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Abstract—A method for solving an inverse eigenvalue problem for a product of second- and third-
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1. INTRODUCTION

Inverse eigenvalue problems may be found in physics, mechanics, and control theory [1]. Generally,
the inverse eigenvalue problem may be formulated as follows: Given a set of square matrices M of order n
(as a rule, this is a set of matrices with real elements), find a matrix A ∈ M with a given set of eigenvalues
Λ = {λ1;λ2; . . . ;λn}. In the case of real matrices, the complex numbers λi are included in the set Λ as
conjugate pairs.

There exist additive, multiplicative, parameterized, and other inverse eigenvalue problems [1]. In the
present paper, a problem for a product of matrices is considered. This problem is known in automatic
control theory as the problem of synthesis of a periodic feedback for a linear discrete system [2].

Despite the simplicity of its statement, the problem under consideration is rather complicated from a
computational perspective. In the present paper, necessary conditions for the existence of a solution to
the problem are formulated in the general case of matrices of arbitrary order. For the particular case
of second- and third-order matrices, necessary and sufficient conditions for existence of a solution
are obtained, and an algorithm for solving the problem is described. The idea of the algorithm is to
successively handle two subproblems: solving a system of linear algebraic equations and finding the
roots of a polynomial.

Some examples of solving the problem on the basis of this approach are presented. The calculations
were performed with the MATLAB system of scientific and engineering calculations. The results of the
calculations are presented in approximate form, up to five significant digits.

2. PROBLEM STATEMENT AND PRELIMINARY RESULTS

Let A, b, and c be, respectively, n× n, n× 1, and 1× n real matrices, and let Λ = {λ1;λ2; . . . ;λn} be
a set of complex numbers. The complex numbers are included in Λ as conjugate pairs. Find real numbers
Fn = {f1; f2; . . . ; fn} such that the spectrum of the matrix

Φn = (A + bcf1)(A + bcf2) · · · (A + bcfn)

coincides with Λ.
Consider a polynomial

q(λ) =
n∏

i=1

(λ − λi) = λn + q1λ
n−1 + · · · + qn.
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An equivalent problem statement is in finding an Fn at which the characteristic polynomial Φn coincides
with q(λ).

Remark 1. In [2], a similar problem is solved for n + 1 number of f1, f2, . . . , fn+1, that is, for the matrix

(A + bcf1)(A + bcf2) · · · (A + bcfn+1).

Here A, b, and c are n× n, n× 1, and 1× n matrices, respectively. In this case the algorithm to calculate
f1, f2, . . . , fn+1 described in [2] differs from the algorithm proposed in the present paper.

Let us introduce square matrices:

Xn(A, b) = [b, Ab, . . . , An−1b], Yn(A, c) =

⎡

⎢⎢⎢⎢⎢⎢⎣

c

cA
...

cAn−1

⎤

⎥⎥⎥⎥⎥⎥⎦
.

The following properties of the matrices Xn(A, b) and Yn(A, c) are well known in the mathematical
theory of linear control systems [3]:

Lemma 1. The matrix Xn(A, b) is nonsingular, that is, detXn(A, b) �= 0, if and only if rank[λE −
A, b] = n for any eigenvalue λ of the matrix A.

Lemma 2. The matrix Yn(A, c) is nonsingular, that is, detYn(A, c) �= 0, if and only if

rank

⎡

⎣λE − A

c

⎤

⎦ = n

for any eigenvalue λ of the matrix A.

The next two lemmas are obtained from Lemmas 1 and 2.

Lemma 3. If detXn(A, b) = 0, there exists an eigenvalue of the matrix Φn that is invariant with
respect to the choice of Fn, and this eigenvalue is an eigenvalue of the matrix An.

Proof. Let detXn(A, b) = 0. According to Lemma 1, rank
[
λE − A, b

]
< n for some eigenvalue λ of

the matrix A. This means that there exists a vector v such that v�
[
λE − A, b

]
= 0. Hence, v�A = λv�,

v�b = 0. Note that the vector v is a left eigenvector of the matrix A corresponding to the eigenvalue λ.
With this taken into account, we obtain

v�(A + bcf1)(A + bcf2) · · · (A + bcfn) = λv�(A + bcf2) · · · (A + bcfn) = λnv�.

Thus, λn is an eigenvalue of the matrix Φn, and it is invariant with respect to the choice of Fn.

Lemma 4. If detYn(A, c) = 0, there exists an eigenvalue of the matrix Φn that is invariant with
respect to the choice of Fn, and this eigenvalue is an eigenvalue of the matrix An.

The proof is similar to the proof of Lemma 3.

