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Abstract—The main objective and inspiration in the construction of two- and three-point with
memory method is to attain the utmost computational efficiency, without any additional function
evaluations. At this juncture, we have modified the existing fourth and eighth order without memory
method with optimal order of convergence by means of different approximations of self-accelerating
parameters. The parameters have been calculated by Hermite interpolating polynomial, which
accelerates the order of convergence of the without memory methods. In particular, the R-order
convergence of the proposed two- and three-step with memory methods is increased from four to
five and eight to ten. One more advantage of these methods is that the condition f ′(x) �= 0, in
the neighborhood of the required root, imposed on Newton’s method, can be removed. Numerical
comparison is also stated to confirm the theoretical results.
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1. INTRODUCTION

Nowadays, solving nonlinear equation f(x) = 0 is a very important problem in real world phenomena.
To find the solution of nonlinear equations, many iterative methods have been proposed (see [1–3, 6, 8,
11, 12]), where these iterative methods have an important area of research in numerical analysis because
they have applications in many branches of pure and applied sciences. Out of them the most famous
one-point iterative method without memory is Newton–Rapson method, which is given by

xn+1 = xn − f(xn)
f ′(xn)

, (1.1)

and converges quadratically. One disadvantage of this method is the condition f ′(xn) �= 0, which
restricts its applications in practice. To resolve this problem, Kumar et al. [3] developed a new one-point
iterative method, given by

xn+1 = xn − f(xn)
f ′(xn) − λ1f(xn)

. (1.2)

If we take λ1 = 0, then we obtain Newton method. The error expression for the above method is:

en+1 = (λ1 − c2)e2
n + O(e3

n), (1.3)
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TWO- AND THREE-POINT WITH MEMORY METHODS 75

where en = xn − α, ck = 1
k!

f(k)(α)
f ′(α) , k = 2, 3, . . . , and α is the root of f(x) = 0. Next, we discuss the

classification of possible types of iteration function (IF). These IFs have been categorized on the basis of
the information they require [4, 5].

(i) One-point iterative method without memory. In this type of methods xk+1 can be determined
by only new data at xk. No old data are reused. Thus, xk+1 = φ(xk), then φ will be called a one-
point IF. The best known example of this type of method is Newton’s IF.

(ii) One-point iteration function with memory. In this category xk+1 can be determined by new
data at xk and reused data at xk−1, . . . , xk−n. Thus xk+1 = φ(xk;xk−1, . . . , xk−n), then φ will be
called a one-point IF with memory, because here xk is the new information, while xk−1, . . . , xk−n

are reused information. The best known example of the with memory one-point method is a secant
method. In the above mapping, the semicolon separates the point at which new data are used from
the points at which old data are reused.

(iii) Multi-point iteration function without memory. In this type of methods xk+1 can be de-
termined by only new information at xk, w1(xk), . . . , wn(xk) (n ≥ 1). No old data are reused.
Thus, xk+1 = φ(xk, w1(xk), . . . , wn(xk)), then φ is called a multipoint iteration function without
memory. The multipoint IFs are useful because they avoid certain characteristic limitations over
one-point IFs with and without memory.

(iv) Multi-point iteration function with memory. Finally, in this category, let us define an-
other iteration function φ having arguments zj , where each such argument represents k + 1
quantities xj , w1(xj), . . . , wn(xj) (n ≥ 1). Let the iteration mapping be defined by xk+1 =
φ(zk; zk−1, . . . , zk−n). Then φ is called a multipoint IF with memory. In the above-mentioned
mapping, semicolon separates the points at which new information is used from the point at
which old information is reused, i.e., at each iterative step we must preserve information of
the last n approximations xj and for each approximation, we must calculate n expressions
w1(xj), . . . , wn(xj).

Multipoint schemes are of immense practical importance, since they overcome theoretical limits of
any one-point method in terms of convergence order and computational efficiency. Also, multipoint
methods create approximations of higher accuracy; the high-speed development of digital computers,
highly developed computer arithmetic and symbolic calculation allow for an even more efficient execution
of multipoint methods. Multipoint methods with memory make use of information from the recent and
preceding iterations. While the initial scheme for the construction of this class of methods date back
to 1964 and Traub’s book, the role of this area very rarely appears in the literature. To fill this gap we
present two-step and three-step with memory schemes. The order of the convergence of the new with
memory multipoint method is higher than that of the corresponding optimal without memory multipoint
method. Improved convergence order is derived by several self-accelerating parameters. The accelerated
convergence rate has been obtained without additional evaluation of function, which results in greater
computational efficiency.

The main objective of this paper is to work on the multipoint iteration function with memory,
because it can improve the order of convergence of the without memory methods, without using any
additional calculations and it has very high computational efficiency. In this paper, we have presented
two new multipoint iterative methods with memory, to solve the nonlinear equations followed by their
convergence analysis. Sections 2 and 3 can be summarized as follows: In Section 2, we construct two-
point and three-point iterative methods with memory. These methods have been obtained by employing
a self-accelerating parameter. This parameter is calculated by the Hermite interpolating polynomial,
where the R-order convergence of the two-point method is increased from 4 to 4.5616, 4.7913, 5, and
that of the three-point method increased from 8 to 9, 9.5846, 9.7958, 10. At the end, the theoretical
results are confirmed by considering different numerical examples.
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2. CONVERGENCE ANALYSIS FOR WITH MEMORY METHODS

In the ensuing section, we will improve the convergence rate of the method by Behl and Kanwar [6] by
replacing the parameter T with Tn. First we consider the optimal fourth-order without memory scheme
presented in [6]:

yn = xn − f(xn)
f ′(xn) − Tf(xn)

,

xn+1 = yn −
(

f(yn)
b1f ′(xn) − Tf(xn)

