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Abstract—This paper presents a criterion, called coefficient stability, for determining errors in the
coefficients of nonlinear regression models describing inexact data. A method for the estimation of
coefficient stability is also described. The criterion is illustrated by a computational experiment with
data obtained by measuring the refractive index as a function of the wavelength in the 400–1000 nm
band for a transparent polymer. The convergence of the criterion to a known analytical solution for
the case of linear regression is also studied.
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1. INTRODUCTION

Symbolic regression is often used to construct expert-interpretable models [1–5]. As applied to
experiments in the natural sciences, it is an attempt to reconstruct a functional relation between
parameters obtained from measurements and those specified with a certain accuracy, e.g., thermionic
emission current of an electric lamp versus cathode temperature Ik(T ) under constant geometry and
potential difference of the system; cw laser radiation power versus output mirror reflection coefficient
Wl(R) under constant radiation mode structure and active medium’s excitation, the refraction index of
a material versus wavelength n(λ) under constant temperature, etc. Consider the last-mentioned case
in more detail.

The following should be taken into account in regression analysis of such experiments:

1. All parameters measured (and controlled) at each experimental point are determined with some
accuracy (which is usually known); the absolute error σi of the corresponding parameter may vary
considerably in the range under study. For instance, if a diffraction lattice is used as the spectral
device for a specific wavelength λi when measuring ni(λi), we have σi

λi
≈ const, and it is not

correct to assume that the error in determining the wavelength is constant for measurements in a
wide spectral range.

2. As a rule, the experiment is performed to measure a function of one variable, x, that is, a functional
relation of the form y(x,ω), where ω is a set of parameters that are kept constant with finite
accuracy. In some cases, this fact should be taken into account when constructing a model.
However, usually the effect of variations in the experimental conditions can be estimated by the
expert beforehand to provide stability of the measurements. Otherwise, the characteristic being
measured is a function of several variables. The results of the present paper can be generalized to
this case.
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3. In most cases, the expert knows the form of the sought-for functional relation or can consider a
few possible variants, which simplifies the problem of regression. Most important for the expert are
not only optimal values of the coefficients in the regression formula, but also the variance of these
coefficients, as well as the interrelation between the variance and the accuracy in determining
the quantities that are measured (controlled) in the experiment. This is essential, especially
in those cases where the regression model coefficients are directly related to the fundamental
characteristics of the process under study and used to calculate, for instance, the efficient mass of
electrons in a semiconductor, Debye’s temperature, resonant frequency, optical transition decay,
etc. Here the accuracy of measuring the corresponding material constants is determined by the
accuracy of calculating the regression model coefficients.

To our knowledge, the problem of nonlinear regression has not yet been considered in a statement
when not only optimal coefficients of the regression model, but their errors are also determined. Well-
known are some theoretical results for the case of linear regression

y = ax + b;

when the variance of all experimentally measured values yi of the dependent variable y is the same,
D(yi) = σ2, and the values of the independent variable, xi, are exactly known, D(x) = 0. Then, in the
representation

yi = a(xi − x) + b + ξi | i ∈ {1, . . . , �},

where x =
∑�

i=1 xi

� , and ξi ∼ N (0, σ2), according to [6] the random quantities a and b are independent
and normally distributed. In addition, their variances are as follows:

D(a) =
σ2

�∑

i=1
(xi − x)2

, (1)

D(b) =
σ2

�
. (2)

In this paper, a general method for determining the error in the coefficients of nonlinear regression is
proposed. The error in the regression parameters versus the accuracy in determining the wavelength
and refraction index is determined using the function n(λ) for a transparent polymer as an example.
Here we restrict our consideration to one independent variable, λ. The method can easily be extended to
the case of several variables.

2. MAJOR HYPOTHESIS

Consider a set of � experimental points. In the vicinity of each of these points, a probability of
deviation of the experimental values of the variables to be measured from this point (for instance, due
to the presence of random measurement errors) is specified. In other words, let there be a sample D =
{(xi, yi)}, i = 1, . . . , �, and for each pair (xi, yi), a known distribution of probabilities of deviations, Δix
and Δiy, of the independent and dependent variables, P (Δix) = P x

i (x − xi) and P (Δiy) = P y
i (y − yi),

from the values xi and yi, respectively. The mean of the deviation is assumed to be zero and, hence, the
experimental values xi and yi are assumed to be average. The probabilities P x

i (x − xi) and P y
i (y − yi)

are typically assumed to be Gaussian, and the variance values σx
i and σy

i for them are considered to be
known.

Consider a parametric regression model y(x,ω) (generated inductively [5] or proposed by an expert)
whose vector of parameters ω minimizes some functional S, for instance, the following root-mean-
square deviation:

S =
�∑

i=1

(
y(xi,ω) − yi

)2 →
ω

min . (3)
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For such a functional and its modifications taking into account the regression model’s complexity [5],
the procedure of minimization can be efficiently performed with the Levenberg–Marquardt algorithm
(LMA) [7, 8].