Hence, if detXn(A, b) = 0 or detYn(A, c) = 0, the eigenvalues of Φn cannot be given arbitrarily.

Let a(λ) = λn + a1λ
n−1 + · · · + an be the characteristic polynomial of the matrix A.
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Lemma 5. Let detXn(A, b) �= 0. Then the matrix Φn is similar to the matrix

Ψn = (Ā + b̄c̄f1)(Ā + b̄c̄f2) · · · (Ā + b̄c̄f̄n),

where

Ā =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

−an −an−1 . . . −a1

⎤

⎥⎥⎥⎥⎥⎥⎦
, b̄ =

⎡

⎢⎢⎢⎢⎢⎢⎣

0
...

0

1

⎤

⎥⎥⎥⎥⎥⎥⎦
, c̄ =

[
c1 c2 . . . cn

]
.

Proof. Consider the nonsingular matrix

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an−1 an−2 . . . a1 1

an−2 an−3 . . . 1 0
...

...
. . . 0 0

a1 1 . . . 0 0

1 0 . . . 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the matrix Q = Xn(A, b)P . Note that the matrix Q is also nonsingular. The following relations are
valid [3]: Ā = Q−1AQ, b̄ = Q−1b. The vector c̄ = cQ will have a general form. Thus,

Φn = (A + bcf1)(A + bcf2) · · · (A + bcfn)

= Q(Ā + b̄c̄f1)Q−1Q(Ā + b̄c̄f2)Q−1 · · ·Q(Ā + b̄c̄fn)Q−1 = QΨnQ−1.

Hence, the matrices Φn and Ψn are similar.

Consider two particular cases of the problem for second- and third-order matrices.

3. THE PROBLEM FOR A SECOND-ORDER MATRIX

Given: two real 2 × 2, 2 × 1, and 1 × 2 matrices A, b, and c, respectively. Required: numbers f1 and
f2 at which the eigenvalues of the matrix Φ2 = (A + bcf1)(A + bcf2) coincide with given values λ1 and
λ2, or, equivalently, the characteristic polynomial of the matrix Φ2 coincides with the given polynomial

q(λ) = (λ − λ1)(λ − λ2) = λ2 + q1λ + q2.

Theorem 1. All eigenvalues of the matrix Φ2 can be arbitrarily specified by choosing values of f1

and f2, which are complex in the general case, if and only if

detX2(A, b) �= 0, det Y2(A, c) �= 0, cAb + a1cb �= 0. (1)

Proof. The necessity of the first two conditions follows from Lemmas 3 and 4. Let detX2(A, b) �= 0. The
coefficients of the characteristic polynomial of Φ2 linearly depend on the coefficients of the polynomial

p(λ) = (λ − f1)(λ − f2) = λ2 + p1λ + p2.

Clearly,

det(λE − Φ2) = det(λE − Ψ2),

since the matrices Φ2 and Ψ2 are similar (Lemma 5). Taking into account that

Ψ2 = (Ā + b̄c̄f1)(Ā + b̄c̄f2),
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Ā =

⎡

⎣ 0 1

−a2 −a1

⎤

⎦ , b̄ =

⎡

⎣0

1

⎤

⎦ , c̄ =
[
c1 c2

]
,

we obtain

det(λE − Φ2) = λ2 + ((c1 − a1c2)p1 − c2
2p2 + 2a2 − a2

1)λ + c1a2p1 + c2
1p2 + a2

2,

where

p1 = −(f1 + f2), p2 = f1f2.

Equating the coefficients of the polynomials det(λE − Φ2) and q(λ), we obtain a system of linear
algebraic equations:

Rp̄ = r, (2)

where

R =

⎡

⎣c1 − a1c2 −c2
2

c1a2 c2
1

⎤

⎦ , r =

⎡

⎣q1 + a2
1 − 2a2

q2 − a2
2

⎤

⎦ , p̄ =

⎡

⎣p1

p2

⎤

⎦ .

Thus, the algorithm of assigning the eigenvalues of Φ2 is as follows: Specify the polynomial q(λ).
Solve the system of equations (2). Find the roots of the polynomial p(λ) = λ2 + p1λ + p2, which are the
sought-for values of f1 and f2.

The system of equations (2) has a unique solution at any q1, q2 if and only if the matrix R is
nonsingular. It is easy to verify that detR = c1(c2

1 − a1c1c2 + a2c
2
2). Here

c1 = cAb + a1cb, c2
1 − a1c1c2 + a2c

2
2 = det Y2(Ā, c̄) = detY2(A, c) det Q.

