
ISSN 1995-4239, Numerical Analysis and Applications, 2017, Vol. 10, No. 2, pp. 164–176. c© Pleiades Publishing, Ltd., 2017.
Original Russian Text c© Swarn Singh, Suruchi Singh, R. Arora, 2017, published in Sibirskii Zhurnal Vychislitel’noi Matematiki, 2017, Vol. 20, No. 2, pp. 201–213.

Numerical Solution of Second-Order One-Dimensional Hyperbolic
Equation by Exponential B-Spline Collocation Method

Swarn Singh1*, Suruchi Singh2**, and R. Arora3***

1Department of Mathematics, Sri Venkateswara College, University of Delhi, New Delhi, 110021 India
2Department of Mathematics, University of Delhi, New Delhi, 110007 India

3Department of Mathematics, Aditi Mahavidyalaya, University of Delhi, Delhi, 110039 India
Received April 20, 2016; in final form, November 10, 2016

Abstract—In this paper, we propose a method based on collocation of exponential B-splines to
obtain numerical solution of a nonlinear second-order one-dimensional hyperbolic equation subject
to appropriate initial and Dirichlet boundary conditions. The method is a combination of B-spline
collocation method in space and two-stage, second-order strong-stability-preserving Runge–Kutta
method in time. The proposed method is shown to be unconditionally stable. The efficiency and
accuracy of the method are successfully described by applying the method to a few test problems.
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1. INTRODUCTION

We consider the following nonlinear one-dimensional hyperbolic equation:

utt + 2αut + β2u = uxx + g(x, t) + f(u), a < x < b, t > 0, (1.1)

subject to the initial conditions

u(x, 0) = φ1(x), ut(x, 0) = φ2(x), a ≤ x ≤ b, (1.2)

and the Dirichlet boundary conditions

u(a, t) = ψ1(t), u(b, t) = ψ2(t), t ≥ 0, (1.3)

where α > 0 and β ≥ 0 are constants. If α > 0, β > 0, Eq. (1.1) is referred to as a telegraphic equation
and g(x, t) is an arbitrary external forcing function. However, for α > 0, β = 0, it represents a damped
wave equation. The numerical solution of damped wave equation is of great importance in wave
phenomenon. For f(u) = 0, (1.1) represents linear second-order hyperbolic equation.

In the past few years, several methods [1–12] have been developed for solving second-order one-
dimensional hyperbolic equations subject to initial and Dirichlet boundary conditions. In [1], an un-
conditionally stable explicit difference scheme is discussed for solving a telegraphic equation. Mohanty
et al. [2–5] have given various finite difference methods for the solution of one-dimensional hyperbolic
equations. In [6, 7], Mittal et al. have presented the differential quadrature method and the collocation
method based on cubic B-spline basis functions for the solution of a telegraphic equation. In [8], the
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author uses collocation points and radial basis function. Parameters spline methods for the solution of
a telegraphic equation are discussed in [11]. Dosti and Nazemi [9, 10] discussed a quartic B-spline
collocation method and a cubic B-spline quasi-interpolation method for solving a linear telegraphic
equation. In [13], Kharenko et al. proposed methods including collocation and least squares method
to obtain a numerical solution of nonlinear second-order hyperbolic partial differential equations.

Until now, some types of spline were developed among which, major emphasis is given on the use
of polynomial splines. We, in this paper, discuss an exponential B-spline collocation method. The
exponential splines and exponential B-splines are defined to be more general splines and B-splines
by McCartin [17, 18]. McCartin states that in some cases polynomial splines can and do produce
spurious oscillations in the interpolant. For example, in combustion calculations it could produce
an unrealistic detonation, or in computational aerodynamics it could result in the generation of a
nonphysical shock wave. To overcome these difficulties, exponential splines were introduced [19]. The
use of exponential splines is not very common in finding numerical solutions to differential equations.
Very recently, Mohammadi [14] and Ersoy and Dag [15] used exponential B-splines to obtain the solution
of convection-diffusion equations and Korteweg–de Vries equation, respectively.

In the present paper, Eq. (1.1) is first converted into a system of partial differential equations. Then,
the collocation of exponential B-splines is used to approximate the spatial derivatives. The resulting
system of ordinary differential equations is solved by using a well-known two-stage, second-order
strong-stability-preserving Runge–Kutta method (SSPRK(2,2)) [16].

