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Abstract—This paper deals with the use of a scalar product with derivatives for constructing
semi-orthogonal spline-wavelets. The reduction of supports of such wavelets in comparison with
the classical semi-orthogonal wavelets is shown. For splines of the third degree, the algorithm of
wavelet-transformation in the form of the solution to a three-diagonal system of linear equations with
strict diagonal prevalence has been obtained. The results of numerical experiments on the calculation
of derivatives of a discretely given function are presented.
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1. INTRODUCTION

A wavelet is a short or rapidly decaying wave function (splash) whose set of compressions and
displacements generates a space of measurable functions on the entire number axis [1, 2]. Owing to
compression, wavelets are capable of identifying the difference in the characteristics of the measured
signal with different degrees of detail. Owing to displacement, they can analyze the signal properties
at various points on the entire examined interval. In the analysis of unsteady signals, the property of
wavelet locality ensures a significant advantage over the Fourier transform, which provides only the
global information about the properties of the examined signal because the basis functions used thereby
(sines and cosines) have infinite supports. As wavelets transform the system of basis functions with
distributed parameters to a system with lumped parameters, such a basis is more effective for solving
problems of numerical analysis from the viewpoint of conditionality and convergence.

The basis for wavelet construction is the availability of a set of approximating spaces · · · VL−1 ⊂
VL ⊂ VL+1 · · · such that each basis function in VL−1 can be expressed as a linear combination of the
basis functions in VL. In particular, such properties are typical for splines, which are smooth functions
glued from pieces of polynomials of degree m on a sequence of nested grids. The classical semi-
orthogonal wavelets [1] are defined as elements of the space VL that are orthogonal to the space VL−1. A
typical property of semi-orthogonal wavelets, which is sometimes used [3] as a basis for the numerical
method of constructing the wavelet-transform, is the fact that the wavelet-decomposition provides
the best root-mean-square approximation of splines on a fine grid by means of splines on a sparse
grid. This property ensures an advantage in solving the problem of compression of discrete numerical
information. However, this advantage is leveled off during differentiation of the resultant spline-wavelet
decomposition. Some progress in solving this problem was achieved by constructing spline-wavelets
with the increased number of moments equal to zero [4–8] under the condition of increasing the wavelet
supports. In our opinion, an optimal compromise between the accuracy of calculating the derivatives
and the support length is ensured by the spline-wavelets of the third degree m = 3 studied in this
paper, which are semi-orthogonal to derivatives of the second order. These wavelets have the following
specific feature: owing to their construction, they inherit the property of the best root-mean-square
approximation of the second derivatives [9, p. 175] of interpolation splines and, correspondingly, ensure
the best root-mean-square deviation of the second derivatives of splines on the fine grid by means of the
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second derivatives of splines on the sparse grid. For example, in the case of splines of the first degree
on the segment [a, b] with a uniform grid composed of the nodes ΔL : xi = a + h i, i = 0, 1, . . . , 2L,
h = (b − a)/2L, and the basis functions NL

i (x) = ϕ1(v − i) ∀ i, where v = (x − a)/h, with the centers
at integer numbers, which are generated by compressions and displacements of the function

ϕ1(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 + t, −1 ≤ t ≤ 0,

1 − t, 0 ≤ t ≤ 1,

0, t /∈ [−1, 1],

the use of a wavelet with a reduced (as compared to the classical wavelet of the first degree) support
[0, 2] ⊂ [0, 3] [10]:

w1(t) = ϕ1(2t − 1) − ϕ1(2t − 3)

leads to semi-orthogonality with respect to the metrics with the first derivatives because

∞∫

−∞

w′
1(x − l)ϕ′

1(x − k) dx = 0 ∀ l, k.

Though these wavelets are orthogonal only to constants in the usual sense,

∞∫

−∞

w1(x − l) dx = 0,

∞∫

−∞

w1(x − l)x dx �= 0 ∀ l,

which does not ensure the closeness of discretely given functions to the root-mean-square approxi-
mation, nevertheless, fairly acceptable results for the problem of approximating the first derivative are
obtained (see Fig. 1).