)(
b3f(xn) + b4f(yn)
f(xn) + b2f(yn)

)
, (2.1)

where b1 = 1
2 , b3 = 1

2 , b4 = b2+2
2 , b2 = γ − 2, and T, γ ∈ R. The error equation for each step of (2.1) is

en,y = yn − α = (c2 − T )e2
n + (2c2

2 + T 2 − 2c2T − 2c3)e3
n

+(T 3 + 5Tc2
2 − 4c3

2 − 4Tc3 + c2(7c3 − 3T 2) − 3c4)e4
n + O(e5

n) (2.2)

and

en+1 = (c2 − T )[2(b2 + 1)T 2 − (4b2 + 7)Tc2 + (2b2 + 5)c2
2 − c3]e4

n + O(e5
n), (2.3)

where en,y = yn − α, en = xn − α and cj = f(j)(α)
j!f ′(α) , for j = 2, 3, . . . . Substituting Tn in place of T in

(2.1), we obtain the following iterative method with memory:

yn = xn − f(xn)
f ′(xn) − Tnf(xn)

,

xn+1 = yn −
(

f(yn)
b1f ′(xn) − Tnf(xn)

)(
b3f(xn) + b4f(yn)
f(xn) + b2f(yn)

)
, (2.4)

which is denoted by OM4. It is easy to recognize from (2.3) that the order of convergence of (2.1)
is four when T �= c2. By taking the value of T = c2 = f ′′(α)/(2f ′(α)), it can be established that the
order of the method (2.1) would be 5. For this type of acceleration of convergence and in actual fact
the exact values of f ′(α) and f ′′(α) are not obtainable. Otherwise, we could replace the parameter T by
Tn. To locate the values of the parameter, we can utilize the information accessible from the current and
previous iteration and it satisfies lim

n→∞
Tn = c2 = f ′′(α)/(2f ′(α)), such that the fourth-order asymptotic

convergence constant to be zero in (2.3). We consider the following formula for Tn:

Method 1:

Tn =
H ′′

2 (xn)
2f ′(xn)

, (2.5)

where H2(x) = f(xn) + f [xn, xn](x − xn) + f [xn, xn, yn−1](x − xn)2 and H ′′
2 (x) = 2f [xn, xn, yn−1].

Method 2:

Tn =
H ′′

3 (xn)
2f ′(xn)

, (2.6)

where H3(x) = H2(x) + f [xn, xn, yn−1, xn−1](x − xn)2(x − yn−1) and H ′′
3 (x) = 2f [xn, xn, yn−1] +

2f [xn, xn, yn−1, xn−1](xn − yn−1).
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Method 3:

Tn =
H ′′

4 (xn)
2f ′(xn)

, (2.7)

where H4(x) = H3(x) + f [xn, xn, yn−1, xn−1, xn−1](x − xn)2(x − yn−1)(x − xn−1), H ′′
4 (x) = 4f [xn,

xn, yn−1] + (2f [xn, xn, yn−1, xn−1] − 2f [xn, yn−1xn−1, xn−1])(xn − yn−1) and f [xn, xn] = f ′(xn),

f [xn, yn] = f(xn)−f(yn)
xn−yn

are two first-order divided differences. The higher order divided difference of
f [xn, xn, t0, t1 , . . . , tm−2] of order m is defined as

f [xn, xn, t0, t1, . . . , tm−2] =
f [xn, t0, t1, . . . , tm−2] − f [xn, xn, t0, t1, . . . , tm−3]

tm−2 − xn
,

m ≥ 2, and we will use these notations throughout the paper.

Note. The Hermite interpolation polynomial Hm(x) (m = 2, 3, 4) satisfied the condition H ′
m(xn) =

f ′(xn) (m = 2, 3, 4). So, Tn = H′′
m(xn)

2f ′(xn) can be expressed as Tn = H′′
m(xn)

2H′
m(xn) (m = 2, 3, 4).

Theorem 1. Let Hm be the Hermite interpolating polynomial of degree m that interpolates
a function f at interpolation nodes xn, xn, t0 . . . tm−2 contained in an interval I, and let the
derivative f (m+1) be continuous in I and the Hermite interpolating polynomial Hm(xn) = f(xn),
H ′

m(xn) = f ′(xn), and Hm(tj) = f(tj) (j = 0, 1, . . . ,m − 2). Define the errors et,j = tj − α (j =
0, 1, . . . ,m − 2) and assume that

(1) all nodes xn, t0, . . . , tm−2 are sufficiently close to the zero α;
(2) the condition en = O(et,0 . . . et,m−2) holds.

Then

H ′′
m(xn) = 2f ′(α)

(
c2 − (−1)m−1cm+1

m−2∏
j=0

et,j + 3c3en

)
, (2.8)

Tn =
H ′′(xn)
2f ′(xn)

∼
(

c2 − (−1)m−1cm+1

m−2∏
j=0

et,j + (3c3 − 2c2
2)en

)
, (2.9)

Tn − c2 ∼
(
− (−1)m−1cm+1

m−2∏
j=0

et,j + (3c3 − 2c2
2)en

)
. (2.10)

Proof. The error expression of the Hermite interpolation can be uttered in this way:

f(x) − Hm(xn) =
f (m+1)(ξ)
(m + 1)!

