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Abstract—A model of double porosity in the case of an anisotropic fractured porous medium is
considered (Dmitriev, Maksimov; 2007). A function of fluid exchange between the fractures and
porous blocks depending on flow direction is given. The flow function is based on the difference be-
tween the pressure gradients. This feature enables one to take into account anisotropic properties of
filtration in a more general form. The results of numerical solving a model two-dimensional problem
are presented. The computational algorithm is based on a finite-element space approximation and
explicit-implicit time approximations.
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Most of the oil-bearing beds in the world are carbonate reservoirs. A fractured porous medium is
considered as a system of porous blocks separated by a system of fractures. The fluid saturates both
porous blocks and fractures. The linear sizes of fracture openings are much greater than the typical sizes
of pores in the blocks. Thus, the permeability of fractures is greater than that of pore blocks. On the
other hand, the void space of fractures is much less than that of pore blocks. Therefore, the coefficient of
medium’s capacitance (porosity) of fractures is much less than that of pore blocks. The bulk of the fluid
is contained in the pore blocks and transferred through the fractures. These properties of the void space
structure of a fractured porous medium are often attributed to a medium of double porosity described in
[1] and [2]. The mechanism of fluid exchange between the fractures and pore blocks is governed by the
pressure difference. In the classical model of double porosity, the system of fractures is assumed to be
isotropic, although (as it is well known) fractured reservoirs usually have an anisotropic structure. This
fact is analyzed in [3–5].

The present study is based on a model of double porosity proposed in [6] for the case of an
anisotropic fractured-porous medium. Its major feature is specifying a direction-dependent function of
fluid exchange between the fractures and porous blocks. A model two-dimensional unsteady boundary
value problem for a system of two parabolic equations for pressures in pores and fractures is formulated.
The equations are coupled by means of a nonlinear flow function. The numerical solution to the problem
is based on a finite-element space approximation. In time, we use explicit-implicit approximations when
the flow function is taken from the lower time layer. The results of calculations illustrate the capabilities
of the proposed algorithm and the effects of the porous medium’s parameters on fluid filtration in the
pores and fractures.

1. DOUBLE-POROSITY FILTRATION MODEL
To describe fluid filtration in a fractured-porous medium, Barenblatt et al. [1] developed a model

based on the interrelation between the filtration flows in the fractures and those in the pore blocks. The
mathematical model, called a double porosity model, can be written in tensor form as follows:

wα
i = −

kα
ij

μ
∇jp

α, (1)
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∂mαρ

∂t
+ ∇jρwα

j = qα, (2)

qα = qα(pα, ρ, μ), ρα = ρ(pα), mα = m(pα), α = 1, 2. (3)

Here wα
i are the vector components of the filtration velocity, kα

ij are the components of the permeability
tensors, mα is the porosity, ρ is the fluid density, μ is the fluid viscosity, qα is the fluid exchange between
the fractures and pore blocks (α is equal to 1 and 2, respectively) such that q1 = −q2 = q. Equations (1)
describe Darcy’s law, (2) are continuity equations, and (3) specify the flow function and equations of
state.

The classical model [1] considers the case of an isotropic space of the pore blocks and fractures.
Nevertheless, the known investigations of gas- and oil-bearing formations have shown that fractured
media usually have considerable anisotropy. In most cases, the anisotropic properties of fractured and
porous media can be described by introducing a permeability tensor to Darcy’s law. On the other hand,
it is evident that fluid exchange between the fractures and pore blocks under the conditions of anisotropy
depends on flow direction. For this reason, the scalar function of fluid exchange, qα, must be replaced by
a function of a vector argument. This situation is studied in detail in [7].

Consider the case of a directed permeability, which is a scalar function defined as k(ni) = kijninj

(that is, it depends on the vector argument ni). The sought-for relation follows from Darcy’s law:

Qα = wα
i nα

i = −
kα

ijn
α
i nα

j

μ
|∇jp

α|.

Here Qα is the velocity vector projection onto the pressure gradient axis, and |∇jp
α| is the pressure

gradient modulus, ∇jp
α = |∇jp

α|nα
j . Then the directed permeability is defined as follows:

kα(ni) = kα
ijn

α
i nα

j = −μwα
i nα

i

|∇jpα| .

A flow function can be constructed using the same reasoning.