In the case of cubic splines, wavelets of the third degree ψ(x − i) ∀ i were found [11, 12], for which
the conditions of orthogonality to the corresponding basis splines ϕ(x − j) ∀ j with respect to the scalar
product with the second derivatives

Fig. 1. Wavelet-reconstruction of the first derivative of the spline of the first degree.
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∞∫

−∞

ψ′′(x − i)ϕ′′(x − j) dx = 0 ∀ i, j

are satisfied. It turned out that these wavelets have a very simple structure, in particular, the support is
smaller than the supports of the classical semi-orthogonal spline-wavelets of the third degree, namely,
[0, 3] ⊂ [0, 7]. Moreover, they were recognized as being useful for solving differential equations [13] and
were numerically implemented as a standard code [14] in the MatLab system. A similar solution [15]
was found for the case of cubic Hermite splines-wavelets that are semi-orthogonal with respect to the
scalar product with the first derivatives. Moreover, an original method was proposed by the author of the
present paper in [16] for even-odd splitting of the system of equations of the wavelet-transform [15] into
a parallel solution of two three-diagonal systems of linear equations of a twice smaller order with strict
diagonal prevalence. The wavelet-transforms based on the Hermite splines have also some drawbacks:
in the problem of processing the measured information, it is necessary first to calculate approximate
values of the derivatives at the nodes of the finest grid with acceptable accuracy [17], and only after that
can the wavelet-transform algorithms be applied. From the viewpoint of data compression, the number
of wavelet-coefficients in this case is much greater than that in methods based on B-splines. Therefore,
in Section 2.2, we consider a pioneering idea of using even-odd splitting in the case of the wavelet-
transform of usual cubic splines.

It should be noted that even-odd splitting of the wavelet-transform matrix was used in [18] for other
wavelets to prove the matrix invertibility; however, there was no clear indication that it can be used for
computations in practice.

2. CONSTRUCTION OF SPLINE-WAVELETS OF THE THIRD DEGREE THAT ARE
SEMI-ORTHOGONAL TO THE SECOND DERIVATIVES

Let the space VL be a space of cubic splines of smoothness C2 on a grid composed of nodes ΔL,
and let the basis functions NL

i (x) = ϕ3(v − i) ∀i be generated by compressions and displacements of a
function of the form [19, p. 23]:

ϕ3(t) =
1
6

4∑

j=0

(
4
j

)

(−1)j(t − j)3+,

where tn+ = (max{t, 0})n. Then these functions satisfy the calibration relation [1, p. 154]:

ϕ3(t) =
1
8

4∑

k=0

(
4
k

)

ϕ3(2t − k). (1)

To facilitate the construction of wavelets near the ends of a finite segment, we impose the following
additional conditions on the functions: f(a) = f ′(a) = f(b) = f ′(b) = 0. The corresponding left-end
basis function has the form [11, 12]:

ϕb(t) =
3
2
t2+ − 11

12
t3+ +

3
2
(t − 1)3+ − 3

4
(t − 2)3+,

and satisfies the calibration relation

ϕb(t) =
1
4
ϕb(2t) +

11
16

ϕ3(2t) +
1
2
ϕ3(2t − 1) +

1
8
ϕ3(2t − 2). (2)

On any grid ΔL, L ≥ 2, a spline of the third degree with zero boundary conditions can be presented as
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SL(x) = C−1ϕb(v) +
2L−4∑

i=0

Ciϕ3(v − i) + C2L−3ϕb(2L − v), a ≤ x ≤ b, (3)

where the coefficients Ci ∀ i are a solution of, e.g., the following interpolation problem:

SL(xi) = f(xi), i = 1, 2, . . . , 2L − 1.

If the grid ΔL−1, L ≥ 1, is obtained from ΔL by means of removing each second node, then the
corresponding space VL−1 with the basis functions NL−1

i (x) whose supports are twice greater in terms
of width and whose centers are at even nodes of the grid ΔL is nested in VL. The essence of the wavelet-
transform can be formulated as follows: it allows the given function to be hierarchically expanded into
a series of rough approximate presentations VL−1 and local refining details WL−1 = VL − VL−1. Cubic
wavelets that are semi-orthogonal to the second derivatives with reduced supports have the following
form [11, 12]:

w3(t) = −3
7
ϕ3(2t) +

12
7

ϕ3(2t − 1) − 3
7
ϕ3(2t − 2),

(4)

wb(t) =
24
13

ϕb(2t) −
6
13

ϕ3(2t).

