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Abstract—The theory is proposed for solving problems of adhesion mechanics that is based on the concept of
an anisotropic layer that serves as a contact between the adhesive and substrate. All boundary conditions in
contact problems and the original equations are satisfied exactly; i.e., the mathematical Cauchy problem is
solved. The possibilities of the theory are demonstrated by solving a specific problem of multiple destruction
of a fiber in a polymer matrix during stretching of the Kargin—Malinsky model, which simulates the behavior
of a reinforced polymer. The solution results explain the unusual experimental results.
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INTRODUCTION
The phenomenon of adhesion is the establishment

of energetic bonds between an adhesive (glue) and a
substrate (which is glued or coated). When assessing
the quality of an adhesive joint, we are able to measure
only two parameters—the area of gluing and the force
that breaks this gluing. Further, by analogy with mate-
rials, the breaking load is referred to the glued area and
the resulting value, for example, average tangential
stresses  = Pb/S is called the “adhesion shear
strength” or σtr = Pb/S is the “strength at normal pull-
off” or the “transverse strength.” It is then assumed
that the stresses are uniformly distributed over the
glued area. This is, in fact, the average adhesive
strength. In addition, it is known that this value is a
strong function of the geometric parameters of the
sample and the physical parameters of the experiment
(for example, temperature). Figures 1 and 2 show, as
examples, the schemes of samples and experimental
results of testing these samples for shear by pulling the
fiber out from the epoxy matrix (pull out) and connec-
tions of “overlap” type [1, 2]. The results are presented
as dependences of the above-mentioned ratio of the
breaking load to the glued area on the geometric
parameters of the sample and temperature. It can be seen
from the graphs that these dependences do not allow one
to indicate a specific value of the strength of the adhesive
bond between the substrate and the adhesive.

The regulation of tests, i.e., the development of
standards for sample sizes for some methods, has cre-
ated the possibility of a relative assessment of the qual-
ity of a particular adhesive in interaction with a certain

substrate. The informational content of the tests has
increased. However, it was not possible to completely
solve the problem of assessing the quality of adhesives
in this way. First, because not all sizes in the adhesive
joint can be regulated. For example, the thickness of
the adhesive layer can change from one adhesive to
another, even under the same conditions of its forma-
tion. Second, and more importantly, in this case,
adhesives are evaluated only for one model size, but, in
practice, they will be used for gluing parts of various
sizes and shapes. In relation to them, judging by the
results shown in Figs. 1–3, conclusions drawn from
standard tests may turn out to be erroneous.

Usually, the physicomechanical analysis of the
behavior of solids begins with an experimental study of
the simplest case of a homogeneous stress state—cre-
ated, for example, during tension or shear of a mate-
rial. Adhesion studies—in particular, adhesion
mechanics—always deal with a substantially nonuni-
form stress distribution over the contact area of   the
adhesive with the substrate. A convincing example of
the distribution of tangential stresses near the gluing
boundary is shown in Fig. 4 from [3]. This fact deter-
mines the complexity of the problems of adhesion of
adhesive mechanics and is the main reason for the sig-
nificant lag of theory from widely presented (due to
practical needs) experimental studies. Thus, one
important task that needs to be carried out in the
course of adhesion is to determine the strength of the
adhesive bond—the true adhesive strength that does not
depend on the geometry of the sample—and to deter-
mine the intensity of the adhesive interaction (the stiff-
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Fig. 2. (a—c) Experimental results of testing joints of plates of “overlap” type for shear: (1) dependence of destructive load P on
thickness of glue line hg for the Araldit steel-filled epoxy glue; (2, 3) dependence of average adhesive strength  on test tempera-
ture for aluminum– epoxy-polyamide glue and aluminum-filled glue EPTs-1 joints, respectively; and (4) dependence of average
adhesive strength  on gluing length of the glass-epoxy joint (ED-20 epoxy resin and PEPA hardener).
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Fig. 1. Test samples and experimental dependences of  when pulling a fiber (by the pullout method) out from an EDT-10 poly-
mer epoxy matrix on the (1) diameter of the glass fiber, (2) temperature, and (3) gluing length [34].