2. FLOW FUNCTION IN AN ANISOTROPIC MEDIUM WITH DOUBLE POROSITY
Assuming that the flow function is similar to the flux wα

i in Darcy’s law and multiplying (scalarly) this
flux by ρSni (where S is the surface through which the fluid flows from the pore blocks into fractures),
we obtain

q̃α = ρSniw
α
i = −ρSni

k2
ij

μ
∇jp

α. (4)

It should be noted that, as shown in (4), the smallest permeability, k2
ij , is responsible for the fluid transfer

from the pore blocks into fractures. In the original model described in [1] and [8], the difference in the
pressures of fractures and pore blocks is the driving force of the fluid exchange between the fractures and
pore blocks. To define a flow function for anisotropic media (see [6]), we introduce the gradient of the
pressure difference:

q̃1 − q̃2 = ρSni

k2
ij

μ
∇jp

2 − ρSni

k2
ij

μ
∇jp

1. (5)

With (5), we write the following expression for a unit surface:

q =
ρ

μ
niqij∇j

(
p2 − p1

)
, (6)

where qij is a tensor consisting of the coefficients that define the flow function
(
q =

(
q̃1 − q̃2

)
/S

)
.

Formula (6) can be written as

q =
ρ

μ
qijninj

⏐⏐∇j

(
p2 − p1

)⏐⏐,

where
⏐⏐∇j

(
p2 − p1

)⏐⏐ is the modulus of the gradient of the pressure difference between the pore blocks
and fractures.
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3. MODEL PROBLEM

Consider a simple case of a two-dimensional anisotropic model of double porosity with a flow function
of the type (6). The system of equations of this model is written in nondimensional form as follows:

c
∂u1

∂t
− divK1grad u1 + r |Kgrad(u2 − u1)| = 0, (7)

∂u2

∂t
− divK2grad u2 − r |Kgrad(u2 − u1)| = 0. (8)

Here K is a second-order tensor expressed in terms of a 2 × 2 matrix, and Kα is a permeability tensor
specifying permeability in the fractures and pore blocks, respectively:

K1 = K, K2 = dK. (9)

Consider the two-dimensional problem in the domain Ω shown in Fig. 1. This domain geometry is
chosen to demonstrate the effect of anisotropy on the results of calculations. The presence of a step
on the left boundary of the domain (in contrast to typical rectangular geometry) makes it possible to
visually discern one kind of anisotropy from another. In this case (ΓD = Γ1 ∪ Γ3, ΓN = Γ2 ∪ Γ4) we
take the following boundary conditions:

uα(x, t) = 1 − exp(−δt), x ∈ Γ1; uα(x, t) = 0, x ∈ Γ3; (10)

vα · n = 0, x ∈ Γ2 ∪ Γ4; t ∈ (0, T ], (11)

where vα = Kαgrad uα. The initial state of the system is defined by the conditions

uα(x, 0) = 0, x ∈ Ω, α = 1, 2. (12)

It follows from the statement of the problem (7)–(12) that the pressure on the boundary Γ1 increases
from 0 to 1. The dynamics of the pressure increase depends on the parameter δ. The boundary conditions
on Γ1 simulate conditions on an injection well.

According to a generally accepted assumption in the double-porosity models, most filtration flows
are in the fractures and the bulk of the fluid is in the pore blocks. Thereby we consider a type of fracturing
in which the linear sizes of fracture openings are much greater than the pore diameters (the parameter
d = 0.01) and the void volume of the fractures is much less than that of the pore blocks (the parameter
c = 0.01). The following three major forms of the tensor K are considered for the model problem:

1. Isotropic filtration:

K =

⎛

⎝1 0

0 1

⎞

⎠ . (13)

Fig. 1. Domain Ω.
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2. Dominant permeability in one of the coordinates:

K =

⎛

⎝0.1 0

0 1

⎞

⎠ . (14)

3. Dominant filtration in the diagonal:

K =

⎛

⎝ 0.6 −0.4

−0.4 0.6

⎞

⎠ . (15)

4. COMPUTATIONAL ALGORITHM

The model problem is solved numerically by a finite element method (see [9] and [10]). The programs
are written in a computer language Python using a finite element library FEniCS [11] and [12]. To
approximately solve the unsteady-state filtration problem, we introduce, for simplicity, a uniform time
grid with step τ :

ωτ = ωτ ∪ {T} = {tn = nτ, n = 0, 1, . . . , N, τN = T},

yn = y(tn), tn = nτ . A finite element approximation in space consisting of standard second-order
Lagrangian finite elements is used. A triangulation (with a software package METIS) is made in the
domain Ω. A finite-dimensional finite-element space V ⊂ H1(Ω) is defined on this grid. Here H1(Ω)
is the Sobolev space of functions v such that v2 and |∇v|2 have a finite integral in Ω and H1

0 (Ω) =
{v ∈ H1(Ω) : v(x) = 0, x ∈ ΓD}. The calculation grid is refined in regions with large gradients of the
solution.