They satisfy the semi-orthogonality condition

2L∫

0

w′′
3(x − l)ϕ′′

3(x − k) dx =

2∫

0

w′′
b (x)ϕ′′

3(x − k) dx = 0, l, k = 0, 1, . . . , 2L − 2,

3∫

0

w′′
3(x − l)ϕ′′

b (x) dx =

2∫

0

w′′
b (x)ϕ′′

b (x) dx = 0, l = 0, 1, . . . , 2L − 2;

moreover, the condition of complementarity of dimensions of the resultant spaces Dim(VL) =
Dim(VL−1) + Dim(WL−1) is satisfied. These wavelets can be used for solving equations that contain the
second derivative of the sought function by the Galerkin method because they approximate the second
derivative with the second-order error

3∫

0

w′′
3(x)xmdx =

2∫

0

w′′
b (x)xmdx = 0, m = 0, 1.

2.1. Construction of the Constitutive System of Equations

For further considerations, it is convenient to write the basis spline-functions in the form of
a single matrix-row ϕL(·) =

[
ϕb(·), ϕ3(·), ϕ3(· − 1), . . . , ϕ3(· − 2L + 4), ϕb(2L − ·)

]
and to order the

spline coefficients in the form of a vector CL =
[
C−1, C0, . . . , C2L−3

]�. Then Eq. (3) is rewritten as
SL(x) = ϕL(v)CL, where v = (x − a)/h. In a similar way, we can write the basis wavelet-functions in
the form of a matrix-row as

ψL(·) =
[
wb(·), w3(·), w3(· − 1), . . . , w3(· − 2L + 3), wb(2L − ·)

]
.
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The corresponding coefficients of the wavelet decomposition at the level L are collected into a vector

DL =
[
D−1,D0, . . . ,D2L−2

]�. Then, for the decomposition level L − 1, the functions ϕL−1(·) and
ψL−1(·) can be written in the form of linear combinations of the functions ϕL(·):

ϕL−1(·) = ϕL(·)PL and ψL−1(·) = ϕL(·)QL,

where the blocks of the matrix PL are composed from the coefficients of relations (1) and (2) because
each wide basis function inside the approximation segment can be constructed from five narrow basis
functions, each wide basis function at the ends of the interval can be constructed from four narrow basis
functions, and the elements of the columns of the matrix QL can be constructed from the coefficients of
relations (4).

Therefore, the following equalities are valid:

ϕL(·)CL = ϕL−1(·)CL−1 + ψL−1(·)DL−1 = ϕL(·)PLCL−1 + ϕL(·)QLDL−1. (5)

Thus, the process of obtaining CL from CL−1 and DL−1 can be written as

CL = PLCL−1 + QLDL−1

or, by using the notation for block matrices,

CL =
[
PL | QL

]
[

CL−1

DL−1

]

. (6)

The following example shows how it is possible to obtain three basis spline-functions from V2 and
four basis wavelets from W2 by using seven basis functions from V3:

[
P 2 | Q2

]
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
4

0 0
24
13

0 0 0

11
16

1
8

0 − 6
13

−3
7

0 0

1
2

1
2

0 0
12
7

0 0

1
8

3
4

1
8

0 −3
7

−3
7

0

0
1
2

1
2

0 0
12
7

0

0
1
8

11
16

0 0 −3
7

− 6
13

0 0
1
4

0 0 0
24
13

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The reverse process of splitting the coefficients CL into a rough version CL−1 and refining coefficients
DL−1 implies solving a system of linear equations (6). The solvability of the resultant system is
guaranteed by the linear independence of the basis functions. To facilitate the numerical solution of the
system of linear equations (6), following [2], we can convert the matrix

[
PL | QL

]
to a five-diagonal form

by changing the order of unknowns so that the columns of the matrices PL and QL become alternated.
However, as is seen from the above-presented example, the derived system of equations has no diagonal
prevalence, which can make the wavelet-analysis of large-size data rather difficult.
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2.2. Algorithm with Splitting
We propose to perform calculations on the basis of our previously developed procedure [16, 20] of

even-odd splitting of wavelet-expansions of the form (5) relating the basis functions of the space of
splines on the fine grid, the basis functions on the sparse grid, and the wavelets by finite implicit relations
of decomposition. In particular, the following new matrix equality was obtained in [16] for the case of
cubic Hermite splines-wavelets [15] by the method of undetermined coefficients:

[
PL | QL

]
RL = GL. (7)

Here the matrix RL is composed of two simple band matrices, and matrix GL is a band matrix with five
nonzero diagonals. After that, the solution of the system of equations of the form (6) can be written in
the matrix form as follows [16]:

[
CL−1

DL−1

]

=
[
PL | QL

]−1
CL = RL

(
GL

)−1
CL. (8)

Moreover, after splitting of system (8) over even and odd nodes, the algorithm reduces to solving in-
dependently two three-diagonal systems of equations with strict diagonal prevalence, which is preferable
from the viewpoint of parallelization and stability of computations.