60

40

20

–160 1600–120 –80 –40 1208040 T, °C

320 24168 d, μm

2.00 1.51.00.5 l, mm

1
2

3

1

1

1

2

2

2

PP

P
3

τ, MPa

d
@

τ

ness of the contact layer). Together, they uniquely char-
acterize the quality of the adhesive bond of a given
adhesive–substrate pair.

It should be noted right away that almost all models
used for the study of glue (adhesive) joints are micro-
or macromodels of composite materials, in the cre-
ation of which the role played by adhesion is decisive,
although contradictory. For example, adhesion is one
reason for the relatively low tightness of products
made of reinforced polymers obtained by winding.
Therefore, the term “adherent junctions (AJs) will be
used here as a more general one. In addition, in con-
trast to most problems in the theory of elasticity and
resistance of materials, in which, according to the
POLYMER SCIENCE, SERIES D  Vol. 14  No. 4  2021
principle of Saint-Venant, the edges of models are
excluded from consideration, in questions of adhesion
mechanics, all problems are largely determined by
edge effects—the concentration of stresses [1–4] at the
edges.

The question of what adhesion is can be answered
as follows. This is a phenomenon or the process of
establishing certain bonds with a finite breaking
energy between the adhesive (glue, matrix) and the
substrate. Let us assume that we can regulate the den-
sity of these connections. Let us recall Loschmidt’s
number of the number of atoms in a solid, which is
about 1022/cm3. Then, for 1 cm2 of the surface, for
example, with a bond density of np1 = 1012/cm2, this
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Fig. 3. Adhesion tests for normal pulloff. Sample and experimental dependences of average strength on (1) radius of contacting
surfaces, (2) thickness of adhesive layer, and (3) test temperature.
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Fig. 4. Experimental distribution curve at the interface of
tangential stresses in a model of three glued glass rods:
(1) glass rods; (2) adhesive layer [3]. The tests were carried
out by the method of photoelasticity.
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will mean that approximately one out of every ten
atoms of the substrate surface is involved with the
opposite adhesive atom. Such a medium will have
Young’s modulus E ' along the bonds and shear
modulus G*, which characterizes the relationship
between shear strain γ in contact plane and the shear
stress τ = G*γ. If we use every hundredth atom, then
the density of bonds between the adhesive and the sub-
strate will be approximately np1 = 1010/cm2. It is very
likely that the actual density of adhesive bonds is much
less; i.e., the bonds are rare. Both Young’s modulus E '
and shear modulus G* of the contact layer will, then,
also decrease by two orders of magnitude. This is how
we can influence the adhesive interaction and its inten-
sity. The magnitude of this interaction can vary in the
range of several orders of magnitude. Adhesive interac-
tion is undoubtedly closely related to wetting.

Let us imagine these connections in the form of
short, elastic rods with length h*, perpendicular to the
surfaces of the substrate and the adhesive. The rods,
since they are rare, do not touch each other (Fig. 5).
Thus, the binding rods create a certain layer with
thickness h* of an anisotropic continuous medium,
which can be called a “contact” or “boundary” layer.
In such a medium, there are certainly no normal
stresses perpendicular to the “side” surface of the
rods. The shear modulus of such an anisotropic
medium is related to the Young’s modulus along the
bonds by the simple relation G* = E*/2.