Consider the following time scheme:

c
yk+1
1 − yk

1

τ
− divKgrad yk+1

1 + r
⏐⏐Kgrad(yk

2 − yk
1 )

⏐⏐ = 0, (16)

yk+1
2 − yk

2

τ
− ddivKgrad yk+1

2 − r
⏐
⏐Kgrad(yk

2 − yk
1)

⏐
⏐ = 0. (17)

Fig. 2. Calculation grid 1: 700 nodes, 1294 elements.

Table. Time step for various values of r and various grids

Grid r = 0.1 r = 0.5 r = 1

1 (1294 elements) 0.148 0.041 0.022

2 (5068 elements) 0.143 0.041 0.022

3 (19664 elements) 0.142 0.041 0.022
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Fig. 3. L2(Ω) norm of solution error of u1: (a) coarse grid (1294 elements); (b) fine grid (5068 elements); (c) finest grid
(19664 elements).
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Fig. 4. L2(Ω) norm of solution error of u2: (a) coarse grid (1294 elements); (b) fine grid (5068 elements); (c) finest grid
(19664 elements).
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Fig. 5. C(Ω) norm of solution error of u1: (a) coarse grid (1294 elements); (b) fine grid (5068 elements); (c) finest grid
(19664 elements).
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Fig. 6. C(Ω) norm of solution error of u2: (a) coarse grid (1294 elements); (b) fine grid (5068 elements); (c) finest grid
(19664 elements).
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Fig. 7. Pressure distribution in fractures u1 at time t = 1: (a) tensor K in the form (13); (b) in the form (14); (c) in the
form (15).

Thereby, we use explicit-implicit approximations in time: the nonlinear exchange terms are taken from
the previous time level.

The problem (16), (17) is presented in a variational form: Each equation is multiplied by a corre-
sponding test function and integrated over the domain Ω using the formula of integration by parts. We
obtain the following variational formulation of the problem:

c

∫

Ω

yk+1
1 − yk

1

τ
v1 dx +

∫

Ω

Kgrad yk+1
1 grad v1 dx + r

∫

Ω

⏐⏐Kgrad(yk
2 − yk

1 )
⏐⏐v1 dx = 0,

∫

Ω

yk+1
2 − yk

2

τ
v2 dx + d

∫

Ω

Kgrad yk+1
2 grad v2 dx − r

∫

Ω

⏐⏐Kgrad(yk
2 − yk

1)
⏐⏐v2 dx = 0

with allowance for the boundary conditions on ΓD. Next, we assemble the global finite-element matrix
and the solution vector. As a result, we obtain a SLAE solved by the (iterative) generalized minimal
residual method (GMRES), which converges in a finite number of iterations.
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Fig. 8. Pressure distribution in pores u2 at time t = 1: (a) tensor K in the form (13); (b) in the form (14); (c) in the
form (15).

5. RESULTS OF CALCULATIONS

Here we present the results of numerical calculations performed on rather fine grids (1294, 5068,
19664, and 77870 elements). The coarse grid is shown in Fig. 2.

For this problem, we define a reference solution yk(x), which is the numerical solution on the finest
grid (77870 elements, τ = 10−3). The numerical solution is controlled by comparing it with this reference
solution. The simulations were performed with the following parameter values: c = 0.01, d = 0.01,
r = 1.0, and δ = 10.0. Figures 3–6 show solution errors versus time in comparison to the reference
solution in the norms of L2(Ω) and C(Ω).

The table represents the time steps needed to achieve an error ε = 0.01 (at the final time) for various
grids and values of the parameter r, where

ε =
∥
∥yk − yk

∥
∥

L2(Ω)
.

The explicit-implicit scheme imposes certain constraints on the time step.
From the results we can conclude that:

• the double-porosity model makes it possible to take into account the anisotropic properties of
both media and the exchange flow;

• the numerical solution converges to the reference solution at a sufficiently small time step;

• the pressure in the fractures (u1) reaches the steady state faster than the pressure in the pores
(u2);

NUMERICAL ANALYSIS AND APPLICATIONS Vol. 9 No. 1 2016



NUMERICAL MODELING OF FLUID FLOW 55

Fig. 9. Pressure distribution in fractures u1 at time t = 2: (a) tensor K in the form (13); (b) in the form (14); (c) in the
form (15).

• the error is almost independent of the space grids;

• the maximum time step is inversely proportional to the flow parameter r.

The results of calculations presented below were obtained on the grid shown in Fig. 2. The calcu-
lations were performed with r = 1. The pressure distributions in the fractures and pores are depicted in
Figs. 7–9.
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