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Abstract—This paper deals with the numerical simulations of a system of diffusion-reaction
equations in the context of a porous medium. We start by giving a microscopic model and then
the upscaled version (i.e., homogenized or continuum model) of it from the previous works of the
author. Since with the help of homogenization we obtain the macroscopic description of a model that
is microscopically heterogeneous, via these numerical simulations, we show that this macroscopic
description approximates the microscopic model, which contains the heterogeneities and oscillating
terms at the pore scale such as diffusion coefficients.
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1. INTRODUCTION

In this chapter, a mathematical model is investigated numerically. For the sake of illustration, we
restrict ourselves to 2-dimensional situations. All the figures in this paper are generated by the author by
conducting numerical simulations in COMSOL Multiphysics 4.3a. (see [1]). To illustrate the problem,
let us start by the modeling first. As we know that many problems in the fields of physics, chemistry,
biology and engineering sciences are governed by diffusion-reaction equations. One of the most vital
phenomena that can be explained with the help of these equations is the chemical transport in porous
media (e.g., in soil, concrete, reservoir, rock, etc.), cf. [3, 9]. Let Ω ⊂ R

n , where n = 2, be a perforated
porous medium under consideration and Y := (0, 1)n ⊂ R

n be a unit representative cell. Further assume
that

• Y = Ys ∪ Yp, where the solid part Ys with boundary Γ and the pore part Yp in Y are such that
Ȳs ⊂ Y and Ȳs ∩ Yp = φ;

• Ω is composed of a pore space Ωp and the union of disconnected solid parts Ωs such that
Ω := Ωp ∪Ωs and Ωp ∩ Ω̄s = φ. Γ∗ and ∂Ω are the union of boundaries of solid parts and the outer
boundary of Ω. Ω is periodic (i.e., the solid parts in Ω are periodically distributed) and is covered
by a finite union of the cells Yk := Y + k, k ∈ Z

n. Ypk
:= Yp + k, Ysk

:= Ys + k and Γk := Γ + k,
k ∈ Z

n;

• for a scale parameter ε > 0, we denote the pore space, solid parts and the union of the boundaries
of solid matrices in Ω by Ωε

p, Ωε
s and Γε and they are defined as: Ωε

p :=
⋃

k∈Zn

{εYpk
: εYpk

⊂ Ω},

Ωε
s :=

⋃

k∈Zn

{εYsk
: εYsk

⊂ Ω}, and Γε :=
⋃

k∈Zn

{εΓk : εΓk ⊂ Ω};

• the boundaries Γ,Γ∗,Γε, ∂Ω ∈ C2. We denote by dx and dy the volume elements in Ω and Y , and
by dσy and dσx the surface elements on Γ and Γε, respectively;
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• for a T > 0, S := [0, T ) be the time interval. We denote R
+ := {x ∈ R : x > 0}, R

+
0 := R

+ ∪ {0},
N = {1, 2, 3, . . .}, and N0 := N ∪ {0}.

The required model under investigation at the micro scale is given by

∂uε

∂t
−∇ · D∇uε = MR(uε) in (0, T ) × Ωε

p, (1.1)

uε(0, x) = u0(x) in Ωε
p, (1.2)

−D∇uε · �n = 0 on (0, T ) × ∂Ω, (1.3)

−D∇uε · �n = 0 on (0, T ) × Γε. (1.4)

We denote this problem by (Pε). Here D = diag(d1, d2, . . . , dI) is a diagonal matrix of diffusion coef-
ficients and uε := (uε1 , uε2 , . . . , uεI

) is the vector of molar concentrations of I (∈ N) chemical species
involved in J(∈ N) reactions given by

τ1jX1 + τ2jX2 + . . . + τIjXI � ν1jX1 + ν2jX2 + . . . + νIjXI , 1 ≤ j ≤ J, (1.5)

where Xi, 1 ≤ i ≤ I, denotes the chemical species and the stoichiometric coefficients τij, νij ∈ N0. Set
the stoichiometric matrix M := (sij)1≤i≤I