The organization of this paper is as follows. In Section 2, some details about the exponential B-
spline collocation method are given. In Section 3, numerical method for solving (1.1) is discussed. The
method is shown to be unconditionally stable in Section 4. In Section 5, numerical examples are given to
illustrate the usefulness of the proposed method and finally, concluding remarks are given in Section 6.

2. EXPONENTIAL B-SPLINE COLLOCATION METHOD

We consider a set of knots a = x0 < x1 < . . . < xN−1 < xN = b as a uniform partition of the solution

domain a ≤ x ≤ b with a spacing h = xl − xl−1 =
b − a

N
for l = 1, 2, . . . , N − 1, N . The exponential B-

splines Bl(x) at the above defined knots along with additional knots x−1 and xN+1 can be defined as:

Bl(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
(
(xl−2 − x) − 1

p
(sin h(p(xl−2 − x)))

)
, x ∈ [xl−2, xl−1),

b1 + b2(xl − x) + b3 exp(p(xl − x)) + b4 exp(−p(xl − x)), x ∈ [xl−1, xl),
b1 + b2(x − xl) + b3 exp(p(x − xl)) + b4 exp(−p(x − xl)), x ∈ [xl, xl+1),

a
(
(x − xl+2) −

1
p

(sin h(p(x − xl+2)))
)
, x ∈ [xl+1, xl+2),

0 otherwise,

(2.1)

where

a =
p

2(phc − s)
, b1 =

phc

(phc − s)
, b2 =

p

2

[
c(c − 1) + s2

(phc − s)(1 − c)

]

,

b3 =
1
4

[
exp(−ph)(1 − c) + s(exp(−ph) − 1)

(phc − s)(1 − c)

]

, b4 =
1
4

[
exp(ph)(c − 1) + s(exp(ph) − 1)

(phc − s)(1 − c)

]

,

s = sin h(ph), c = cos h(ph),

where p is a free parameter. Existence of the parameter p yields different shapes of the spline functions.
The set of functions {B−1, B0, B1, . . . , BN−1, BN , BN+1} forms basis for the functions defined over the
domain [a, b]. Additional knots outside the problem domain are necessary to define all the exponential
splines.
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Table 1. Values of exponential B-spline and its derivatives

x xl−2 xl−1 xl xl+1 xl+2

Bl(x) 0
s − ph

2(phc − s)
1

s − ph

2(phc− s)
0

Bxl
(x) 0

p(c − 1)
2(phc − s)

0 − p(c − 1)
2(phc − s)

0

Bxxl
(x) 0

p2s

2(phc − s)
− p2s

(phc − s)
p2s

2(phc− s)
0

An approximate solution U(x, t) to the analytical solution u(x, t), using exponential B-spline
collocation method, can be written as

U(x, t) =
l=N+1∑

l=−1

cl(t)Bl(x), (2.2)

where cl(t) are time-dependent parameters to be determined from boundary conditions and the colloca-
tion method. The first and second spatial derivatives can be written as

Ux(x, t) =
l=N+1∑

l=−1

cl(t)Bxxl
(x), (2.3)

Uxx(x, t) =
l=N+1∑

l=−1

cl(t)Bxxl
(x). (2.4)

The values of Bl(x) and its first and second derivatives at various knots are tabulated in Table 1.
Using Eqs. (2.2)–(2.4) and Table 1, we obtain approximate values of U(x, t) and its spatial derivatives

in terms of the time parameters cl as

U(xl, ·) = m1cl−1 + cl + m1cl+1,

Ux(xl, ·) = m2(cl+1 − cl−1),

Uxx(xl, ·) = m3(cl−1 − 2cl + cl+1),

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(2.5)

where

m1 =
s − ph

2(phc − s)
, m2 =

p(c − 1)
2(phc − s)

, m3 =
p2s

2(phc − s)
.

3. NUMERICAL METHOD

Equation (1.1) is equivalent to the following system of equations:

ut = v,

vt = uxx − 2αv − β2u + g + f(u).