(x − xn)2
m−2∏
j=0

(xn − tj), ξ ∈ I. (2.11)

After twice differentiating (2.11) at the point x = xn, we get

H ′′
m(xn) = f ′′(x) − 2

f (m+1)(ξ)
(m + 1)!

m−2∏
j=0

(xn − tj), ξ ∈ I. (2.12)

Taylor’s series of derivative of f at the point xn ∈ I and ξ ∈ I about the zero α of f provides

f ′(xn) = f ′(α)
(
1 + 2c2en + 3c3e

2
n + O(e3

n)
)
, (2.13)
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f ′′(xn) = f ′(α)
(
2c2 + 6c3en + O(e2

n)
)
, (2.14)

and

f (m+1)(ξ) = f ′(α)
(
(m + 1)!cm+1 + (m + 2)!cm+2eξ + O(e2

ξ)
)
, (2.15)

where eξ = ξ − α. Putting (2.14), (2.15) in (2.12), we obtain

H ′′
m(xn) = 2f ′(α)

(
c2 − (−1)m−1cm+1

m−2∏
j=0

et,j + 3c3en

)
, (2.16)

which implies

H ′′
m(xn)

2f ′(xn)
∼

(
c2 − (−1)m−1cm+1

m−2∏
j=0

et,j + (3c3 − 2c2
2)en

)
. (2.17)

And hence,

Tn ∼
(

c2 − (−1)m−1cm+1

m−2∏
j=0

et,j + (3c3 − 2c2
2)en

)
, (2.18)

or

Tn − c2 ∼
(
− (−1)m−1cm+1

m−2∏
j=0

et,j + (3c3 − 2c2
2)en

)
. (2.19)

The conception of R-order of convergence [7] and the subsequent declaration (see [8, p. 287]) will be
applied to approximate the convergence order of the iterative method (2.4) .

Theorem 2. If the errors of approximations ej = xj − α obtained in an iterative root finding
method IM satisfy

ek+1 ∼
m−2∏
i=0

(ek−i)mi , k ≥ k({ek}),

then the R-order of convergence of IM, denoted with OR(IM,α), satisfies the inequality

OR(IM,α) ≥ s∗, where s∗ is the unique positive solution of the equation sn+1 −
n∑

i=0
mis

n−i = 0.

At this moment, we can state the following convergence theorem for the iterative method with
memory (2.4).

Theorem 3. Let the varying parameter Tn in the iterative method (2.4) be calculated by (2.5)–
(2.7). If an initial approximation x0 is sufficiently close to a simple root α of f(x), then the R-order
of convergence of iterative methods (2.4), (2.5) and (2.4), (2.6) and (2.4), (2.7) with memory is at
least (5 +

√
17)/2 ≈ 4.5616, (5 +

√
21)/2 ≈ 4.7913 and 5, respectively.
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Proof. Let the sequence {xn} be generated by an iterative method (IM) and converge to the root α of
f(x), with R-order OR(IM,α) ≥ r, we write

en+1 ∼ Dn,re
r
n. (2.20)

If we take n → ∞, then Dn,r tends to the asymptotic error constant Dr of IM. So

en+1 ∼ Dn,r(Dn−1,re
r
n−1)

r = Dn,rD
r
n−1,re

r2

n−1. (2.21)

The following error expression of the with memory method (2.4), can be obtained by (2.2), (2.3) and the
varying parameter Tn:

en,y = yn − α ∼ (Tn − c2)e2
n, (2.22)

and

en+1 = xn+1 − α ∼ Bn,4(Tn − c2)e4
n, (2.23)

where Bn,4 is a varying quantity because of the self-accelerating parameter Tn and it comes from (2.3).
Here, we excluded higher order terms in (2.22) and (2.23).

Method 1. Tn is calculated by (2.5), it is similar to the derivation of (2.20). We assume that the iterative
sequence {yn} has the R-order p, then

en,y ∼ Dn,pe
p
n ∼ Dn,p(Dn−1,re

r
n−1)

p = Dn,pD
p
n−1,re

rp
n−1. (2.24)

Using Theorem 1 for m = 2 and t0 = yn−1, we attain

Tn − c2 ∼ c3et,0 = c3en−1,y. (2.25)

Now from (2.22), (2.23), and (2.25), we get

en,y ∼ c3en−1,y(Dn−1,re
r
n−1)

2 ∼ c3Dn−1,pD
2
n−1,re

2r+p
n−1 , (2.26)

en+1 ∼ Bn,4c3en−1,ye
4
n ∼ Bn,4c3Dn−1,pe

p
n−1(Dn−1,re

r
n−1)

4,∼ Bn,4c3Dn−1,pD
4
n−1,re

4r+p
n−1 . (2.27)

By comparing the components of en−1 featuring in two pairs of relations (2.24), (2.26) and (2.21), (2.27),
we obtain the subsequent system of equations:

2r + p = rp,

4r + p = r2.
(2.28)

Positive solution of system (2.28) is given by r = (5 +
√

17)/2 and p = (1 +
√

17)/2. Therefore, the
R-order of the methods with memory (2.4), (2.5) is at least (5 +

√
17)/2 ≈ 4.5616.

Method 2. Tn is calculated by (2.6). Using Theorem 1 for m = 3, t0 = yn−1, and t1 = xn−1, we get

Tn − c2 ∼ −c4et,0et,1 = −c4en−1,yen−1. (2.29)

In accordance with (2.22), (2.23) and (2.29), we find

en,y ∼ (Tn − c2)e2
n ∼ −c4en−1en−1,y(Dn−1,re

r
n−1)

2 ∼ −c4Dn−1,pD
2
n−1,re

2r+p+1
n−1 , (2.30)
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en+1 ∼ −Bn,4c4en−1en−1,ye
4
n ∼ −Bn,4c4en−1Dn−1,pe

p
n−1(Dn−1,re

r
n−1)

4

∼ −Bn,4c4Dn−1,pD
4
n−1,re

4r+p+1
n−1 . (2.31)

By comparing the components of en−1 featuring in two pairs of relations (2.24), (2.30) and (2.21), (2.31),
we obtain the subsequent system of equations:

2r + p + 1 = rp,

4r + p + 1 = r2.
(2.32)

Positive solution of system (2.32) is given by r = (5 +
√

21)/2 and p = (1 +
√

21)/2. Therefore, R-order
of the methods with memory (2.4), (2.6) is at least (5 +

√
21)/2 ≈ 4.7913.

