analyzed in the conclusions.

2. A STOCHASTIC DISCRETE MODEL OF A REACTION-DIFFUSION PROCESS

2.1. Formal Presentation of a Stochastic Cellular Automaton

The mathematical presentation of the discrete stochastic model of space dynamics (in what follows,
the model) is based on the formalism of a parallel substitution algorithm [22], which was adapted in
[23] to a description of CAs simulating natural processes. According to [22], the model is specified by
the following three concepts:

ℵ = 〈X,A,Θ(X)〉,
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6 BANDMAN

where
X = {xk | k = 1, . . . , N} is a finite set of cell names;
A, alphabet of cell states, is a finite set of symbols;
Θ(X) : A × X → A × X is a global operator of transition.
The time is assumed to be uniformly discrete: t = 0, 1, . . . , t, . . . , T . At each time t the model

is characterized by a cellular array Ω(t) ∈ A×X, Ω(t) = {(uk,xk) : uk ∈ A,xk ∈ X}, which is an
ordered (by names) set of pairs of the form (uk,xk), called cells, and the projection of the cellular array
ΩA(t) = (u1, u2, . . . , u|X|) onto the alphabet of states is called a global state of the CA. On the set X,
we define a neighborhood of a cell with name x:

T (x) = {x,x + a1, . . . ,x + aq−1}, (1)

where aj is a vector of displacement of x in the coordinate j and q is the size of the neighborhood. The
subset of cells with names from T (x) form a local configuration

S(x) =
{
(u0,x), (u1,x + a1), . . . , (uq−1,x + aq−1)

}
(2)

with the defining neighborhood T (x).
The global operator Θ(X) is a composition of a certain number of local operators θj(x), j =

1, . . . , n, from a finite set Θ =
{
θ1(x), . . . , θn(x)

}
. The local operator θj(x) has the form of a substi-

tution:

θj(x) : Sj(x) → S′
j(x). (3)

Applying θj(x) to a specific cell with name x is reduced to replacing the states ui in the cells from Sj(x)
(2) with the new values u′

i in the cells from S′
j(x) (3), and

u′
i = fk(u0, . . . , uq−1), q = |Sj(x)|, k = 0, . . . , |S′

j(x)|, |S′
j(x)| ≤ |Sj(x)|, (4)

where fk(u0, . . . , uq−1) is a transition function.
Assume that the application of the substitution θj(x) to one cell x ∈ X takes place in one time

step denoted by τ , and the execution of Θ(X) consists of applying all θj ∈ Θ to all cells x ∈ X, which
constitutes a global transition Ω(t + 1) = Θ(Ω(t)) called an iteration. Thus, each iteration contains
|X| |Θ| = Nn steps, that is, applications of the substitutions θj(x), j = 1, . . . , |Θ|, x ∈ |X|, and the
result of the simulation is an iterative process

Ω∗ = Ω(0), . . . ,Ω(t), . . . ,Ω(Tfin), (5)

called evolution.
The calculation of the global operator Θ(X) must satisfy a correctness condition. According to

this condition, there must be no contradictions when passing from one global state to another. In other
words, a cell must not simultaneously be subject to two attempts to change its state. Formally this
condition means that

∀x,y ∈ X & ∀ k,m ∈ {1, . . . , n} : T ′
k(x) ∩ T ′

m(y) = ∅, n = |Θ(x)|. (6)

It is possible that m = k.
Evolution essentially depends on the method (stochastic or deterministic) of choosing cells and

substitutions in the calculation of Θ(X) at each iteration. A quantitative characteristic that greatly
affects the behavior of the model is its stochasticity (λ), which is defined as the fraction of elementary
probabilistic operations in the calculation of the global operator [26]:
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λ = Erand/E, (7)

where E and Erand are the total number of elementary operations and the number of elementary
probabilistic operations in the calculation of Θ(X), respectively. An operation is considered to be
probabilistic if its application is defined as a random number.

The method of choosing cell names x ∈ X determines spatial stochasticity, whereas that of choos-
ing substitutions determines operational stochasticity. Both of them determine model stochasticity.

2.2. Operation Regimes

There are three main types of spatial stochasticity of SCAs. In [27] they are determined by SCA
operation regimes and denoted by indices from a set ρ = {σ, α, β}.

Synchronous regime, ρ = σ, implies the following algorithm of applying θ(x) to all x ∈ X at each
iteration:

1. θ(x) (3) is applied to all x ∈ X (chosen in any order), and the new cell states are written into an
auxiliary array Ω′(t);

2. Ω′(t) is initial for the next iteration, that is, Ω(t + 1) = Ω′(t).