Next we fix the structural form of the above function y(x,ω), and repeat the following computation
procedure several times:

1. At the kth step, generate a random sample Dk = {(xk
i , yk

i )}, i = 1, . . . , �: Obtain the value xk
i

from the corresponding value xi of the initial sample D by adding random noise distributed
according to P x

i :

xk
i = xi + ξk

i , ξk
i ∼ P x

i .

Similarly, obtain yk
i .

2. For the thus constructed data set or realization Dk, use the same optimization algorithm to find
an optimal (minimizing the above functional) set ωk of regression coefficients y(x,ω) for the kth
realization.
Thus, for each regression coefficient ωp we obtain a set of its values in the thus generated
realizations {ωk

p}.

3. For a sufficiently large number of realizations M , the mean and standard deviation of the
corresponding regression coefficient ωp are defined as follows:

ωp =

M∑

i=1
ωi

p

M
, (4)

D(ωp) = σ2
ωp

=
1

M − 1

M∑

i=1

(ωi
p − ωp)2. (5)

Our hypothesis is that the values obtained according to (4) and (5) are real. It is evident that the
above-proposed approach to determining the error of regression coefficients is actually an application of
a method of the Monte Carlo type to the regression problem.

From the above interpretation there also follows an evident criterion of the computation procedure
termination when with increasing number of realizations, M , the variation in the values ωp and D(ωp)
becomes less than a value chosen by the expert.

It should be noted that in the general case the limits of expressions of the type (4) and (5) as M → ∞
may not exist, which makes the above-proposed computational scheme incorrect. For sufficiently
smooth functions that are of practical interest to us, correctness of the procedure can be rigorously
proved, which, however, is beyond the scope of our paper.

3. MODEL EXAMPLE
Let us test the method using a known analytical solution of (1), (2) by calculating the errors of the

coefficients of a linear relation with an exactly known independent variable and a Gaussian distribution
of the error in the dependent variable. In this case the parameters of error distribution in the dependent
variable are the same for each experimental point. In the computational experiment, the relation being
simulated has the form y = ax + b, a = 3, b = 10. The independent variable is defined at � = 10 (in
another experiment � = 50) points of the interval [0, 10], and the number of realizations is 100 million.
The regression coefficients are optimized using the Levenberg–Marquardt algorithm, by analogy with a
more general case of nonlinear regression.

In Figs. 1–3, the number of realizations N is shown on the x axis, and the relation δ = σce−σex
σex

for the
coefficients a, b, on the y axis. Here σce is the variance obtained in the computational experiment, and
σex is the exact theoretical variance value according to (1), (2).

One can see that already for N ≈ 2.5 · 107 the relative difference δ = σce−σex
σex

does not exceed 0.05%
regardless of the number of points at which the independent variable is defined and the variance of the
random quantity. This seems to be a good result, which proves that the approach being discussed and
the main hypothesis are correct.
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Fig. 1. δ versus the number of iterations N at D(ξ) = 10 and � = 10; (a) N ∈ [0; 5 · 105], (b) N ∈ [5 · 105; 107],
(c) N ∈ [107; 108].

Fig. 2. δ versus the number of iterations N at D(ξ) = 1 and � = 10; (a) N ∈ [0; 5 · 105], (b) N ∈ [5 · 105; 107],
(c) N ∈ [107; 108].

4. ERROR IN THE REGRESSION COEFFICIENTS OF n(λ)

In the experiment, 17 values of the wavelength were used, and the refraction index of a transparent
(in the spectral range under study) polymer was measured. The results are presented in Table 1.

The absolute error in measuring the refraction index σn is typically (3 ÷ 10) · 10−5 in the entire range
of wavelengths (λ, nm), and the relative error in determining the wavelength σλ/λ for the diffraction
devices in question is (3 ÷ 30) · 10−4.
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Fig. 3. δ versus the number of iterations N at D(ξ) = 1 and � = 50; (a) N ∈ [0; 5 · 105], (b) N ∈ [5 · 105; 107],
(c) N ∈ [107; 108].

Table 1. Experimental values of the refraction coefficients

λ, nm n(λ) λ, nm n(λ) λ, nm n(λ)

435.8 1.35715 577.0 1.34968 750 1.34607

447.1 1.35625 587.6 1.34946 800 1.34544

471.3 1.35449 589.3 1.34938 850 1.34487

486.1 1.35349 656.3 1.34768 900 1.34437

501.6 1.35275 667.8 1.34740 950 1.34407

546.1 1.35083 706.5 1.34664

The model of n(λ) proposed by an expert is to determine the error of regression coefficients caused by
the experimental errors in the measurement of the wavelength and refraction index.

In addition, it is reasonable to find the relationship between the error in the regression coefficients
and the accuracy of the experiment, which is of both theoretical and practical interest. For instance, an
increase in the measurement accuracy of the refraction index n of up to 2 · 10−5 requires much effort
and time. However, if the error in determining the regression model coefficients changes only slightly,
further modernization of the experimental setup does not make sense. Similarly, the question of what
increase in the accuracy of determining the wavelength is necessary to considerably decrease the error
in determining the regression coefficients is of both theoretical and practical significance for increasing
the accuracy in determining the refraction index.