Method 3. Tn is calculated by (2.7). Hermite interpolating polynomial H4(x) satisfied the condi-
tion H4(xn) = f(xn), H ′

4(xn) = f ′(xn), H4(yn−1) = f(yn−1), H4(xn−1) = f(xn−1), and H ′
4(xn−1) =

f ′(xn−1). The error of the Hermite interpolation can be expressed as follows:

f(x) − H4(x) =
f (5)(ξ)

5!
(x − xn)2(x − xn−1)2(x − yn−1), ξ ∈ I. (2.33)

After twice differentiating (2.33) at the point x = xn, we attain

H ′′
4 (xn) = f ′′(xn) − 2

f (5)(ξ)
5!

(xn − xn−1)2(xn − yn−1), ξ ∈ I. (2.34)

Taylor’s series of derivatives of f at the points xn ∈ I and ξ ∈ I about the zero α of f provide

f ′(xn) = f ′(α)
(
1 + 2c2en + 3c3e

2
n + O(e3

n)
)
, (2.35)

f ′′(xn) = f ′(α)
(
2c2 + 6c3en + O(e2

n)
)
, (2.36)

f (m+1)(ξ) = f ′(α)
(
(m + 1)!cm+1 + (m + 2)!cm+2eξ + O(e2

ξ)
)
, (2.37)

where eξ = ξ − α. Substituting (2.37) and (2.36) into (2.34), we obtain

H ′′
4 (xn) = 2f ′(α)

(
c2 − c5en−1,ye

2
n−1 + 3c3en

)
. (2.38)

Using (2.22) and (2.23), we have

en−1,y = yn−1 − α ∼ (Tn−1 − c2)e2
n−1, (2.39)

en = xn − α ∼ Bn−1,4(Tn−1 − c2)e4
n−1. (2.40)

Then

en−1,ye
2
n−1 ∼ (Tn−1 − c2)e4

n−1 ∼ 1
Bn−1,4

en. (2.41)

Now, substituting the value of (2.41) into (2.38), we attain

H ′′
4 (xn) = 2f ′(a)

(
c2 +

(
3c3 −

c5

Bn−1,4

)
en

)
, (2.42)
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TWO- AND THREE-POINT WITH MEMORY METHODS 81

which implies

H ′′
4 (xn)

2f ′(xn)
∼ c2 +

(
3c3 − 2c2

2 −
c5

Bn−1,4

)
en. (2.43)

And hence,

Tn =
H ′′

4 (xn)
2f ′(xn)

∼ c2 +
(

3c3 − 2c2
2 −

c5

Bn−1,4

)
en, (2.44)

or

Tn − c2 ∼
(

3c3 − 2c2
2 −

c5

Bn−1,4

)
en. (2.45)

Putting the value of (2.45) into (2.23), we obtain

en+1 ∼ Bn,4

(
3c3 − 2c2

2 −
c5

Bn−1,4

)
e5
n. (2.46)

As a result, the R-order of the methods with memory (2.4), (2.7) is at least 5. Thus, the proof is
completed.

Next, we are considering the optimal eighth-order without memory scheme of the same paper [6],
given by

yn = xn − f(xn)
f ′(xn) − Tf(xn)

,

zn = yn −
(

f(yn)(f(xn) + γf(yn))
(f ′(xn) − 2Tf(xn))(f(xn) + (γ − 2)f(yn))

)
,

xn+1 = zn − f(zn)(f [zn, yn] + f [zn, yn, xn](zn − yn) + f [zn, yn, xn, xn](zn − yn)(zn − xn))−1, (2.47)

where T, γ ∈ R. The error expressions for each step of the method (2.47) are

en,y = yn − α = (T − c2)e2
n + O(e3

n), (2.48)

en,z = zn − α = (c2 − T )[2(b2 + 1)T 2 − (4b2 + 7)Tc2 + (2b2 + 5)c2
2 − c3]e4

n + O(e5
n), (2.49)

en+1 = [(T − c2)2(2(γ − 1)T 2 − (4γ − 17)Tc2 + (2γ + 1)c2
2 − c3)

×(−T (4γ − 1)c2
2 + (2γ + 1)c3

2 + c2(2T 2(γ − 1) − c3) + c4)]e8
n + O(e9

n). (2.50)

It is easy to recognize from (2.50) that the order of convergence of (2.47) is eighth when T �= c2. By
captivating the value of T = c2 = f ′′(α)/(2f ′(α)), it can be established that the order of the method
(2.47) would be 10. For this type of acceleration of convergence and in actual fact the exact values of
f ′(α) and f ′′(α) are not obtainable. But we could replace the parameter T by Tn. To locate the values
of the parameter, we can utilize the information accessible from the current and previous iteration and it
satisfies lim

n→∞
Tn = c2 = f ′′(α)/(2f ′(α)), such that the eighth-order asymptotic convergence constant

to be zero in (2.50). We consider the following formula for Tn:
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Method 4:

Tn =
H ′′

2 (xn)
2f ′(xn)

, (2.51)

where H2(x) = f(xn) + f [xn, xn](x − xn) + f [xn, xn, zn−1](x − xn)2 and H ′′
2 (xn) = 2f [xn, xn, zn−1].

Method 5:

Tn =
H ′′

3 (xn)
2f ′(xn)

, (2.52)

where H3(x) = H2(x) + f [xn, xn, zn−1, yn−1](x − xn)2(x − zn−1) and H ′′
3 (x) = H ′′

2 (xn) + 2f [xn, xn,
zn−1, yn−1](xn − zn−1).