⎫
⎬

⎭
(3.1)

By using (2.2) the approximate value of Ut(x, t) can be written as follows:
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Ut(x, t) =
l=N+1∑

l=−1

ċl(t)Bl(x), (3.2)

where ċl(t) is the derivative of cl(t) with respect to t.
Using basis functions (2.1) and Table 1 in (3.2), we get the values of Ut(x, t) as

Ut(xl, t) = m1ċl−1 + ċl + m1ċl+1, l = 0, 1, . . . , N, (3.3)

and

v̇l =
N+1∑

i=−1

ci(t)Bxxi(xl) − 2αvl − β2
N+1∑

i=−1

ci(t)Bi(xl) + gl

+f

(
N+1∑

i=−1

ci(t)Bi(xl)

)

, l = 0, 1, . . . , N,

(3.4)

where vl denotes v(xl, t) for l = 0, 1 . . . , N . Finally, using Eqs. (3.3) and (3.4) and Table 1, we get

m1ċl−1 + ċl + m1ċl+1 = vl, l = 0, 1, . . . , N, (3.5)

v̇l = m3(cl−1 − 2cl + cl+1) − 2αvl − β2(m1cl−1 + cl + m1cl+1) + gl

+f(m1cl−1 + cl + m1cl+1), l = 0, 1, . . . , N.
(3.6)

These are 2(N + 1) equations in 2(N + 3) unknowns. To eliminate extra unknowns, we make use of
boundary conditions

U(x0, t) = ψ1(t), U(xN , t) = ψ2(t),

and (2.5) to obtain

c−1 =
ψ1 − c0 − m1c1

m1
, (3.7)

cN+1 =
ψ2 − cN − m1cN−1

m1
. (3.8)

Eliminating c−1 and cN+1 from Eqs. (3.6)–(3.8) for l = 0, N , we obtain

c0 =
m1

m3(1 + 2m1)

((
m3

m1
− β2

)

ψ1 − 2αψ̇1 − ψ̈1 + g0 + f(ψ1)
)

= w0 (3.9)

and

cN =
m1

m3(1 + 2m1)

((
m3

m1
− β2

N

)

ψ2 − 2αψ̇2 − ψ̈2 + gN + f(ψ2)
)

= wN . (3.10)

Hence, the problem now reduces to solving

Aċ = F , (3.11)
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where,

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 m1 . . . . . . 0

m1 1 m1 . . . 0
. . . . . . . . .

m1 1 m1

0 . . . . . . m1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ċ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ċ1

ċ2

...

ċN−2

ċN−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v1 − m1ẇ0

v2

...

vN−2

vN−1 − m1ẇN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v̇1

v̇2

...

v̇N−2

v̇N−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

G1

G2

...

GN−2

GN−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.12)

where,

Gl = m3(cl−1 − 2cl + cl+1) − 2αvl − β2(m1cl−1 + cl + m1cl+1) + gl

+f(m1cl−1 + cl + m1cl+1), l = 1, 2, . . . , N − 1.

Vector ċ is computed by using tri-diagonal solver at each time level to obtain a system of N first-
order ordinary differential equations. Then, these equations along with the equations in (3.12) are solved
by using an optimal two-stage, second-order SSPRK(2,2) method. c0, cN and hence c−1, cN+1 are
obtained from (3.7)–(3.10). Hence, the approximate solution U(x, t) is completely known.

To initiate the computation, we need initial vectors c0 and v0, which can be determined by using
initial conditions (1.2):

U(xl, 0) = φ1(xl), l = 0, 1, . . . , N, (3.13)

and

v(xl, 0) = φ2(xl), l = 0, 1, . . . , N. (3.14)

Using (2.5) in (3.13) gives (N + 1) equations in (N + 1) unknowns, which can be written in matrix form
as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2m1 . . . . . . 0

m1 1 m1 . . . 0
. . . . . . . . .

m1 1 m1

0 . . . . . . 2m1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c0

c1

...

...

cN−1

cN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

φ1(x0) + m1
m2

φ1x(x0)

φ1(x1)
...

φ1(xN−1)

φ1(xN ) − m1
m2

φ1x(xN )

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.15)
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and using (3.14) gives (N + 1) equations in (N + 1) unknowns:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

v0
0

v0
1
...

v0
N−1

v0
N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

φ2(x0)

φ2(x1)
...