Similar equalities are also valid for the above-described type of wavelets, which can easily be verified
by means of direct calculations, e.g.,

[
P 3 | Q3

]−1 ·

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

60 −48 12 0

0 12 0 0 0

24 0 96 24 24 0

0 0 0 12 0 0 0

0 0 24 24 96 24 24 0
. . . . . . . . . . . . . . . . . .

0 24 24 96 0 24

0 0 0 12 0

0 12 −48 60

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

24 0 24 0 0 0

0 0 24 24 24 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 24 0 24

117
4

−26
13
4

0 0 0

7 0 42 7 7 0 0

0 0 7 7 42 7 7 0
. . . . . . . . . . . . . . . . . .

0 7 7 42 0 7

0 0
13
4

−26
117
4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Here square 15 × 15 matrices are located both on the left and on the right, and the right-hand matrix
is split into 7 × 15 and 8 × 15 blocks. The empty positions of the matrices are zero elements. The dots
arranged over the diagonal mean that the rows are repeated the corresponding number of times, being
displaced each time by two positions to the right.

The following statement describes the sequence of calculating the wavelet-coefficients on the basis
of the known coefficients of the spline-decomposition on an arbitrary grid ΔL, L ≥ 3.

Theorem. Let the values of the coefficients Ci at odd nodes be recalculated from the solution of a
three-diagonal system of linear equations of the form:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

5 1

2 8 2
. . . . . . . . .

2 8 2

1 5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C−1

C1

...

C2L−3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C−1 + 4C0

C1 − 2C2

C3 − 2C2 − 2C4

...

C2L−5 − 2C2L−6

C2L−3 + 4C2L−4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (9)

As it is usually done in algorithmic languages, the symbol “ := ” is used here to indicate that the
left-hand part of the system contains new values of the coefficients Ci, whereas the right-hand
part contains their known values.

Then the vector of the spline-coefficients of size
(
2L−1 − 1

)
on the sparse grid ΔL−1 is the result

of multiplication of the matrix of size
(
2L−1 − 1

)
×

(
2L − 1

)
:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 0 2

2 2 2
. . . . . . . . .

2 2 2

2 0 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

by the modified vector of the spline-coefficients of size
(
2L − 1

)
at the nodes of the fine grid ΔL,

whereas the vector of the wavelet-coefficients of size 2L−1 is equal to the same product with the
matrix of size 2L−1 ×

(
2L − 1

)
:

1
12

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

117
4

−26
13
4

7 0 42 7 7

7 7 42 7 7
. . . . . . . . . . . . . . .

7 7 42 0 7
13
4

−26
117
4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The dots arranged along the diagonal mean that the previous row is repeated the corresponding
number of times, being shifted by two positions to the right.
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Proof. The theorem is proved by direct verification of the scheme of splitting (7), (8). For example, let us
multiply the second row of the matrix

[
PL | QL

]
by the first three columns of the matrix RL composed

of the above-constructed matrices:

11
16

· 2 − 6
13

· 117
4 · 12 − 3

7
· 7
12

= 0,
6
13

· 26
12

= 1,
11
16

· 2 − 6
13

· 13
4 · 12 − 3

7
· 42
12

= 0.

These equalities mean that the spline coefficient C0 remains unchanged in the course of the transforma-
tion GLCL := CL with the matrix GL obtained by formula (7). The same manipulations with the first
row of the matrix

[
PL | QL

]
yield the values

1
4
· 2 +

24
13

· 117
4 · 12 = 5, −24

13
· 26
12

= −4,
1
4
· 2 +

24
13

· 13
4 · 12 = 1.