Method 6:

Tn =
H ′′

4 (xn)
2f ′(xn)

, (2.53)

where H4(x) = H2(x) + f [xn, xn, zn−1, yn−1](x − xn)2(x − zn−1) + f [xn, xn, zn−1, yn−1, xn−1](x −
xn)2(x − zn−1)(x − yn−1) and H ′′

4 (xn) = H ′′
2 (xn) + 2f [xn, xn, zn−1, yn−1](xn − zn−1) + 2f [xn, xn,

zn−1, yn−1, xn−1](xn − zn−1)(xn − yn−1).

Method 7:

Tn =
H ′′

5 (xn)
2f ′(xn)

, (2.54)

where H5(x) = H4(x) + f [xn, xn, zn−1, yn−1, xn−1, xn−1](x − xn)2(x − zn−1)(x − yn−1)(x − xn−1)
and H ′′

5 (xn) = H ′′
4 (xn) + 2f [xn, xn, zn−1, yn−1, xn−1, xn−1](xn − zn−1)(xn − yn−1)(xn − xn−1). Then

Tn can be calculated by using the above three equations. Substituting Tn in place of T in (2.47), we
obtain the following iterative method with memory:

yn = xn − f(xn)
f ′(xn) − Tnf(xn)

,

zn = yn −
(

f(yn)(f(xn) + γf(yn))
(f ′(xn) − 2Tnf(xn))(f(xn) + (γ − 2)f(yn))

)
,

xn+1 = zn − f(zn)(f [zn, yn] + f [zn, yn, xn](zn − yn) + f [zn, yn, xn, xn](zn − yn)(zn − xn))−1. (2.55)

For γ = 1 the method is denoted by OM81 and for γ = 0 the method is denoted by OM82.

Theorem 4. Let the varying parameter Tn in the iterative method (2.55) be calculated by (2.51)–
(2.54). If an initial approximation x0 is sufficiently close to a simple root α of f(x), then the R-
order of convergence of iterative methods (2.55) with the corresponding expressions (2.51)–(2.54)
of Tn is at least 9, (5 +

√
21) ≈ 9.5826, (5 +

√
23) ≈ 9.7958, and 10, respectively.

Proof. Let the sequence {xn} be generated by an iterative method (IM) and converge to the root α of
f(x) with R-order OR(IM,α) ≥ r. We state

en+1 ∼ Dn,re
r
n. (2.56)

If we take n → ∞, then Dn,r tends to the asymptotic error constant Dr of IM. So,

en+1 ∼ Dn,r(Dn−1,re
r
n−1)

r = Dn,rD
r
n−1,re

r2

n−1. (2.57)
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The following error expression of the with memory method (2.55) can be obtained by (2.48)–(2.50) and
the varying parameter Tn:

en,y = yn − α ∼ (Tn − c2)e2
n, (2.58)

en,z = zn − α ∼ Bn,4(Tn − c2)e4
n, (2.59)

en+1 = xn+1 − α ∼ Bn,8(Tn − c2)2e8
n, (2.60)

where Bn,4 and Bn,8 are two varying quantities because of the self-accelerating parameter Tn and they
come from (2.49) and (2.50). Here, we excluded higher order terms in (2.59) and (2.60).

Method 4. Tn is calculated by (2.51). It is similar to the derivation of (2.56). Let us suppose that p and
q are the R-order of the iteration sequences {yn} and {zn}, respectively, then we have

en,y ∼ Dn,pe
p
n ∼ Dn,p(Dn−1,re

r
n−1)

p = Dn,pD
p
n−1,re

rp
n−1, (2.61)

en,z ∼ Dn,qe
q
n ∼ Dn,q(Dn−1,re

r
n−1)

q = Dn,qD
q
n−1,re

rq
n−1. (2.62)

By taking m = 2 and t0 = zn−1 for Theorem 1, we attain

Tn − c2 ∼ c3et,0 = c3en−1,z. (2.63)

Now from (2.58)–(2.60) and (2.63), we get

en,y ∼ c3en−1,z(Dn−1,re
r
n−1)

2 ∼ c3Dn−1,qD
2
n−1,re

2r+q
n−1 , (2.64)

en,z ∼ c3en−1,zBn,4e
4
n ∼ c3Dn−1,qBn,4D

4
n−1,re

4r+q
n−1 , (2.65)

en+1 ∼ c2
3Bn,8e

2
n−1,ze

8
n ∼ c2

3Bn,8D
2
n−1,qe

2q
n−1D

8
n−1,re

8r+2q
n−1 . (2.66)

By comparing the components of en−1 featuring in three pairs of relations (2.61), (2.64), (2.62), (2.65)
and (2.57), (2.66), we obtain the subsequent system of equations:

2r + q = rp,

4r + q = rq,

8r + 2q = r2.

(2.67)

Positive solution of system (2.67) is given by r = 9, q = 4.5, and p = 2.5. Therefore, the R-order of the
methods with memory (2.55), when Tn is calculated by (2.51), is at least 9.

Method 5. Tn is calculated by (2.52). By taking m = 3, t0 = zn−1 and t1 = yn−1 for Theorem 1, we
attain

Tn − c2 ∼ −c4et,0et,1 = −c4en−1,zen−1,y. (2.68)

In accordance with (2.68) into (2.58)–(2.60), we find

en,y ∼ (Tn − c2)e2
n ∼ −c42en−1,zen−1,y(Dn−1,re

r
n−1)

2

∼ −c4Dn−1,qDn−1,pD
2
n−1,re

2r+q+p
n−1 , (2.69)
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en,z ∼ (Tn − c2)Bn,4e
4
n ∼ −c4Bn,4en−1,zen−1,y(Dn−1,re

r
n−1)

4

∼ −c4Bn,4Dn−1,qDn−1,pD
4
n−1,re

4r+q+p
n−1 , (2.70)

en+1 ∼ −Bn,8c
2
4e

2
n−1,ze

2
n−1,ye

8
n

∼ −Bn,8c
2
4D

2
n−1,qD

2
n−1,pD

8
n−1,re

8r+2q+2p
n−1 . (2.71)

By comparing the components of en−1 featuring in three pairs of relations (2.61), (2.69), (2.62), (2.70)
and (2.57), (2.71), we obtain the subsequent system of equations:

2r + p + q = rp,

4r + p + q = rq,

8r + 2p + 2q = r2.