φ2(xN−1)

φ2(xN )

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.16)

4. STABILITY ANALYSIS

In this section, we discuss stability of the method discussed in the previous section by the matrix
method. For studying stability we take f(u) = 0 and combine Eqs. (3.11) and (3.12) as

AĊ = BC + F , (4.1)

where

A =

⎡

⎣
A 0

0 I

⎤

⎦ , B =

⎡

⎣
0 I

P −2αI

⎤

⎦ , C = [c1, . . . , cN−1, v1, . . . , vN−1]′,

and F is a known vector of order 2(N − 1), 0 and I are null and unit matrices, respectively, of order
N − 1 and

P = m3P1 − β2A,

where

P1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2 1

1 −2 1
. . . . . . . . .

1 −2 1

1 −2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Using the expansions of sin h(ph), cos h(ph), we deduce, 0 < m1 < 1
2 and m3 > 0, ∀p, h > 0. In light of

this, we see that A is a strictly diagonally dominant matrix and, hence, is invertible. So that, we have

Ċ = (A−1B)C + A−1F , (4.2)

where,

A−1B =

⎡

⎣
0 A−1

P −2αI

⎤

⎦ .

For proving the stability of the system (4.1), we need to prove that the eigenvalues Λ of the coefficient
matrix A−1B have negative real part.
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Now, matrices P1 and A have the same base of eigenvectors. Matrix A is a Hermitian matrix with
all diagonal entries positive and, hence, all the eigenvalues of A are real and positive. Further, matrix P1

being real symmetric negative definite matrix, has negative eigenvalues. Hence, eigenvalues of matrix P
are real and negative.

Let X = [X1,X2]′ be the eigenvector corresponding to eigenvalue Λ. Then we have

⎡

⎣
0 A−1

P −2αI

⎤

⎦

⎡

⎣
X1

X2

⎤

⎦ = Λ

⎡

⎣
X1

X2

⎤

⎦ . (4.3)

From (4.3), we can write

A−1X2 = ΛX1,

P X1 − 2αX2 = ΛX2.

⎫
⎬

⎭
(4.4)

Then we get

P A−1X2 = Λ(Λ + 2α)X2, (4.5)

which implies that Λ(Λ + 2α) is an eigenvalue of P A−1. Let Λ = x+ iy, where x and y are real numbers.
Then, we have (x + iy)(x + iy + 2α) is real and negative, which provides

y(x + α) = 0, x(x + 2α) − y2 < 0.

From the above equations, we get the solutions as:
(i) y is arbitrary real number and x + α = 0 ⇒ x is negative real number, since α is real and positive.
(ii) y = 0 ⇒ x(x + 2α) < 0 ⇒ (x + α)2 < α2 ⇒ x is negative, since α is positive.
Hence, since the real part of eigenvalues of the coefficient matrix A−1B is negative, the proposed

method is unconditionally stable.

5. NUMERICAL EXPERIMENTS

In this section, we present the numerical results of the present method when applied to a few test
problems. We also compare our results with results obtained by other existing methods. The accuracy of
the presented method is measured using L∞ errors:

L∞ = ‖u − U‖∞ = max
i

|ui − Ui| ,

where u and U represent the analytical and approximate solutions, respectively. Order of convergence of
the method is obtained by using the formula

log
(

eh1
eh2

)

log
(

h1
h2

) ,

where eh1 and eh2 are L∞ errors for grid sizes h1 and h2, respectively. We performed our computations
using MATLAB 12 software on a laptop with Intel Pentium processor, 2.0 GHz CPU and 2 GB RAM.