Hence, the conditions (1) are necessary and sufficient for arbitrarily assigning the eigenvalues of the
matrix Φ2.

Remark 2. The roots of the polynomial p(λ) may be complex. In this case no solution to the problem
exists in the set of real numbers with the given polynomial q(λ). There is a condition imposed on the
coefficients of the polynomial q(λ) at which the roots of the polynomial p(λ) are real. The condition is
obtained from the inequality p2

1 ≥ 4p2, and has the following form:

(c2
1(q1 +a 2

1 − 2a2) + c2
2(q2 − a2

2))
2

≥ 4((c1 − a1c2)(q2 − a2
2) − c1a2(q1 + a2

1 − 2a2))c1(c2
1 − a1c1c2 + a2c

2
2). (3)

Example 1. Let

A =

⎡

⎣0 1

2 −3

⎤

⎦ , b =

⎡

⎣0

1

⎤

⎦ , c =
[
5 2

]
.

The desired eigenvalues of the matrix Φ2 are specified equal to

Λ = {0.1 + 3i; 0.1 − 3i}.

The conditions of Theorem 1 are satisfied. Therefore, the system of equations (2) has a unique solution:
p1 = −5.2314; p2 = −1.8922. The roots of the polynomial p(λ) = λ2 + p1λ + p2 are f1 = 5.5710 and
f2 = −0.33964.

Let Λ = {6; 12}. In this case p(λ) = λ2 − 2.2615λ + 1.8154. The roots of the polynomial p(λ) are
complex: f1 = 1.1308 + 0.73263i and f2 = 1.1308 − 0.73263i. The condition (3) is not satisfied.
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4. THE PROBLEM FOR A THIRD-ORDER MATRIX

Consider the matrix Φ3 = (A + bcf1)(A + bcf2)(A + bcf3). Here n = 3. Required: numbers f1, f2,
and f3 at which the eigenvalues of the matrix Φ3 coincide with given values λ1, λ2, and λ3.

Theorem 2. All eigenvalues of the matrix Φ3 can be arbitrarily specified by choosing values of f1,
f2, and f3, which are complex in the general case if and only if

det X3(A, b) �= 0, detY3(A, c) �= 0, (4)

c1 �= 0, c2
1 − a1c1c2 + a3c2c3 �= 0,

where

c1 = cA2b + a1cAb + a2cb, c2 = cAb + a1cb, c3 = cb.

Proof. The proof is similar to the proof of Theorem 1. The necessity of the inequalities (4) follows from
Lemmas 3 and 4. Let detX3(A, b) �= 0. According to Lemma 5, the matrix Φ3 is similar to the matrix

Ψ3 = (Ā + b̄c̄f1)(Ā + b̄c̄f2)(Ā + b̄c̄f3),

where

Ā =

⎡

⎢⎢⎢⎣

0 1 0

0 0 1

−a3 −a2 −a1

⎤

⎥⎥⎥⎦ , b̄ =

⎡

⎢⎢⎢⎣

0

0

1

⎤

⎥⎥⎥⎦ , c̄ =
[
c1 c2 c3

]
.

The characteristic polynomial of the matrix Ψ3 is

det(λE − Ψ3) = λ3 + ((a2
1c3 − a1c2 − a2c3 + c1)p1

+(a1c
2
3 − c2c3)p2 + c3

3p3 + a3
1 − 3a1a2 + 3a3)λ2

+((a2
2c2 + 2a3c1 − a1a2c1 − a1a3c2 − a2a3c3)p1

+(a2c
2
2 − a1c1c2 − a2c1c3 − a3c2c3 + c2

1)p2

+(c3
2 − 3c1c2c3)p3 + a3

2 − 3a1a2a3 + 3a2
3)λ

+a2
3c1p1 + a3c

2
1p2 + c3

1p3 + a3
3,

where p1, p2, and p3 are coefficients of the polynomial

p(λ) = (λ − f1)(λ − f2)(λ − f3) = λ3 + p1λ
2 + p2λ + p3.