In synchronous regime we have classical CAs [28, 29]. A peculiarity is that |T ′(x)| = 1, that is, the
application of a substitution changes the state of only one cell and, hence, the correctness condition
(6) is satisfied automatically. This limits the capabilities of synthesis of synchronous CA-models, but
simplifies their parallel implementations, allowing interprocessor exchanges once per iteration. Since all
spatial operations are deterministic, E σ

rand = 0.

Asynchronous regime, ρ = α, consists of the following order of calculations of the global operator:

1. Choose a cell x ∈ X with probability p = |X|−1;

2. Apply θ(x) to the chosen cell; immediately replace the states of the cell from S′(x) by the
corresponding new ones obtained from (4);

3. The iteration is terminated in |X| cycles of steps 1 and 2 for each θ ∈ Θ.

In asynchronous regime, the condition (6) does not impose any constraints on the number of
cells being updated simultaneously, which increases the capabilities of local operators. However, it
complicates calculations on processors operating in parallel. For asynchronous regimes, an iteration
usually means an execution in |X| steps, as in the kinetic Monte Carlo method [7, 8]. In fact, there
is no difference in the calculation process between the iterations. In asynchronous regime ∀ θ ∈ Θ:
E α

rand = N .

Ordered asynchronous regime, ρ = ω, is a degenerate case of asynchronous regime when cells
x ∈ X are chosen in a given (deterministic) order. Each time the states of the cells from T ′(x) are
updated immediately. All operations are deterministic, E ω

rand = 0.

Block-synchronous regime, ρ = β, is intermediate between synchronous and asynchronous regi-
mes [19]. It allows substitutions changing more than one cell simultaneously. However, for the condition
(6) to be satisfied, simultaneous (synchronous) updates of states are performed on subsets Πl ∈ X
in which the cells are rather far from each other. If a three-dimensional (D = 3) cellular array has a
Cartesian structure, these subsets are defined as follows:
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1. Choose a compact block of cells called a β-block, Bβ(i, j, k) =
{
(i + ai, j + aj , k + ak) : ai, aj ,

ak = −Rβ, 1, . . . , 0, . . . , Rβ

}
, where Rβ � I is the radius of the block. The size of the block

must satisfy the condition

Bβ(i, j, k) ⊇ T ′′(i, j, k), T ′′(i, j, k) =
n⋃

l=1

T ′
l (i, j, k), n = |Θ|. (8)

Here T ′′(i, j, k) is the generalized defining neighborhood of the SCA, and T ′
l is the defining

neighborhood of the local configuration S′
l(i, j, k) (2) in the substitution θl(i, j, k) ∈ Θ, q′ =

|S′
l(i, j, k)|. The linear size and the number of cells in the β-block are

b = 2Rβ + 1, m = bD,

respectively, where D is the dimension of the simulation space.

2. Correct the linear sizes I, J , and K of the cellular array X so that Ib = I/b, Jb = J/b, Kb = K/b
are integer numbers. Then select a subset X0 ⊂ X:

X0 =
{
(i, j, k) ∈ X :

i = 0, b, 2b, . . . , I−1; j = 0, b, 2b, . . . , J−1; k = 0, b, 2b, . . . ,K−1
}
. (9)

3. Construct a partition Π = {Π1, . . . ,Πm} of the set X generated by the β-block such that

Πl

⋂
Πh = ∅,

m⋃

l=1

Πl = X ∀h, l ∈ {1, . . . ,m}. (10)

Each subset Πl ∈ Π contains cells obtained by shifting cell coordinates (i.j, k) ∈ X0 by corre-
sponding cell coordinates (ai, aj , ak)l ∈ Bβ(Rβ , Rβ, Rβ) (8):

Πl =
{
(i + ai, j + aj , k + ak) :

∀ (i, j, k) ∈ X0, ∀ (ai, aj , ak)l ∈ B(Rβ, Rβ, Rβ)
}
, l = 0, . . . ,m. (11)

4. An iteration consists of m stages chosen in random order. At each lth stage all θ ∈ Θ are applied
to all (i, j, k) ∈ Πl in synchronism. To provide correctness of (6) in parallel implementation, this
random order of choosing stages must be the same for all processors. The number of probabilistic
operations for each θ ∈ Θ: E β

rand = m.