(2.72)

Positive solution of system (2.72) is given by r = (5 +
√

21), q = (5 +
√

21)/2, and p = (1 +
√

21)/2.
Therefore, the R-order of the methods with memory (2.55), when Tn is calculated by (2.52), is at least
9.5826.

Method 6. Tn is calculated by (2.53). By taking m = 4, t0 = zn−1, t1 = yn−1, and t2 = xn−1 for
Theorem 1, we attain

Tn − c2 ∼ c5et,0et,1et,2 = c5en−1,zen−1,yen−1. (2.73)

In accordance with (2.73) into (2.58)–(2.60), we find

en,y ∼ (Tn − c2)e2
n ∼ c5en−1en−1,zen−1,y(Dn−1,re

r
n−1)

2

∼ c5Dn−1,qDn−1,pD
2
n−1,re

2r+q+p+1
n−1 , (2.74)

en,z ∼ (Tn − c2)Bn,4e
4
n ∼ c5en−1en−1,zen−1,y(Dn−1,re

r
n−1)

4

∼ c5Bn,4Dn−1,qDn−1,pD
4
n−1,re

4r+q+p+1
n−1 , (2.75)

en+1 ∼ Bn,8c
2
5e

2
n−1e

2
n−1,ze

2
n−1,ye

8
n

∼ Bn,8c
2
5D

2
n−1,qD

2
n−1,pD

8
n−1,re

8r+2q+2p+2
n−1 . (2.76)

By comparing the components of en−1 featuring in three pairs of relations (2.61), (2.74), (2.62), (2.75)
and (2.57), (2.76), we obtain the subsequent system of equations:

2r + p + q + 1 = rp,

4r + p + q + 1 = rq,

8r + 2p + 2q + 2 = r2.

(2.77)

Positive solution of system (2.77) is given by r = (5 +
√

23), q = (5 +
√

23)/2, and p = (1 +
√

23)/2.
Therefore, the R-order of the methods with memory (2.55), when Tn is calculated by (2.53), is at least
(5 +

√
23) ≈ 9.7958.
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Method 7. Tn is calculated by (2.54). Hermite interpolating polynomial H5(x) satisfied the conditions
H5(xn) = f(xn), H ′

5(xn) = f ′(xn), H5(zn−1) = f(zn−1), H5(yn−1) = f(yn−1), H5(xn−1) = f(xn−1),
and H ′

5(xn−1) = f ′(xn−1). The error expression of the Hermite interpolation can be uttered in this way:

f(x) − H5(x) =
f (6)(ξ)

6!
(x − xn)2(x − xn−1)2(x − zn−1)(x − yn−1), ξ ∈ I. (2.78)

After twice differentiating (2.78) at the point x = xn, we get

H ′′
5 (xn) = f ′′(xn) − 2

f (6)(ξ)
6!

(xn − xn−1)2(xn − zn−1)(xn − yn−1), ξ ∈ I. (2.79)

Taylor’s series of derivatives of f at the points xn ∈ I and ξ ∈ I about the zero α of f provide

f ′(xn) = f ′(α)
(
1 + 2c2en + 3c3e

2
n + O(e3

n)
)
, (2.80)

f ′′(xn) = f ′(α)
(
2c2e + 6c3en + O(e2

n)
)
, (2.81)

f (m+1)(ξ) = f ′(α)
(
(m + 1)!cm+1 + (m + 2)!cm+2eξ + O(e2

ξ)
)
, (2.82)

where eξ = ξ − α. Substituting (2.81) and (2.82) into (2.79), we obtain

H ′′
5 (xn) = 2f ′(α)

(
c2 − c6en−1,yen−1,ze

2
n−1 + 3c3en

)
. (2.83)

Using (2.58)–(2.60), we have

en−1,y = yn−1 − α ∼ (Tn−1 − c2)e2
n−1, (2.84)

en−1,z = zn−1 − α ∼ Bn−1,4(Tn−1 − c2)e4
n−1, (2.85)

en = xn − α ∼ Bn−1,8(Tn−1 − c2)2e8
n−1. (2.86)

Then

en−1,yen−1,ze
2
n−1 ∼ Bn−1,4(Tn−1 − c2)2e8

n−1 ∼ Bn−1,4

Bn−1,8
en. (2.87)

Now, substituting the value (2.87) into (2.83):

H ′′
5 (xn) = 2f ′(α)

(
c2 +

(
3c3 − c6

Bn−1,4

Bn−1,8

)
en

)
, (2.88)

which implies

H ′′
5 (xn)

2f ′(xn)
∼ c2 + (3c3 − 2c2

2 − c6
Bn−1,4

Bn−1,8
)en. (2.89)

And hence,

Tn =
H ′′

5 (xn)
2f ′(xn)

∼ c2 +
(

3c3 − 2c2
2 − c6

Bn−1,4

Bn−1,8

)
en, (2.90)
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or

Tn − c2 ∼
(

3c3 − 2c2
2 − c6

Bn−1,4

Bn−1,8

)
en. (2.91)

Substituting (2.91) into (2.60), we get

en+1 ∼ Bn,8

(
3c3 − 2c2

2 − c6
Bn−1,4

Bn−1,8

)2

e10
n . (2.92)

Therefore, the R-order of the methods with memory (2.55), when Tn is calculated by (2.54), is at least 10.