Moving the unchanged value of C0 to the right-hand side of the resultant equation, we obtain the
first equation of system (9) with respect to the changing odd coefficients of the spline on the fine grid.
Similar manipulations with the fourth row of the matrix

[
PL | QL

]
ensure justification of the fact that

the coefficient of the spline C2 also remains unchanged in the course of modification with the matrix GL.
The same manipulations with the third row of the matrix

[
PL | QL

]
yield the values

1
2
· 2 +

12
7

· 7
12

= 2, 0,
1
2
· 2 +

1
2
· 2 +

12
7

· 42
12

= 8,
1
2
· 2 +

12
7

· 7
12

= 2,
1
2
· 2 +

12
7

· 7
12

= 2.

Moving the unchanged value of C2 to the right-hand side of the resultant equation, we obtain the
second equation of system (9) with respect to the changing odd coefficients of the spline on the fine grid,
etc. Thus, indeed, the theorem conditions can be written in matrix form as Eq. (8). Therefore, they yield
the solution of system (6).

The number of arithmetic operations required for solving system (9) by the sweeping method is
3 · (2L−1 − 1) additions, 3 · (2L−1 − 1) multiplications, and 2 · (2L−1 − 1) + 1 divisions [19, p. 337].
Calculating the right-hand sides of the equations requires 2 · (2L−1 − 2) “short” displacement mul-
tiplications and 2 · (2L−1 − 2) additions; obtaining the spline-coefficients at the nodes of the sparse
grid requires 2 · (2L−1 − 1) additions. The most computationally expensive part of the algorithm is
the calculation of the wavelet-coefficients: 5 · (2L−1 − 4) + 14 multiplications and 4 · (2L−1 − 4) + 10
additions. If we make no differences between the arithmetic operations, then the total number of such
operations for one step of the wavelet decomposition is 23 · 2L−1 − 29. Taking into account that L = 3 at
the last stage of decimation, we obtain the number of arithmetic operations for calculating the total set
of the wavelet coefficients: 23 · 2L − 29L − 34. As compared to the earlier known fast algorithm [11–13]
of the discrete wavelet transform based on solving a sequence of interpolation problems, this algorithm
allows the wavelet decomposition coefficients to be obtained in a different way with a comparable number
of operations. The advantages of the new algorithm are its stability and possibility of parallelization
because one system of linear equations (instead of two systems in the known algorithm) with a matrix
possessing strict diagonal prevalence is solved at each step.

3. EXAMPLES

Let us consider the test function in the form of the Harten function [17] defined on the segment [0, 1]:

f(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2

sin(3πx), x ≤ 1
3
,

| sin(4πx)| , 1
3
≤ x ≤ 2

3
,

−1
2

sin(3πx), x >
2
3
.
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This is a piecewise-smooth function equal to zero at the points x = 0 and 1. It may have discontinu-
ities of the first kind at the points x = 1/3 and 2/3 and an inflection (discontinuity of the first derivative)
at the point x = 1/2. Its first and second derivatives are also piecewise-smooth functions. Let us make
an attempt to calculate the second derivative of the Harten function by using the spline-wavelets of the
third degree studied in this paper that are semi-orthogonal to the second derivatives.

3.1. Example of Spline-Wavelets of the First Degree That are Semi-Orthogonal
to the First Derivatives

Let us assume that

ψL
1 (x) =

1
2
2−L/2w1(2Lx + 1),

ψL
i (x) =

√
2

4
2−L/2w1(2Lx + 2 − i), i = 2, 3, . . . , 2L.

Then ψL
i (x) are normalized so that

∥
∥
∥
∥

d

dx
ψL

i (x)
∥
∥
∥
∥

L2(0,1)

= 1 for i = 1, 2, . . . , 2L. Based on the consid-

eration of the complementarity of dimensions, we remove the basis functions at the last node from the
spaces of splines and wavelets. This procedure is supported by the property of setting the approximated
function to zero at the right end of the interval. A different situation was discussed in [21].

Starting from the upper level of the resolution L = 5, i.e., at the number of grid steps 2L = 32, on
the interval 0 ≤ x ≤ 1 with a step length h = 2−L = 0.031, we find the coefficients of the normalized
wavelet-basis for

L = 5 : D4 = [−8.373,−11.77,−11.58,−11.34,−11.13,−11.01,−6.767,−5.971,−5.642,

−5.312,−4.516, 0.8311, 0.7162, 0.5014, 0.259, 0.07071]� ;

L = 4 : D3 = [3.314, 5.061, 5.722, 1.088, 2.745, 4.402, 1.036, 0.3745]� ;

L = 3 : D2 = [−8,−9.701,−5.044, 1.613]� ;

L = 2 : D1 = [3.14 · 10−16, 1.414]�;

L = 1 : at the last (roughest) level, there remains only one wavelet-coefficient D0 = −4.898 · 10−16 and
one spline decomposition coefficient C0 = 0 at the left end of the interval.