Operational stochasticity determines the order of choosing substitutions from
{
θ1, . . . , θn

}
in the

execution of the global operator. The most popular are two types of operational stochasticity (although
there are also intermediate ones [21]), which are denoted in [13] by indices from μ = {δ, γ}.

Deterministic choice, μ = δ, is when to each cell x ∈ X all substitutions θi ∈ Θ are applied in a
given order, E δ

rand = n.

Random choice, μ = γ, is when to each cell x ∈ X one randomly chosen substitution θi ∈ Θ is
applied with a probability

pi =
ki

n∑

i=1
ki

, (12)

NUMERICAL ANALYSIS AND APPLICATIONS Vol. 11 No. 1 2018



A DISCRETE STOCHASTIC MODEL OF WATER PERMEATION 9

Stochastic characteristics of global operators Θρ,μ

Characteristics
ρ, μ

α, γ α, δ β, γ β, δ ω, γ ω, δ σ, γ σ, δ

Erand Nn N mn m n 0 n 0

λ 1 1/n m/N m/Nn 1/N 0 1/N 0

where ki, i = 1, . . . , n, are the rates of execution of events corresponding to substitutions θ1, . . . , θn,
E γ

rand = n.

In what follows, for stochastic models we use an extended concept of model operation regime defined
by a pair of characteristics from ρ × μ. An SCA-model with global operator Θρ,μ is denoted by ℵρ,μ.
The stochastic characteristics for all cases are presented in the table. In complex SCA-models where
methods of composition of global operators [25] are used, each of them can operate in its own regime.

In [14], a CA with a probabilistic choice of both spatial and operational regimes, that is, an (α, γ)
regime, is called a stochastic one. However, due to the great diversity of properties of the processes being
simulated with an efficient parallel implementation, the concept of stochastic model must be extended to
incorporate all regimes presented in the table, including a degenerate synchronous (σ, δ)-regime.

3. SIMULATION OF A PERMEATION PROCESS

3.1. Stochastic Permeation Model

A CA model of permeation of a liquid into the soil was proposed in [30], providing a detailed
description of its simulation abilities. We present a simplified version to call attention to some problems
of parallel implementation.

A sample of soil through which the liquid permeates is specified by a digitized tomogram represented
by a set of 1480 files. Each of these files imitates a horizontal layer occupying 700 × 700 bytes of
a three-dimensional Boolean array X = {(i, j, k) : i, j = 0, . . . , 699; k = 0, . . . , 1479} (Fig. 1), which
corresponds to a soil sample of 2 × 2 × 15 mm3 (Fig. 2). If the binary value of a byte u(i, j, k) = 0, the
cell (i, j, k) imitates the empty space of a pore. If u(i, j, k) = 1, the cell (i, j, k) imitates hard rock.

ℵ = 〈A,X,Θ(X)〉 is an SCA simulating the liquid permeation with a symbol alphabet of states
A = {s,w, a}, where s corresponds to hard rock, w, water, and a, pore space air. X = {(i, j, k) : i =
0, . . . , I − 1; j = 0, . . . , J − 1, k = 0, . . . ,K − 1} is a discrete space, where I = J = 700, K = 1000
(the array height is decreased, since preliminary calculations have shown that the liquid does not
permeate through the lower layer).

Θ(X) = ΘC(ΘD(X)) (13)

is a global operator, where ΘD(X) simulates diffusion and ΘC(X) simulates convection.
The diffusion operator ΘD(X) imitates liquid spreading (that is, free surface leveling) in caverns

(pores) and on the upper surface by using a substitution [30]:

θD(i, j, k) :
{(

w, (i, j, k)
)
,
(
a, φl(i, j, k − 1)

)} pD−→
{(

a, (i, j, k)
)
, φl

(
w, (i, j, k − 1)

)}
, (14)

l = 1, . . . , c .

The substitution θD(i, j, k) performs exchanges of states between the cell (i, j, k) and the lth neighbor
of the cell l(i, j, k − 1), l = 1, . . . , c, with name φl(i, j, k − 1) for which ul �= 0 (not hard rock) and c ≤ 4.
The probability pD = 1/c, θD(i, j, k) is successively applied to all kth planes from k = 0 to k = K − 1 in
an ordered asynchronous regime. In every kth plane θD(i, j, k) is applied to all (i, j, k) in synchronism
(Fig. 3).
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Fig. 1. File representation structure of soil sample. Fig. 2. Soil sample cross section at j = 400.

Fig. 3. Scheme of algorithm of permeation.