3. NUMERICAL COMPARISON

In this section, after the review of the with memory methods, we have compared the presented
schemes with the two step methods given in [9] and the three-point methods studied in [10]. Table 1
is furnished with the considered nonlinear test functions with their roots (α). In the same table, there
are infinite number of digits after decimal, but we have mentioned only four (the nonlinear functions are
taken from [10, 11]. In Tables 2 and 3, the absolute errors |xk − α| are given for the presented methods
OM4 and OM81, respectively. The computational order of convergence (COC) is approximated by using
the formula (see [12])

COC ≈ ln |f(xn+1)/f(xn)|
ln |f(xn)/f(xn−1)|

,

to check the computational efficiency, which verified theoretical rate of convergence.

All the numerical results revealed in Tables 2 and 3 of two- and three-step with memory methods
are in concordance with the theory built up in this paper. For this we have considered up to 1000
significant digits by using “Set Accuracy” command in “Mathematica 8.” Our proposed schemes
OM4 with (2.5)–(2.7) and OM81 with (2.51)–(2.54) have been used to solve the nonlinear functions
and the calculated results are compared with the two-step methods XW41(16–18), XW42(16–19),
XW43(16–20), XW44(17–18), XW45(17–19), and XW46(17–20) of [9] and the three-point methods
XW81(37–34), XW82(37–35), XW83(37–36), XW84(38–34), XW85(38–35), and XW86(38–36) of
[10]. In Table 3 “NC” means not convergent. From Tables 2 and 3, it is very easy to identify that
the results obtained by the proposed methods are quite superior to the other two- and three-step
methods. An additional effective approach to compare the efficiency of methods is CPU time used in the
implementation of program. At this point, the CPU time has been computed by means of the command
“TimeUsed [ ]” in “Mathematica 8.” The CPU time depends on the specification of computer. The
computer characteristics are Microsoft Windows 7 Intel Core i3-2330M CPU@ 2.20 GHz with 2 GB of
RAM, 64-bit operating system throughout the paper. The mean CPU time is calculated by considering
the mean of 30 performances of the program and is given in Tables 2 and 3.

Table 1. Test functions

Nonlinear function Root

f1 = xex2 − (sin x)2 + 3 cosx + 5 −1.2076 . . .

f2 = x5 + x4 + 4x2 − 15 1.3474 . . .

f3 = x3 − x2 − 1 1.4655 . . .
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Table 2. Numerical comparison of two-point with memory method

Method |x1 − α| |x2 − α| |x3 − α| COC CUP time

Example f1, guess: −1.6

XW41(16–18), T0 = −0.01, a = 8 3.5037e−2 2.8246e−6 1.2080e−25 4.7042 2.5721

XW42(16–19), T0 = −0.01, a = 8 3.5037e−2 4.7605e−7 1.7515e−27 4.1782 2.6509

XW43(16–20), T0 = −0.01, a = 8 3.5037e−2 3.4949e−7 4.1255e−28 4.1649 2.8477

XW44(17–18), T0 = −0.01, b = −2 1.8398e−2 2.1773e−7 1.3052e−30 4.7018 2.4728

XW45(17–19), T0 = −0.01, b = −2 1.8398e−2 3.0276e−8 1.7117e−32 4.1837 2.6747

XW46(17–20), T0 = −0.01, b = −2 1.8398e−2 3.5032e−8 2.7935e−32 4.2039 2.9566

O2M4 (2.4)–(2.5), T0 = −0.01, γ = 0 1.8880e−2 2.3820e−7 1.9513e−30 4.7005 2.7019

OM4 (2.4)–(2.6), T0 = −0.01, γ = 0 1.8880e−2 3.3604e−8 2.6359e−32 4.1835 2.7236

OM4 (2.4)–(2.7), T0 = −0.01, γ = 0 1.8880e−2 3.8273e−8 4.0253e−32 4.2025 2.8162

Example f2, guess: 1.4

XW41(16–18), T0 = −0.01, a = 8 1.8371e−5 1.3038e−22 7.0315e−101 4.5640 1.1329

XW42(16–19), T0 = −0.01, a = 8 1.8371e−5 1.5797e−22 5.6795e−107 4.3243 1.1474

XW43(16–20), T0 = −0.01, a = 8 1.8371e−5 6.7085e−25 1.5685e−108 4.3026 1.0778

XW44(17–18), T0 = −0.01, b = −2 3.8040e−6 2.3630e−25 3.2074e−113 4.5748 1.2823

XW45(17–19), T0 = −0.01, b = −2 3.8040e−6 4.3246e−27 9.8591e−118 4.3278 1.0925

XW46(17–20), T0 = −0.01, b = −2 3.8040e−6 2.2214e−28 7.0328e−124 4.2953 1.1369

OM4 (2.4)–(2.5), T0 = −0.01, γ = 0 3.7144e−6 2.1871e−25 2.2845e−113 4.5752 1.0383

OM4 (2.4)–(2.6), T0 = −0.01, γ = 0 3.7144e−6 3.9924e−27 7.0907e−118 4.3279 1.1577

OM4 (2.4)–(2.7), T0 = −0.01, γ = 0 3.7144e−6 1.9614e−28 4.0581e−124 4.2951 1.0974