Example 1. We consider the following telegraphic equation:

utt + 2αut + β2u = uxx + (2 − 4t + t2 + 4αt − 2αt2 + β2t2)(x − x2)e−t + 2t2e−t

NUMERICAL ANALYSIS AND APPLICATIONS Vol. 10 No. 2 2017
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Table 2. L∞ errors, Δt = 0.001, h = 0.01, α = 0.5, β = 1

t, s Proposed method Mittal and Bhatia [7]

1 7.6936e–06 5.9153e–05

2 2.0453e–06 1.7864e–05

3 9.3772e–06 1.4309e–05

4 2.4189e–06 1.3529e–05

5 4.8353e–06 5.2032e–06

Table 3. L∞ errors, Δt = 0.4h and t = 2 for different values of p

h p = 0.1 p = 0.5 p = 1 p = 2 p = 10

1/8 1.3234e–04 9.2671e–05 3.1116e–05 5.2352e–04 1.4200e–02

1/16 3.2447e–05 2.2483e–05 8.6799e–06 1.3298e–04 4.0000e–03

1/32 7.8474e–06 5.3496e–06 2.4553e–06 3.3664e–05 1.0000e–03

1/64 1.9250e–06 1.2996e–06 6.5468e–07 8.9042e–06 2.5803e–04

subject to initial conditions:

u(x, 0) = 0, ut(x, 0) = 0, 0 ≤ x ≤ 1,

and boundary conditions:

u(0, t) = 0, u(1, t) = 0, t ≥ 0.

The analytical solution of this example is given as u(x, t) = (x − x2)t2e−t. In this example, we solve
a telegraphic equation for Δt = 0.001, h = 0.01, α = 0.5, β = 1, p = 2, and the L∞ errors are compared
with the errors obtained in [7] (see Table 2). It can clearly be seen that the numerical solutions produced
by our method are more accurate than [7]. Further, for α = 1 and β = 1 we compute errors for different
values of p at t = 2 (Table 3). We observe that the error is least when p = 1, however, there is no
remarkable change in the order of accuracy.

Example 2. Consider the following telegraphic equation:

utt + 2αut + β2u = uxx + (2 − 2α + β2)e−t sin(x)

subject to initial conditions:

u(x, 0) = sin(x), ut(x, 0) = − sin(x), 0 ≤ x ≤ π,

and boundary conditions:

u(0, t) = 0, u(π, t) = 0, t ≥ 0.

The analytical solution of this example is given as u(x, t) = e−t sin(x). L∞ errors are tabulated in Table 4
for h = 0.02, Δt = 0.0001 and for α = 4, β = 2, p = 1 at different time levels. The results are compared
with the results obtained by Dosti and Nazemi [9]. We also compare our results with results obtained
by Dosti and Nazemi in [10] for h = 0.02, Δt = 0.001 at different time levels (Table 5). Our results are
better in comparison with the results obtained in [9, 10].
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Table 4. L∞ errors, h = 0.02, Δt = 0.0001 for α = 4, β = 2

t, s Proposed method Dosti and Nazemi [9]

0.4 2.3010e–05 2.9000e–03

0.8 6.7857e–06 3.2000e–03

1.2 3.1884e–06 2.8000e–03

1.6 1.1679e–06 2.3000e–03

2 2.3203e–07 1.8000e–03

Table 5. L∞ errors with h = 0.02 and Δt = 0.001 for α = 4, β = 2

t, s Proposed Method Dosti and Nazemi [10]

0.5 9.7967e–05 1.0676e–03

1 6.8394e–05 7.1563e–04

1.5 4.6283e–05 4.8126e–04

2 3.1320e–05 2.8398e–04

Table 6. L∞ errors, α = 1, β = 1 for p = 1

h L∞ Order of convergence

1/8 1.1300e–02 —

1/16 3.3000e–03 1.8

1/32 9.0441e–04 1.9

1/64 2.1867e–04 2.0

Example 3. We consider the following nonlinear problem:

utt = uxx − 2αut − β2u − exp(u) + cos h(x)(β2t2 − t2 + 4αt + 2) + exp(t2 cos h(x)), 0 ≤ x ≤ 1,

subject to initial conditions:

u(x, 0) = 0, ut(x, 0) = 0, 0 ≤ x ≤ 1,

and boundary conditions:

u(0, t) = t2, u(1, t) = t2 cos h(1), t ≥ 0.