Fig. 4. Specifying the number of diffusion cycles per each iteration to provide a smooth liquid surface.

Since diffusion is more complex and slower than convection, to coordinate their rates the global
diffusion operator ΘD(X) is specified to perform n cycles of applying θD(i, j, k) to all (i, j, k) ∈ X per
iteration, that is,

ΘD(X) =
(
θD(X)

)n
. (15)

The value of n depends on the properties and specific conditions of the substance. It can be chosen

NUMERICAL ANALYSIS AND APPLICATIONS Vol. 11 No. 1 2018



A DISCRETE STOCHASTIC MODEL OF WATER PERMEATION 11

in a test simulation visually on the monitor or by checking the simulation program for which value
of n the free surface of the liquid becomes smooth (Fig. 4). To increase the efficiency of the parallel
implementation, the diffusion operator is executed in a block-synchronous regime (β, γ).

The convection operator ΘC(X) imitates the motion of abstract particles in the direction of gravity.
At each step, the substitution θC(i, j, k) is applied in an asynchronous ordered regime to all layers of the
array, from k = K − 1 to k = 0, in synchronism to all cells (i, j, k) in each kth layer:

θC(i, j, k) :
{(

a, (i, j, k)
)
,
(
w, (i, j, k − 1)

)} pC−→
{(

w, (i, j, k)
)
,
(
a, (i, j, k − 1)

)}
. (16)

The probability pC is set to be equal or close to unity, since this is the fastest action.
A major peculiarity of the three-dimensional CA permeation model is that its convection and diffusion

components are divided in space so that the convection component is one-dimensional (along the
vertical k axis) and the diffusion component is two-dimensional (in the horizontal planes k = const).

3.2. Peculiarities of Parallel Implementation of the Stochastic
Permeation Model

To implement the SCA permeation model on a supercomputer, we use the domain decomposition
method, which has been widely used in computational mathematics. It consists in dividing a cellular
array into P parts, Ω = Ω0 ∪ . . . ∪ ΩP−1, called domains, and locating them on P processors operating
in parallel. The division into domains is made along the vertical k axis in two ways: a) into plates (one-
dimensional decomposition) and b) into columns (two-dimensional decomposition) (Fig. 5).

At such decomposition, the boundary data are exchanged only when using the diffusion operator, that
is, between the faces that are parallel to the k axis (Fig. 5).

To provide the interprocessor exchange, the domains are supplemented by peripheral “shadow” layers
containing V cells, where

Vdom = 2RβKdom(Idom + Jdom), (17)

Rβ is the radius of the generalized neighborhood T ′′ (8), and Idom, Jdom, and Kdom are the linear
dimensions of the domain.

The problem of efficient parallel implementation is in constructing a calculation that is optimal from
the point of view of minimizing the time and costs. In most studies on parallel calculations, the following
ratio called, paralleling efficiency,

Fig. 5. Two methods of dividing a cellular array into domains.
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η =
Time1

TimeP
=

Time1

Time1 + lν Timeex
(18)

is used as a quantitative estimate of parallel implementation. Here Time1 is the calculation time of one
iteration for one domain, TimeP is the calculation time of one iteration in parallel for P domains, Timeex

is the time needed for one data exchange between P processes, and lν is the number of data exchanges
in one iteration.

It follows from (18) that the efficiency is related to the model parameters by means of a quantity lν
which for the regime (β, γ) (see the table) is

lβ,γ = |Bβ| |Θ| = mn = λNn. (19)

For the problem being considered, at a minimal β-block size m = 9 and at 20 (n = 20) cycles of ΘD the
number of exchanges at each iteration lβ,α = 180, and at m = 25 lβ,α = 500.

Substituting (17) and (19) into (18), we obtain the following relation between the efficiency and
stochasticity:

ηβ,γ =
1

1 + (λ/N) D
√

P/N (τex/nτop)
, (20)

where τex and τop are the time of interprocessor byte exchange and the execution time of the local
operator, respectively.

From (20) we have three conclusions:

• The efficiency of parallel implementation is the greater, the less is the stochasticity of the SCA-
model, which depends on the choice of block size in a block-synchronous regime.

• The efficiency weakly decreases with increasing number of parallel processes P .

• The more complicated is the calculation of local operators (the less is the ratio τex/nτop), the
greater is the efficiency.

The first conclusion makes it necessary to choose a minimal β-block size m in β-regimes. The
question as to what extent m affects the simulation “quality,” that is, the accuracy of representation
of the phenomenon being simulated, remains open.