The theory proposed in [1], which is called “adhe-
sion mechanics,” is based on the concept of the exis-
tence of the described contact layer between the adhe-
sive and the substrate. The works devoted to the con-
tact layer method in adhesion mechanics (at first the
author called it a boundary layer) began in the Soviet
Union in the early 1970s (for example, [11–18]) and
are continuing at the present time [1, 2, 6–8, 19, 20].
In Western countries, the first works on the character-
LYMER SCIENCE, SERIES D  Vol. 14  No. 4  2021
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ization of adhesive contact appeared only in the 1990s
[21–26]. It is, basically, a shear spring model like a
Winkler base. For example, quite a large number of
works by various authors are devoted to the edge effect
near the break (end face) of a fiber in a composite (ref-
erences in [3–5]). However, the role of the adhesive
interaction was practically not studied in them, since it
was not characterized in any way in these works, and it
was assumed to be absolute by default [9, 10]. The lat-
ter means that only the fundamental requirements for
the continuity of the vectors of displacements and
stresses were fulfilled at the boundary; that is, the
requirements for maintaining continuity and the ful-
fillment of Newton’s third law. In this case, solutions
are inevitably obtained in which the tangential stresses
at the angular points tend to infinity; that is, a so-
called “singularity” manifests itself. The use of physi-
cally justified strength criteria under these conditions
becomes practically impossible. In particular, let us
consider a model of numerous and regular prefrac-
tures of a fiber in a polymer plate under tension. This
is a model of a reinforced polymer (Kargin—Malinsky
model). It was tested by the photoelasticity method,
calculated by the contact layer method, and explained
in the works of the author and his colleagues [14–17]
by the extreme distribution of tensile stresses in the
fiber near the fiber edge due to the symmetric bending
of the composite model. In addition, it was shown in
these works that the number of fiber breaks before the
destruction of the model as a whole is extremely
dependent on the test temperature. A similar study was
carried out in Western countries 20 years later in [26]
using a spring model at a constant temperature.

As a result of the application of the hypothesis of
the anisotropic contact layer described above, a theory
has been created [1], which

— is able to calculate substantially nonuniform
stress and strain fields in adhesive joints, including
stress concentrations;

— is able to satisfy all boundary conditions, in con-
trast to “strict” solutions, for example, according to
the theory of elasticity, when at the corners on surfaces
free from loads that are, contrary to the conditions of
the problem, infinite, and nonzero values of tangential
stresses (singularities) are obtained;

— relies on the achievements of predecessors,
being quite noncomplex and allowing simplifications
up to one-dimensional problems, the solutions of
which are usually obtained in the form of finite formu-
las without using numerical methods;

— takes into account the technological stresses cre-
ated by the glue (adhesive) when shrinking or chang-
ing the temperature of the model;

— uses physically clear criteria for the destruction
of adhesive joints, for example, when the maximum
tangential stress reaches a critical value, which was call
“the shear strength of the adhesive bond”;
POLYMER SCIENCE, SERIES D  Vol. 14  No. 4  2021
— allows direct comparison of calculations with
experimental results, this meaning that the calculation
results can be presented in the form of dependences of
the average adhesion strength measured in the experi-
ment on various parameters of the model and experi-
ment;

— allows one to enter, along with the adhesive
strength, the stiffness parameter of the contact layer,
which characterizes the intensity of the adhesive bond
and affects the magnitude and nature of stress distri-
bution at the boundary and in all components of the
model;

— explains and describes the experimentally dis-
covered phenomenon of synergism of elastic charac-
teristics (Young’s modulus) of thin layers of adhesive
and layered structures;

— makes it quite easy to determine the true
strength of the adhesive bond and the stiffness of the
contact layer from macroexperiments on measuring
the average adhesive strength; and

— is applicable to the description of relaxation pro-
cesses in thin adhesive layers taking into account the
stress concentration, for example, using the nonlinear
differential coupling equation obtained by G.I. Gurevich
[1, 2, 27] as a result of considering the molecular
mechanism of deformation of condensed media.

The theoretical results are in qualitative and quan-
titative agreement with the experimental data.

MAIN PART
This theory is applicable to solving a number of

problems of related sciences. In particular, it is
involved in solving the problem of sequencing (deter-
mining the structure) of a DNA molecule and the
interaction of an enzyme with a DNA molecule [1].

In the contact layer shown in Fig. 5, there is no
direct contact of the rods with each other and, there-
fore, there are no normal stresses σx and σy. Short rods
experience shear stresses σzx, σzy, σxy and, naturally,
normal stresses σz. Since the rods are short, i.e., h*
(the length of the rods or, which is the same thing, the
thickness of contact layer k) is small, it can be assumed
that, within contact layer k, displacements u or ν are a
linear function of the z coordinate (Fig. 6): uk = ak +
ckz (k = 0, 1, …, n).