1≤j≤J
, where sij = νij − τij ∀i, j. The reaction rate for the ith

species, via mass-action kinetics, is given by

(MR(uε))i =
J∑

j=1

sij

⎛

⎜⎜⎝kf
j

I∏

m=1
smj<0

(uεm)−smj − kb
j

I∏

m=1
smj>0

(uεm)smj

⎞

⎟⎟⎠ ∀i = 1, 2, . . . , I, (1.6)

where kf
j and kb

j are forward and backward reaction rate factors. For this model, we solve the micro
problem, the cell-problems, and the macro problem, respectively. Obviously, the problem at micro scale
describes the heterogeneities present in the medium but it fails to give global behavior of the model and
numerical simulation will lead to a cumbersome analysis as to catch these micro heterogeneities the size
of the step-length involved in numerical simulation should be chosen so small such that it can catch
those micro heterogeneities. This will lead to a huge time consumption by the computer. In case of the
real world problems where lot of parameters are involved, the numerical simulations does not seem to fit
well and therefore we would require the macroscopic description of the model, which provides the global
behavior of the medium, involves no heterogeneities from the micro scale and helps to do numerical
simulations without consuming too much time. By homogenization (i.e., upscaling or averaging), we
basically look for a function u such that lim

ε→0
uε = u, however, while upscaling a mathematical model

from the micro scale to the macro scale following questions needs to be answered:

• does there at all exist a function u s.t. uε converges to u?

• if that is true, in which sense the “limit” is taken and which function space does u belong to?

• does u solve some limit boundary value problem?

• what can be said about the diffusion coefficients of the limit problem?

• is uε an approximation of u?

• finally, do the upscaled models better suited for numerical simulations?
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To answer the first three questions, we refer to the previous two papers of the author, e.g., [3, 4],
however, to address the last three questions we verify that by conducting some numerical simulation,
which is the main essence of this manuscript. We first start with the previous results of the author
from [3, 4], which lay down the groundwork for the numerics done in this work. Let p > n + 2 be
such that 1

p + 1
q = 1 and θ ∈ [0, 1]. Assume that Ξ ∈ {Ω,Ωε

p}, then Lp(Ξ), H1,p(Ξ), Cθ(Ξ), (·, ·)θ,p,

[·, ·]θ and Cγ
per(Y ) are the Lebesgue, Sobolev, Hölder, real interpolation, complex interpolation and

Y -periodic γ times (γ ∈ N) continuously differentiable function spaces, respectively, endowed with
their standard norms. In particular, Cper(Y ) is the space of all Y -periodic continuous functions in y.
The Sobolev–Bochner spaces are given by Fp(Ξ) :=

{
u ∈ Lp(S;H1,p(Ξ)) : du

dt ∈ Lp(S;H1,q(Ξ)∗)
}

=
H1,p(S;H1,q(Ξ)∗) ∩ Lp(S;H1,p(Ξ)) and have the norm

||u||Fp(Ξ) := ||u||Lp(S;H1,p(Ξ)) + ||u||Lp(S;H1,q(Ξ)∗) +
∣∣∣∣

∣∣∣∣
du

dt

∣∣∣∣

∣∣∣∣
Lp(S;H1,q(Ξ)∗)

, (1.7)

whereas the norm on the vector-valued function spaces are defined as |||u|||[Fp(Ξ)]I := [
I∑

i=1
||ui||pFp(Ξ)]

1
p .

In particular, |||u|||L∞(Ξ)I = max
1≤i≤I

||ui||L∞(Ξ). For further definitions of function spaces, embedding

theorems and appropriate function space setting for the problem (Pε), please confer to the work in [3].
Taking the assumptions of Theorem 2.1 in [3] on account, we have following

Theorem 1.1 (Existence theorem). There exists a unique positive global weak solution uε ∈
FI

p (Ωε
p) ∩ L∞(S × Ωε

p)I of the problem (Pε) and it satisfies the following estimate:

sup
ε>0

(
|||uε|||Lr((0,T );Lr(Ωp

ε))I + |||uε|||L∞((0,T );L∞(Ωp
ε))I + |||∇uε|||L2((0,T );L2(Ωp

ε))I

)
≤ C < ∞, (1.8)

where r is any arbitrarily chosen large positive integer and the constant C is independent of ε, t,
and uε.