Equating coefficients of the polynomials det(λE − Ψ3) and

q(λ) = (λ − λ1)(λ − λ2)(λ − λ3) = λ3 + q1λ
2 + q2λ + q3,

we obtain a system of linear algebraic equations:

Rp̄ = r, (5)

where

r =

⎡

⎢⎢⎢⎣

q1 − a3
1 + 3a1a2 − 3a3

q2 − a3
2 + 3a1a2a3 − 3a2

3

q3 − a3
3

⎤

⎥⎥⎥⎦ , p̄ =

⎡

⎢⎢⎢⎣

p1

p2

p3

⎤

⎥⎥⎥⎦ .
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The elements of the matrix

R =

⎡

⎢⎢⎢⎣

r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤

⎥⎥⎥⎦

are

r11 = a2
1c3 − a1c2 − a2c3 + c1,

r12 = a1c
2
3 − c2c3, r13 = c3

3,

r21 = a2
2c2 + 2a3c1 − a1a2c1 − a1a3c2 − a2a3c3,

r22 = a2c
2
2 − a1c1c2 − a2c1c3 − a3c2c3 + c2

1,

r23 = c3
2 − 3c1c2c3,

r31 = a2
3c1, r32 = a3c

2
1, r33 = c3

1.

The following equality is valid:

det R = c1(c2
1 − a1c1c2 + a3c2c3) det Y3(Ā, c̄).

Hence, Eq. (5) has a unique solution at any q1, q2, q3 if and only if det Y3(Ā, c̄) �= 0, c1 �= 0, c2
1 − a1c1c2 +

a3c2c3 �= 0. Note that

det Y3(Ā, c̄) = detY3(A, c) det Q,

c1 = cA2b + a1cAb + a2cb, c2 = cAb + a1cb, c3 = cb.

Remark 3. As in the case of a second-order matrix, the roots of the polynomial p(λ) may be complex.
A condition under which the polynomial p(λ) does not have complex roots is rather complicated and,
therefore, omitted here.

Example 2. Consider the following matrices:

A =

⎡

⎢⎢⎢⎣

3.8506 −8.7682 2.1573

1.1334 5.6035 4.8251

−2.0696 −3.2483 −7.9037

⎤

⎥⎥⎥⎦ , b =

⎡

⎢⎢⎢⎣

−7.4422

0.99080

−0.29541

⎤

⎥⎥⎥⎦ ,

c =
[
7.8095 5.9792 4.6868

]
.

The characteristic polynomial of the matrix A is

a(λ) = λ3 − 1.5504λ2 − 23.070λ + 84.096.

The matrices Ā, b̄, and c̄ have the following form:

Ā =

⎡

⎢⎢⎢⎣

0 1 0

0 0 1

−84.096 23.070 1.5504

⎤

⎥⎥⎥⎦ b̄ =

⎡

⎢⎢⎢⎣

0

0

1

⎤

⎥⎥⎥⎦ ,

c̄ =
[
941.16 −171.26 −53.580

]
.
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Specify the required eigenvalues of the matrix Φ3 as Λ = {0.1; 0.2; 0.3}. Form and solve the system
of equations (5). We obtain

p̄ =

⎡

⎢⎢⎢⎣

−0.48129

0.066259

−0.0027912

⎤

⎥⎥⎥⎦ .

The sought-for numbers f1, f2, and f3 are found as the roots of the polynomial

p(λ) = λ3 − 0.48129λ2 + 0.066259λ − 0.0027912.

These numbers are: f1 = 0.28061; f2 = 0.11132; f3 = 0.089353.

Remark 4. In the general case with n > 3, the statement that the coefficients of the characteristic
polynomial of the matrix Φn linearly depend on the coefficients of the polynomial p(λ) is not true. As
an example, let

A =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

0 1 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
b =

⎡

⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

⎤

⎥⎥⎥⎥⎥⎥⎦
, c =

[
1 0 0 0

]
.

Then

det(λE − Φ4) = λ4 + (−5 − f1 − f2 − f3 − f4)λ3

+(2(f1 + f2 + f3 + f4) + f1f2 + f1f3 + f1f4 + f2f3 + f2f4 + f3f4)λ2

+(−f1f2 − f1f4 − f2f3 − f3f4 − f1f2f3 − f1f3f4 − f2f3f4)λ + f1f2f3f4

= λ4 + (−5 + p1)λ3 + (−2p1 + p2)λ2 + (−p2 + f1f3 + f2f4 + p3)λ + p4.

In this case, the coefficients of the characteristic polynomial of the matrix Φ4 do not linearly depend on
the coefficients of the polynomial

p(λ) = (λ − f1)(λ − f2)(λ − f3)(λ − f4) = λ4 + p1λ
3 + p2λ

2 + p3λ + p4,

since the coefficient at λ has the terms f1f3 and f2f4.

5. CONCLUSIONS

In this paper, an approach to solving an inverse eigenvalue problem for the matrices Φ2 and Φ3 has
been proposed. It is in successively handling the following two problems: solving a system of linear
algebraic equations and finding the roots of a polynomial. The system of linear algebraic equations has
been obtained, and necessary and sufficient conditions for the existence of a unique solution to the system
have been defined.
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