The circles in Fig. 1 show the results of the reconstruction of the first derivative of the spline of
the first degree

(
S5

)′ (xi+h/2) = (C5
i+1−C5

i )/h under the condition of setting ten wavelet-coefficients
with the absolute values smaller than 1.414 to zero. The solid curve is the first derivative of the original
function. In this case, the compression coefficient K = 32/22 ≈ 1.455 is reached. The finite-difference
approximation of the first derivative, which is not shown in the figure, coincides with the curve on smooth
segments and is little different from the circles at the points where the function is discontinuous.

3.2. Example of Spline-Wavelets of the Third Degree That are Semi-Orthogonal
to the Second Derivatives

In the case of cubic splines, the normalized wavelets have the form

ψL
1 (x) = 0.083 · 8−L/2wb(2Lx), ψL

2L(x) = 0.083 · 8−L/2wb(1 − 2Lx),

ψL
i (x) = 0.097 · 8−L/2w3(2Lx + 1 − i), i = 2, 3, . . . , 2L − 1,
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Fig. 2. Wavelet-reconstruction of the second derivative of the spline of the third degree.

where

∥
∥
∥
∥

d2

dx2
ψL

i (x)
∥
∥
∥
∥

L2(0,1)

= 1 for i = 1, 2, . . . , 2L.

As the first derivative of the Harten function at the points x = 0 and 1 is not equal to zero, we
subtract the values of the cubic interpolation polynomial f ′(0)x(1 − x)2 − f ′(1)(1 − x)x2 with subse-
quent addition of this polynomial to the wavelet-synthesis results. Instead of the original coefficients of
decomposition in the basis of B-splines, we use the function values that are little different from them.
This trick is very popular in the literature all over the world; it is called a “Wavelet Crime” [22, 23].

Starting from the upper level of the resolution L = 5, we find the coefficients of the normalized
wavelet-basis for

L = 5 : D4 = [0.8956,−0.4546, 1.546,−5.021, 19.17, 115.5,−37.04, 36.8, 38.49,−42.12, 134.1,
9.012,−2.529, 0.4743,−0.07706,−0.7798]� ;

L = 4 : D3 = [−50, 248.7,−1151, 387, 234.4,−915.1, 201.3,−54.04]� ;
L = 3: at the roughest level of decomposition, there remain four wavelet-coefficients D2 = [1849,

6881, 1.009 · 104,−184.5]� and three spline-coefficients C2 = [−239.1, 242.9, 100.3]� .
Figure 2 shows the results of the reconstruction of the second derivative of the spline of the third

degree
(
S5

)′′ (xi) =(C5
i+1 − 2C5

i + C5
i−1)/h

2 under the condition of setting 19 wavelet-coefficients with
the absolute values smaller than 185 to zero. In this case, the compression coefficient K = 31/12 ≈
2.583 is reached. The circles clearly demonstrate the alternance behavior of the second derivative of the
spline, which is similar on segments where the function is smooth to the behavior of the broken line of
the best root-mean-square approximation of the second derivative (solid curve) with inflections at spline
nodes that remain after reconstruction. The finite-difference approximation of the second derivative,
which is not shown in the figure, is little different from the curve, demonstrating splashes up to ±103

at points where the function and its first derivative are discontinuous.

4. CONCLUSIONS
A pioneering application of the author’s procedure of even-odd splitting of the constitutive systems

of wavelet decompositions to the basis of B-splines is considered. The procedure for the case of the
Hermite wavelets is adjusted for approximation of functions that do not require setting the values of the
derivatives, which is important for practice. Examples and calculations demonstrating the root-mean-
square approximation of the second derivative of the given function with the use of the second derivative
of the spline on a sparse grid are presented. The advantage of the proposed procedure over other methods
of calculating derivatives is the possibility of adaptive selection of the nodes of the approximating spline
on the basis of the coefficients of its wavelet decomposition. Extension of the proposed method to splines
of higher degrees and smoothness may offer new possibilities of developing stable algorithms of spline-
wavelets construction and application.
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