Theorem 1.1 is proved in [3]. The ingredients for the proof are an entropy function, Schaefer’s
fixed point theorem and Theorem 2.5 from [8], which is based on the maximal regularity of differential
operators. In the proof of Theorem 1.1, it is being assumed that the diffusion coefficients are positive
constant in t and x, to be precise, d1 = d2 = . . . = dI = d > 0. Nevertheless, it is worth mentioning that
it has been known for quite some time that for systems of type (1.1) with different diffusion coefficients,
the results concerning the existence of global weak solution are still unknown. A nice survey of such
results can be found in [7] and recently for some particular type of reaction rates significant work has
been done in [2, 5].

Now by the extension Theorem 4.2.1 in [4], estimate (1.8) can be extended in to all of S × Ω, i.e.,

sup
ε>0

(
|||uε|||Lr((0,T );Lr(Ω))I + |||uε|||L∞((0,T );L∞(Ω))I + |||∇uε|||L2((0,T );L2(Ω))I

)
≤ C < ∞, (1.9)

where the constant C is independent of ε, t, and uε. Also by a straightforward calculation one can obtain∣∣∣∣∣∣χε ∂uε
∂t

∣∣∣∣∣∣
L2((0,T );H1,2(Ω)∗)I . Therefore, by Theorem 2.1 in [6], we obtain that uε, up to a subsequence,

is strongly convergent to a limit u ∈ L2(S × Ω)I .
Under the similar assumptions as in [3], by the homogenization techniques it has been shown in [4,

Section 4 (in part., Subsection 4.3) and Thm. 4.11] that:

Theorem 1.2 (Upscaled problem). There exists a unique u ∈ FI
p (Ω) ∩ L∞(S × Ω)I , which satisfies

the homogenized problem of (Pε) given by

∂u

∂t
−∇ · Υ ∇u = SR(u) in (0, T ) × Ω, (1.10)
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−Υ ∇u · �n = 0 on (0, T ) × ∂Ω, (1.11)

u(0, x) = u0(x) in Ω. (1.12)

Here Υ = (βjk)1≤j,k≤2 is a second-order tensor with components

βjk =
∫

Yp

d

|Yp|

(
δjk +

∂aj

∂yk

)
dy for j, k = 1, 2, (1.13)

where for j = 1, 2, (aj) is the solution of the cell-problem

−∇y · (D (∇yaj(y) + ej)) = 0 for y ∈ Yp, (1.14)

−D (∇yaj(y) + ej) · �n = 0 for y ∈ Γ, (1.15)

y 
→ aj(y) is Y -periodic. (1.16)

We note that uε is strongly convergent (up to a subsequence) to a limit u ∈ L2(S × Ω)I , i.e.,
lim
ε→0

||uε − u||L2(S×Ω)I = 0 ⇐⇒ lim
ε→0

||uεi − ui||L2(S×Ω) = 0 for all i.

2. SIMULATION OF THE MODEL

The physics setting: Let us consider a domain Ω := [0, 1.2] × [0, 1] in R
2. Assume that Y = [0, 1] ×

[0, 1] ⊂ R
2 is the representative cell with Ys := B((0.5, 0.5), 0.15) as the solid inclusion.1 Suppose that

four mobile species A, B, M and N are present inside Ω. The chemical species diffuse and react with each
other (cf. Fig. 2.1).

The reaction is reversible and is given by

2A + 3B � M + 2N. (2.1)

The stoichiometric coefficients are −2, −3, 1 and 2, and the reaction rates for each species can be given
by (1.6). Here I = 4 and J = 1.

Fig. 2.1. Diffusion-reaction of species A, B, M, and N.

1For r ∈ R
n, B(r, ε) denotes an open ball centered at r and radius ε.
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2.1. Simulation at the Micro Scale
Let uεi denote the molar concentration of ith species for 1 ≤ i ≤ 4. We choose the scaling parameter

ε = 0.2. Also, let D = 1.0, kf
j = 1.8, kb

j = 12.2. Initially, let us assume uε1(0, x1, x2) = u1(0, x1, x2) =
5x1, uε2(0, x1, x2) = 2(x1 + 3), uε3(0, x1, x2) = 5x1, and uε4(0, x1, x2) = 2x1.