The analytical solution of this example is given as u(x, t) = t2 cos h(x). In this example, we consider
a nonlinear telegraphic equation. We compute L∞ errors at t = 1 for p = 1, α = 1, β = 1 and take
Δt = 0.4h. The results are tabulated in Table 6. In Table 7, we choose α = 1, β = 0.5 and compute
errors for different values of p at t = 1. We observe that the accuracy is not much affected with different
choices of p.
Example 4. We consider the telegraphic equation in general form [4]:

utt + (α + β)ut + αβu = c2uxx + (1 − α − β + αβ − c2)(e−t sin h(x)), 0 ≤ x ≤ 1,
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Table 7. L∞ errors, α = 1, β = 0.5, t = 1 for different values of p

h p = 0.1 p = 0.5 p = 1 p = 2 p = 10

1/8 1.2300e–02 1.2300e–02 1.2300e–02 1.2400e–02 1.5900e–02

1/16 3.5000e–03 3.6000e–03 3.6000e–03 3.6000e–03 4.4000e–03

1/32 9.6083e–04 9.6113e–04 9.6208e–04 9.6589e–04 1.1000e–03

1/64 2.4922e–04 2.4927e–04 2.4940e–04 2.4995e–04 2.7713e–04

Table 8. L∞ errors, t = 5

h α = 3π, β = π α = π, β = π Order of convergence

1/16 3.0127e–05 1.6741e–05 —

1/32 9.0791e–06 4.6353e–06 1.9

1/64 2.5120e–06 1.2241e–06 1.9

1/128 6.6200e–07 3.1151e–07 2.0

Table 9. L∞ errors, t = 5, α = 12, β = 6 for p = 0.1

h L∞ Order of convergence

1/8 8.0006e–04 —

1/16 1.7892e–04 2.2

1/32 4.6840e–05 1.9

1/64 1.2211e–05 1.9

Table 10. L∞ errors, t = 5, α = 10, β = 5 and different values of p

h p = 0.1 p = 0.5 p = 1 p = 2 p = 10

1/8 7.3086e–04 7.3045e–04 7.2919e–04 7.2417e–04 5.7892e–04

1/16 1.6646e–04 1.6641e–04 1.6626e–04 1.6564e–04 1.4637e–04

1/32 4.1624e–05 4.1617e–05 4.1598e–05 4.1522e–04 3.9092e–05

1/64 1.0508e–05 1.0507e–05 1.0505e–05 1.0495e–05 1.0194e–05

subject to initial conditions:

u(x, 0) = sin h(x), ut(x, 0) = − sin h(x), 0 ≤ x ≤ 1,

and boundary conditions:

u(0, t) = 0, u(1, t) = e−t sin h(1), t ≥ 0.

The analytical solution of this example is given as u(x, t) = e−t sinh(x). In this problem, we choose
different values of α, β and take p, c = 1. L∞ errors are tabulated in Table 8 at t = 5 with Δt = 0.4h. We
show an error plot for different grid sizes at t = 5 for α = π, β = π in Fig. 1.
Example 5. We consider the following problem:
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Fig. 1. Error plot for different grid sizes at t = 5 for α = π, β = π.

Fig. 2. Error plot for different grid sizes at t = 5 for α = 10, β = 5.

utt = uxx − 2αut − β2u + (β2 − 2α)ex−t, 0 ≤ x ≤ 1,

subject to initial conditions:

u(x, 0) = ex, ut(x, 0) = −ex, 0 ≤ x ≤ 1,

and boundary conditions:

u(0, t) = e−t, u(1, t) = e1−t, t ≥ 0.

The analytical solution of this example is given as u(x, t) = ex−t. In this problem, we obtain L∞
errors at t = 5 for p = 0.1, Δt = 0.4h and register them in Table 9. In Table 10, we experiment with
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different values of p. We observe that L∞ errors and, hence, the order of accuracy of the method is not
affected by choosing different p. We show an error plot for different grid sizes at t = 5 for α = 10, β = 5
in Fig. 2.

6. CONCLUSION

In this paper, the exponential B-spline collocation method has been developed to solve an nonlinear
one-dimensional hyperbolic equation of second order. The equation is first converted into a system of
partial differential equations; then the exponential B-spline collocation method is applied to obtain a
system of first-order ordinary differential equations, which is then solved by SSPRK(2,2) method. The
method is shown to be unconditionally stable by matrix stability analysis. To show the efficiency and
accuracy of the method, it is applied to a few test problems and the results are found to be better in
comparison with the other known works. The proposed method is efficient and can easily be applied to
solve various linear and nonlinear partial differential equations.
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