Few results of stochastic simulation on supercomputers are known so far [19, 20, 31]. They have
revealed no difference between the asynchronous and block-synchronous regime simulations.

The second conclusion calls for the choice of domains having large sizes but the same sizes of
“shadow” layers (domains in the form of cubes and squares for which the ratio V/P at equal N is
smaller).

Finally, the third conclusion implies that clusters with fast interprocessor communications should be
preferred.

The requirement of correctness (6) of collective communications (MPI-Sendrecv [32]) imposes
additional constraints on the organization of interprocessor exchanges. This means that although β-
stage Πl ∈ Π is chosen randomly, it must be the same at any time in all domains. For this, at each
iteration a random sequence of m natural numbers must be formulated in one of the domains and
translated to all processors.

NUMERICAL ANALYSIS AND APPLICATIONS Vol. 11 No. 1 2018
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3.3. Simulation Results

The process of permeation was experimentally simulated in two stages. At the first stage, permeation
was simulated in a serial regime for a 200 × 200 × 500 cellular array fragment on an Intel Core-i7
computer (2.66 GHz). At this stage, the program modules of the convection and diffusion operators
were debugged, and the needed number of cycles of the diffusion operator was specified to provide full
smoothness of the liquid surface.

The parallel version was investigated on clusters NKS-30T Intel Xeon 5540 (at the Siberian
SuperComputer Center of the Institute of Computational Mathematics and Mathematical Geophysics
SB RAS, Novosibirsk) and MVS-10p Intel Xeon Phi 7120D (SuperComputer Center, Moscow). The
following initial conditions were taken: all soil pores were empty, and a small amount of liquid (16 · 106

particles (60 grams)) was poured on the soil surface. The boundary conditions along the i and j axes were
periodic. The programming work was made in C++ programming language using the MPI library [32].

The following parameters and properties of parallel implementations of the SCA-model were studied:

1. Depth and rate of liquid permeation into the soil. The dependence of the permeation depth on
the number of iterations (model time) is shown by the curve (Fig. 6). This dependence is not affected by
the parameters of the SCA simulation algorithm (the regime, the number of parallel processes, and the
topology of their connections). One can see in Fig. 6 that the permeation rate varies with depth, which
indicates that the porous structure is inhomogeneous. Specifically, one can see voids at depths k ≈ 828
and k ≈ 660.

2. Efficiency of paralleling versus stochasticity of the algorithm. Figure 7 shows the full
calculation time and the time of interprocessor exchanges as a result of simulation for various model
stochasticity values. The simulation was done in parallel on 10 cores of MVS-10p cluster at one-
dimensional decomposition (Fig. 4a).

The lines in Fig. 7 show that the efficiency

η =
TimeP − Timeex

TimeP

practically does not depend on the size of the β-block and does not exceed 0.2 when the β-block size is
larger than the minimal size (m > 32).

3. Speeding up of calculations versus the number of processors and the topology of core
communications. The simulation was made on the MVS-10p cluster at two kinds of the simulation
space decomposition. The simulation results in Fig. 8 show that calculations at two-dimensional
decomposition are more efficient. One can also see that paralleling of P ≥ 10 processes is not reasonable
for the SCA being considered.

Fig. 6. Liquid permeation depth versus time at model implementation in (β, γ) regime on P = 4× 10 = 40 processors.
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Fig. 7. Calculation time versus SCA-model stochasticity ℵβ,γ on P = 10 processors at one-dimensional decompo-
sition of the simulation space. The stochasticity values correspond to the following sizes of β-blocks of the SCA:
|Bβ | = {32, 52, 72, 92, 112, 132}.

Fig. 8. (a) Execution time of T = 1000 iterations; (b) efficiency of parallel implementation versus the number of parallel
processes at one- and two-dimensional decomposition of the simulation domain.

4. CONCLUSIONS

The parallel implementation of the stochastic model of permeation has made it possible to obtain
stochasticity and efficiency as functions of the parameters of parallel implementation and estimate their
influence on the major characteristics of the model. This is necessary for a reasonable choice of the model
parameters. The results of the investigation are as follows:

(1) For an efficient parallel implementation of a spatially stochastic SCA it must be transformed to a
block-synchronous regime (β-regime).

(2) SCA stochasticity depends on the size of the β-block. Increasing this size does not speed up the
calculations.

(3) Correctness of parallel calculations demands some coordination between the stages of the β-
regime in all processors.
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