We choose “coarser” mesh available in COMSOL to discretize the domain Ωε
p. The triangulization

of the domain Ωε
p is depicted in Fig. 2.2.

We solve the system of diffusion-reaction equations at the micro scale for t = 10 s. We notice that: the
number of elements for mesh is 4930, the number of degrees of freedom is 10640 and the time taken by

Fig. 2.2. The triangulization of Ωε
p for ε = 0.2.

Fig. 2.3. Concentration of species A in Ωp
ε at different time.
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Fig. 2.4. Concentration of species A at the point (0, 1) in Ωε
p in 10 s.

Fig. 2.5. The triangulization of cell Y .

the solver is 104 s. However, here we compare the solution for species A only at the micro and the macro
scale, since the comparison of the solutions for the rest of the species can be done analogously. The
molar concentration of species A is depicted in Fig. 2.3 for t = 0.25 s, t = 0.35 s, t = 3 s, and t = 10 s,
respectively.

In Fig. 2.3, we see the change in concentration of species A at different times. As the time progesses,
the concentration of species A increases and due to reversible reaction after t = 3 s, the reaction reaches
equilibrium. This is also shown in Fig. 2.4 where the concentration of species A at the point (0, 1) in
Ωε

p is plotted. Now we compute the effective diffusive tensor for species A. We commence by solving the
cell-problems (1.14)–(1.16) in Y .

2.2. Solution of the Cell-Problems

We choose the “finer mesh option” (available in COMSOL) for the triangulization of the cell Y . The
triangulization of Y is depicted in Fig. 2.5.

In Fig. 2.6 we see the solution of the cell-problems.

With the help of “derived values” feature in COMSOL, we compute the diffusive tensor by for-
mula (1.13). Thus we obtain
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Fig. 2.6. Solution aj of the cell-problem for j = 1, 2.

Fig. 2.7. The triangulization of Ω.

P = (pjk)1≤j≤2
1≤k≤2

=

⎡

⎣ 0.93409 4.19 × 10−7

4.19 × 10−7 0.93409

⎤

⎦ . (2.2)

2.3. Simulation at the Macro Scale

For the simulation of upscaled model, we choose P from (2.2), kf
j = 1.8 and kb

j = 12.2. Initially,
u1(0, x1, x2) = 5x1, u2(0, x1, x2) = 2(x1 + 3), u3(0, x1, x2) = 5x1, and u4(0, x1, x2) = 2x1. We choose
“coarser mesh” (in COMSOL) for Ω with 144 elements. The descritization of the domain Ω is depicted
in Fig. 2.7.

We also notice that the number of degrees of freedom is 352 and the time taken by the solver is 11 s.
The numerical simulations are shown in Figs. 2.8 and 2.9.

3. CONCLUSIONS

Firstly, we notice that for the same type of mesh the solver takes less time to solve the macro problem
than to solve the micro problem. Therefore, the upscaled model is computationally efficient. In Fig. 2.8,
it is shown that as the time progresses, there is an increase in the concentration of species A and after
t = 2.4 s the reaction reaches equilibrium as expected. By comparing Figs. 2.3 and 2.8, we can notice
that the upscaled model (1.10)–(1.12) is an approximation to our original micro problem (1.1)–(1.4).
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Fig. 2.8. Concentration of species A in Ω at different time scales.

Fig. 2.9. Concentration of species A at the point (0, 1) in Ω in 10 s.

This can also be seen by comparing Figs. 2.4 and 2.9. Moreover, using the features of COMSOL, we
can compute

||uεA
− uA||L2(S×Ω) =

∫

S×Ω

|uεA
− uA|2 dx dt = 0.432 × 10−6,

where uA is the concentration of species A.
Thus, the upscaled model gives us the global information (behaviors) of the properties related to

chemical transport in the porous medium, which was microscopically heterogeneous. By homoge-
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nization we have obtained a mathematical model that does not involve any heterogeneities, which
is an approximation to the micro model and takes less time to compute. Therefore, homogenization
techniques are proven to be a nice tool to deal with such kind of problems.
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