Figure 7 presents a design diagram of a plane two-
dimensional problem corresponding to the simplest
model of unidirectionally reinforced plastic. It is a
polymer plate, on the major axis of symmetry of which
there is a reinforcing element in the form of a fiber or
a rod, in particular a glass one. Tensile forces P are
applied to the polymer plates along the fiber axis, as
shown in the diagram. There are no stresses σx in the
contact layer.

In the experiment, this theoretical model corre-
sponded to the Kargin–Malinsky model, which is
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Fig. 6. Scheme of displacements along the x axis of the ele-
ments of a layered system.  is the thickness of the contact
layer.
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Fig. 7. Design scheme of a two-dimensional plane prob-
lem. Stresses and forces in the main element of a multilayer
plate (two-dimensional problem): (1) reinforcing element
or substrate, (2) adhesive layer, and (3) contact layer.
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intended for studying the process of destruction of a
reinforcing fiber in a polymer matrix in polarized light
using the photoelasticity method. On such a model of
unidirectional Kargin–Malinsky plastic, which is a
PO
f lat standard polymer sample in the form of a so-
called “blade” designed for tensile testing, on the lon-
gitudinal axis of symmetry of which a reinforcing ele-
ment in the form of a fiber or rod (here, a glass one) is
placed; experiments were carried out on stretching at a
constant speed at various temperatures (Fig. 8). The
deformation of such samples was observed in polar-
ized light. The tensile strength of such samples in the
entire studied temperature range is usually lower than
the strength of similar polymer samples without a
reinforcing rod. The destruction of the model as a
whole is preceded by multiple breaks of the reinforcing
element (marked in Fig. 8). Near these breaks, stress
concentration zones are observed in polarized light,
which contribute to a decrease in the strength of the
model samples.

Visual observations and filming of the destruction
process showed that the sequence of the occurrence of
ruptures of the reinforcing element obeys a certain
pattern. The first fiber break occurs at a random loca-
tion. Subsequent breaks, as a rule, occurred at a cer-
tain (on average) distance from one of the previous
breaks. For example, if the first break occurred in the
middle of the fiber length, then the subsequent break
occurs to the left or right of this first one at a fairly
small distance (about 12–20 fiber diameters). There-
after, for example, a third break may occur at the same
small distance from the second from the side of the
still long whole part of the reinforcing fiber. This con-
tinues until the final destruction of the sample as a
whole occurs.

Fiber breaks that obey the described order (usually
from the second to the sixth) in what follows we will
conventionally be called “sequential” breaks. About
400 samples were observed in the experiments, and
sequential breaks occurred in 80% of cases. It should
be noted that sequential ruptures of the reinforcing
element during stretching of the model are observed in
a certain temperature range, the boundaries of which
depends on the polymer used and usually includes the
glass-transition temperature of the polymer. For
example, for samples based on polyester resin,
sequential ruptures are observed in the temperature
range from 30 to 70°C, while this range is from 60 to
140°C for epoxy resin. Outside these areas, the order
of breaks is random. All these regularities are
observed in spite of the fact that the fiber, as is known
[1, 34, 35], has a dispersion of strength along its
length and, under uniform loading, breaks should
have arisen randomly.

However, the dependence of the number of any
breaks (sequential and random) preceding the
destruction of the entire specimen has an extreme
character (Fig. 9). This means that this phenomenon
can most likely be explained by a more complex distri-
bution of tensile stresses in the fiber near the place of
its rupture and the local excess of stresses should be
greater than the dispersion of the fiber strength.
LYMER SCIENCE, SERIES D  Vol. 14  No. 4  2021
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Fig. 9. Temperature dependence of average number of
breaks N of the reinforcing element preceding the destruc-
tion of the model as a whole. Polyester resin is the adhe-
sive. A glass rod with a diameter of 100 μm is the substrate.
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To find out the plausibility of this hypothesis, the
problem of the stress-strain state of the studied model
after the formation of a rupture of the reinforcing fiber in
flat two- and one-dimensional formulations was solved
by the contact layer method. The scheme of the model,
as already mentioned, is shown in Fig. 7. Fiber 1 is con-
sidered a rod, and the theory of plates is applied to poly-
mer layers 2. Contact layer 3 is between them.