A functional relation of the following form was proposed by an expert:

n(λ) = a +
b

λ2
+

c

λ4
. (6)

For this type of nonlinear regression, the LMA was used to determine optimal regression coefficients
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Table 2. Relative error in determining the regression coefficient a

���������σλ/λ
σn/n 2 · 10−5 1 · 10−4 3 · 10−4

10−3 1.255 · 10−5 5.54 · 10−5 1.656 · 10−4

10−2 6.32 · 10−5 8.24 · 10−5 1.753 · 10−4

Table 3. Relative error in determining the regression coefficient b

���������σλ/λ
σn/n 2 · 10−5 1 · 10−4 3 · 10−4

10−3 2.14 · 10−3 8.68 · 10−3 2.54 · 10−2

10−2 1.36 · 10−2 1.59 · 10−2 2.85 · 10−2

Table 4. Relative error in determining the regression coefficient c

�����������σλ/λ
σn/n 2 · 10−5 1 · 10−4 3 · 10−4

10−3 1.15 1.426 1.454

10−2 1.45 1.456 1.47

providing the root-mean-square error ≈ 3.97 · 10−9 for a = 1.33344; b = 2841.63; c = 1599.27; the
wavelength is measured in nanometers.

The errors in the regression model coefficients were calculated for some combinations of errors in
determining the wavelengths (in relative units) and refraction index (also in relative units). In each case,
statistical processing of a million of realizations was performed. Tables 2–4 present some results of the
computational experiment.

For σλ
λ < 10−4, the errors in the first and second regression coefficients depend but slightly on further

increase in the accuracy of determining the wavelength, and almost linearly depend on the accuracy of
measuring the refraction index. The absolute error of determining the third regression coefficient is great
and comparable to the coefficient itself. This is, evidently, due to the fact that the contribution of the third
term in (6) to the refraction index is minor: changing this term only slightly affects the root-mean-square
deviation. Hence, this component is determined with a low accuracy.

5. CONCLUSIONS

1. The method proposed in this paper to determine errors in the regression coefficients can be used
at any probability distribution of the error in the dependent and independent variables, including error
distributions for various variables and for a single variable at various experimental points.

2. The method will give somewhat different error values when different functionals of the error, S, are
used. This situation is not unusual [5]. For instance, the regression coefficients will be different if the
sum of squared distances along an axis corresponding to the dependent variable from the experimental
points to the approximating regression model (according to (3)) is minimized by the standard least
squares method, or if the sum of Euclidean distances from the experimental points to the approximating
regression model is minimized (as in the well-known paper by K. Pearson [9]).

In our opinion, the optimal functional G should be chosen by the expert, first of all, by analyzing the
errors in determining the dependent and independent variables. Specifically, the least-squares method is
preferable if the independent variable is determined exactly, and the Pearson approach is preferable if the
errors in the variables are close to each other.
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3. To optimize the regression coefficients, the LMA was used in standard form when a functional of
the type (3) is minimized. As shown above, this approach is correct when the error in determining the
independent variable is small. In the general case, it is more correct to minimize the sums of squares
of the regression residuals corresponding to the distance to the regression curve (see [9]) taking into
account the errors in the variables being measured, but not the distance to the point in the curve with
a fixed coordinate x, which is correct when there is no error in the measurement of the independent
variable. For sufficiently smooth regression relations, when the relation in the vicinity of (xi, yi) can be

linearized, the corresponding distance has the form (yi−f(xi,ω))2

(σy
i )2+k2(σx

i )2
, where k = ∂f

∂x |x=xi . In other words, the

“standard” regression residual is normalized by some quantity depending on the measurement errors σx
i

and σy
i and the regression curve slope in the vicinity of the point (xi, yi) in question. A corresponding

modification of the LMA will be the subject of a future study.
For the computational experiments whose results are presented in the present paper, the use of the

standard LMA can be justified. Specifically, for the model case considered in Section 3 it is assumed
in advance that the independent variable is known exactly, ∀i : σx

i = 0, and the errors in determining
the dependent variable are constant: σy

i = const. Then the denominator of the above expression for the
distance reduces to a constant by which every regression residual is normalized. This complies with the
condition of applicability of the exact result (1), (2).

In Section 4, the regression relation for the dispersion of a polymer was analyzed for the errors σn and
σλ (σy and σx, respectively) in the entire spectral range at k = ∂n

∂λ ≤ 1
5

σn
σλ

. This allows using the standard
LMA with a sufficient accuracy.

Thus, in this paper a method for determining errors in the regression model coefficients, including
the case of nonlinear regression, was proposed. In a computational experiment, a good agreement with
a theoretical result when the standard deviation of the regression coefficients is determined exactly has
been obtained. It has been shown that the computational algorithm can be used in the analysis of specific
physical experiments.
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