Example f3, guess: 1.3

XW41(16–18), T0 = −0.01, a = 8 1.5319e−2 4.8667e−10 2.6217e−44 4.5743 1.2550

XW42(16–19), T0 = −0.01, a = 8 1.5319e−2 1.7723e−10 1.6516e−45 4.4174 1.2136

XW43(16–20), T0 = −0.01, a = 8 1.5319e−2 1.7723e−10 3.3034e−45 4.3794 1.1443

XW44(17–18), T0 = −0.01, b = −2 7.1877e−4 7.3695e−16 1.0978e−70 4.5729 1.2125

XW45(17–19), T0 = −0.01, b = −2 7.1877e−4 3.5313e−17 5.5819e−75 4.3430 1.0972

XW46(17–20), T0 = −0.01, b = −2 7.1877e−4 3.5313e−17 1.1164e−74 4.3204 1.1482

OM4 (2.4)–(2.5), T0 = −0.01, γ = 0 7.1305e−4 7.3404e−16 1.0912e−70 4.5737 1.3175

OM4 (2.4)–(2.6), T0 = −0.01, γ = 0 7.1305e−4 3.3934e−17 4.6559e−75 4.3431 1.2563

OM4 (2.4)–(2.7), T0 = −0.01, γ = 0 7.1305e−4 3.3934e−17 9.3119e−75 4.3205 1.1916
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Table 3. Numerical comparison of three-point with memory method

Method |x1 − α| |x2 − α| |x3 − α| COC CUP time

Example f1, guess: −1.6

XW81(37–34), T0 = 1.5, L = 0 1.1801e−1 1.3693e−7 1.8971e−61 8.9496 2.6608

XW82(37–35), T0 = 1.5, L = 0 1.1801e−1 1.4405e−9 3.5417e−87 9.7061 2.9674

XW83(37–36), T0 = 1.5, L = 0 1.1801e−1 1.7309e−9 2.3974e−90 10.214 2.8367

XW84(38–34), T0 = 2, K = 6 1.2272e−1 6.5242e−7 1.2627e−45 6.8131 2.5001

XW85(38–35), T0 = 2, K = 6 3.5557e−2 3.6766e−15 3.5446e−140 9.6098 3.0186

XW86(38–36), T0 = 2, K = 6 3.5557e−2 2.0055e−15 4.8248e−148 9.9921 3.0071

OM81 (2.55)–(2.51), T0 = 1.5, γ = 1 1.9593e−2 4.0580e−15 2.5739e−129 8.9943 2.6720

OM81 (2.55)–(2.53), T0 = 1.5, γ = 1 1.9593e−2 1.9159e−17 1.3449e−163 9.7289 2.8602

OM81 (2.55)–(2.54), T0 = 1.5, γ = 1 1.9593e−2 7.4905e−18 4.5477e−171 9.9295 3.0666

OM81 (2.55)–(2.52), T0 = 1.5, γ = 1 1.9593e−2 5.4549e−17 8.0689e−155 9.4610 2.8874

Example f2, guess: 2.3

XW81(37–34), T0 = −1, L = 1 HC − − − 1.3194

XW82(37–35), T0 = −1, L = 1 HC − − − 1.1279

XW83(37–36), T0 = −1, L = 1 HC − − − 1.1305

XW84(38–34), T0 = −1, K = 0 6.2961e−1 4.4250e−4 1.9236e−29 7.3534 1.1861

XW85(38–35), T0 = −1, K = 0 1.2396e−0 4.7897e−1 4.5123e−4 2.3441 1.1108

XW86(38–36), T0 = −1, K = 0 1.2396e−0 4.8136e−1 3.6709e−4 2.4270 1.1446

OM81 (2.55)–(2.51), T0 = −1.0, γ = 1 8.4611e−2 2.7477e−11 1.2500e−96 8.9573 1.4999

OM81 (2.55)–(2.53), T0 = −1.0, γ = 1 8.4611e−2 7.5983e−13 3.5136e−122 9.8625 1.1663

OM81 (2.55)–(2.54), T0 = −1.0, γ = 1 8.4611e−2 8.2840e−13 1.0967e−122 9.9451 1.1832

OM81 (2.55)–(2.52), T0 = −1.0, γ = 1 8.4611e−2 1.3930e−12 9.3226e−166 9.5331 1.0877

Example f3, guess: 1.3

XW81(37–34), T0 = 1.5, L = 0 2.4086e−2 2.0173e−17 3.8015e−153 9.0082 1.1468

XW82(37–35), T0 = 1.5, L = 0 2.4086e−2 5.7528e−18 3.2909e−174 10.008 1.1619

XW83(37–36), T0 = 1.5, L = 0 2.4086e−2 5.7528e−18 3.2909e−174 10.008 1.2208

XW84(38–34), T0 = 2, K = 6 HC − − − 1.1632

XW85(38–35), T0 = 2, K = 6 3.3046e−1 2.4693e−3 7.1894e−27 11.901 1.2608

XW86(38–36), T0 = 2, K = 6 3.3046e−1 2.4693e−3 7.1894e−27 11.901 1.1305

OM81 (2.55)–(2.51), T0 = 1.5, γ = 1 2.3293e−7 1.3267e−62 8.3669e−560 9.0000 1.2703

OM81 (2.55)–(2.53), T0 = 1.5, γ = 1 8.4611e−7 1.5593e−68 2.8183e−680 10.000 1.2083

OM81 (2.55)–(2.54), T0 = 1.5, γ = 1 8.4611e−7 1.5593e−68 2.8183e−680 10.000 1.4507

OM81 (2.55)–(2.52), T0 = 1.5, γ = 1 2.3293e−7 1.5593e−68 2.8183e−680 10.000 1.1088
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4. CONCLUSIONS

In the present article, we have presented a new family of two-step and three-step iterative methods
with memory for solving nonlinear equations. Since our aim is to construct the method of higher order
convergence without additional calculation. So we have used three different approximations of self-
correcting parameters, designed by Hermite interpolating polynomials in the fourth-order and eighth-
order methods to achieve higher order convergence without any additional calculation. The R-order of
convergence of the new with memory iterative methods is increased from 4 to 4.5616, 4.7913, and 5 and
8 to 9, 9.5846, 9.7958, and 10. The numerical results have been given to confirm the validity of theoretical
results. We have also calculated the CPU time of the proposed and other existing methods.
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