Only small deformations (ε  1) characteristic of
rigid structural materials are considered. Therefore,
the total deformation of the adhesive and the substrate
can be represented as the sum of deformations of vari-
ous physical natures: elastic deformation e related with
stresses by Hooke’s law; deformation εq, which is
either forced highly elastic deformation ε* that is not
reversible in the phase with stresses, or plastic ε0 (i.e.,
residual or irreversible after stress relief), or tempera-
ture εt, or a result of chemical (as a result of the hard-
ening reaction) or physical (for example, during crys-
tallization) shrinkage εс, etc.; or the sum of the defor-
mations involved in the process:

(1)
Contact layers are considered as a purely elastic

anisotropic medium. For a f lat problem, we have:
— equilibrium equations

(2)
— Cauchy relations connecting total deformations

with displacements of particles of the medium u and ν
in the x and y directions,

(3)
where σx and σy are the normal components of the
stress tensor; τxy are shear components (see Figs. 7, 9);
εxx and εyy are the components of the strain tensor
along the x and y axes; εxy is the shear component of
the strain tensor.

Hooke’s law for an orthotropic body, which con-
nects elastic deformations eij in the direction of the
elastic anisotropy axes with stresses (for the plane
problem ezz = 0), has the form

(4)

where Exx, Eyy, and Gxy are the Young’s normal moduli
and shear modulus of the orthotropic contact layer,
while μxy and μyx are the Poisson’s coefficients of the
anisotropic contact layer.

For an elastic contact layer, instead of relations (3),
we have

(5)
Since the structure of the contact layer is a “brush”

in which the rods are perpendicular to the contact sur-
face and do not touch each other, the stresses σx in it are

!
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equal to zero. This means that, in the first equation (4),
modulus Exx = 0. This result allows direct integration
of equilibrium equations (2). Due to the conservation
of continuity at the boundaries y = ±h* of the contact
layer, the displacement continuity conditions must be
satisfied; i.e., at these boundaries, displacements u
and ν of the contact layer and the adjacent plates must
be equal to each other. Due to the relatively small
transverse dimensions of the model, when solving the
problem, one can restrict oneself to the theory of
plates or beams. In this case, integrating the system of
Eqs. (2)–(5) with the satisfaction of the boundary
conditions for the displacements, the following
expressions for the stresses and displacements in the
contact layer are obtained:

(6)

Here, we used the notation for functions of x, repre-
senting the half-sums of displacements at the bound-
aries ±h* of the contact (here, the middle) layer:

(7)

In system of equations (6), all four desired func-
tions u, ν, τxy, and σy, as a result of integration, are
expressed in terms of functions τ, ζ, χ, and ψ. This
change is made it convenient to apply the well-devel-
oped theory of plates. Function λ is expressed in terms
of two of these four functions:

(8)
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Desired functions τ, ζ, χ, and ψ are determined
from the compatibility conditions of deformations of
the contact and outer layers and the fulfillment of
Newton’s third law. Without going into the details,
which can be found, for example, in [2], as a result of
the transformations, a system of seven equations is
obtained for the seven desired functions χ, λ, ψ, τ, qy1,
N1, and N2:

(9)

After simple transformations of system (9), it is
possible to obtain a defining equation with respect to
desired function χ:

(10)
where

(11)

The solution to such an equation is sought in the
form (taking into account the symmetry with respect
to 0y):

(12)

where sr are the roots of the characteristic equation

(13)
Analysis using Vieta theorem shows that, of the

four roots (s2 = w) of Eq. (13), two are real and two are
complex conjugate. The approximate expression for
real roots is

(14)

and that for complex roots is
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The integration constants of coefficients Ar in (15) are
determined from the boundary conditions for x = ±l/2:

(17)

Turning to displacements, boundary conditions (17)
can be written in the following form:

(18)

Without going into the details of the transforma-
tions and solutions, we write out the final formulas:
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Constants  are related to Ar as follows:
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Fig. 10. Distribution of normal (1, 1') stresses (σx1/Q)
in the reinforcing element and tangential (2 and 2') stresses
τ* (τ/Q) at the fiber–polymer interface. Solid curves are
the result of solving a two-dimensional problem: at the left
end, both stresses are equal to zero. The dotted line is a
one-dimensional problem.
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Normal stress σx1 in a reinforcing element (see
Fig. 7) is

(23)

where

(24)

(25)

Finally, σy in the contact layer is

(26)

Figure 10 shows the distribution curves of the
reduced normal stresses  (curve 1) in the reinforc-
ing element and tangential stresses τ* (curve 2) at the
boundary. The expressions of these stresses are
obtained from (22) and (23) by dividing them by the
impact applied to the system, which is the value

(27)

In the calculations, the constant of the polyester
resin was taken for the polymer plate as E2 = 240 MPa,
while, for a reinforcing element (rod) glass, E1 =
72000 MPa. For the contact layer constants, Eyy =
2400 MPa and Gxy/h3 = 25000 MPa/mm. The geo-
metrical dimensions of the model are h1 = 0.2 mm,
h2 = 4 mm, l = 20, and b = 2.5 mm.

Parameter Gxy/h3 was determined from indepen-
dent experiments.

Figure 10 shows that the maximum of tensile
stresses in the reinforcing element is located closer to
the end, and not in the middle of its length, as follows
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from the solution of the one-dimensional problem
(curve 1'), and its value can significantly (by 30–40%)
exceed the value of the stress obtained from the one-
dimensional problem. If this excess overlaps the dis-
persion of the fiber strength, then fiber rupture should
be expected at the point of maximum σx1. As concerns
the experimental model, this means that, after the
first, often accidental, fiber break, subsequent breaks
can be expected in the vicinity of this first one. An
explanation of the limited temperature range in which
such a dependence is observed should, apparently, be
sought in a change in the physical parameters of the
resin and fiber dispersion. The oscillating distribution
of tangential stresses near the end (curve 2) is note-
worthy, as is the exact satisfaction of boundary condi-
tions τ = 0 at x = ±l/2. All this significantly distin-
guishes the solution of the two-dimensional problem
from the one-dimensional one (curve 2 '). However,
the dimensions of the zone of the edge effect of stress
concentration in both cases are quite close.

The solution of the considered problem in a one-
dimensional formulation is written in the form

(28)

CONCLUSIONS
B.W. Rosen [5], starting from an analysis of the

edge effect in solving a one-dimensional problem,
proceeded to consider the process of destruction of
unidirectional reinforced plastic. The essence of his
approach is as follows. It is known that the strength of
a fiber, as well as the strength of a bundle of indepen-

( )α σ = − − + ε − ε − + ν 
α τ = −α − + ε − ε + ν 
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dent fibers, depends on the base, i.e., on the length of
the tested fiber or bundle [1]. At the same time, the
strength of a microplastic made from a bundle of such
fibers connected into a monolith by a cured resin is
practically independent of the base. Applying the solu-
tion of the one-dimensional problem and the concept
of damage accumulation to the analysis of experimen-
tal results on the destruction of microplastics, Rosen
came to the conclusion that the strength of microplas-
tics is determined by the strength of the fibers in the
bundle over a length equal to the length of the edge-
effect zone, i.e., that part of the fiber near its end,
which, according to the solution of the one-dimen-
sional problem, is not fully loaded (see Fig. 10, curve 1')
and, therefore, is called the “ineffective length.” This
concept has found wide acceptance and application.
However, it remains unclear how the least loaded
(according to the solution of the one-dimensional
problem) part of the fiber can determine the strength
of the plastic. Apparently, this ambiguity is eliminated
as a result of the solution of the two-dimensional
problem presented here, because it follows from it
(compare curves 2 and 2 ' in Fig. 10) that it is on the
length of the edge effect zone, that is, on the “ineffec-
tive length,” that tensile stresses in the fiber can reach
values   that are higher than those obtained from one-
dimensional solutions (i.e., far from the fiber end)
and, naturally, fiber failure should be expected pre-
cisely here.
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