On Optimization Problem for Positive Operator-Valued Measures

A. S. Holevo*

(Submitted by A. M. Elizarov)

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, 119991 Russia Received June 4, 2022; revised June 24, 2022; accepted June 28, 2022

Abstract—It is shown that a number of optimization problems in quantum information theory: the χ -capacity (called the Holevo capacity in literature) of a quantum channel; the classical capacity of quantum observable; entanglement of formation—can be recast as a generalization of a Bayes problem over the set of all quantum states. This allows us to consider it as a convex programming problem for which necessary and sufficient optimality conditions along with the dual problem can be formulated.

DOI: 10.1134/S1995080222100158

Keywords and phrases: quantum state ensemble, positive operator-valued measure, convex optimization.

Let \mathcal{H} be a finite-dimensional Hilbert space, $\mathfrak{T}(\mathcal{H})$ the Banach space of operators on \mathcal{H} equipped with trace norm, $\mathfrak{S} = \mathfrak{S}(\mathcal{H})$ the compact convex set of quantum states equipped with trace-norm distance. An *ensemble* is a probability measure $\pi(dS)$ on the set \mathfrak{S} , cf. [2], and the set of all such measures is denoted $\mathcal{P}(\mathfrak{S})$.

Let *f* be a continuous concave function on the compact convex set \mathfrak{S} . The proof of theorem below uses very little of other special properties of *f* and \mathfrak{S} . Consider the functional

$$F(\pi) = \int_{\mathfrak{S}} f(S)\pi(dS), \tag{1}$$

on $\mathcal{P}(\mathfrak{S})$. From the definition, it is a continuous affine functional. We are interested in minimization of this functional on the closed convex subset $\mathcal{P}_{\overline{S}}$ of probability measures π with the fixed given barycenter

$$\overline{S} = \int_{\mathfrak{S}} S \,\pi(dS). \tag{2}$$

Under mild additional conditions the functional $F(\pi)$ attains its minimum $\mathcal{F}(\overline{S})$ on the compact set $\mathcal{P}_{\overline{S}}$. The resulting function $\mathcal{F}(S), S \in \mathfrak{S}$, is convex, in fact it is equal to the *convex closure* of f(S) i.e. the greatest lower semicontinuous convex function majorized by f(S) [7]. Concavity of f implies then that we can choose the minimizing measure π to be supported by the pure states since we can always make spectral decompositions of all the density operators S into pure states without changing the barycenter and without increasing the value $F(\pi)$.

This problem is relevant to a number of issues in quantum information theory.

1. Computation of the χ -capacity [2] of a quantum channel Φ defined as

$$C_{\chi}(\Phi) = \sup_{\pi} \left[H\left(\Phi\left[\int_{\mathfrak{S}} S \, \pi(dS) \right] \right) - \int_{\mathfrak{S}} H(\Phi[S]) \pi(dS) \right]$$

^{*}E-mail: holevo@mi-ras.ru

ON OPTIMIZATION PROBLEM

$$= \sup_{\overline{S}} \left[H\left(\Phi\left[\overline{S}\right]\right) - \inf_{\pi \in \mathcal{P}_{\overline{S}}} \int_{\mathfrak{S}} H(\Phi[S]) \pi(dS) \right].$$

Here the second term in the squared brackets is the convex closure of the channel output entropy, with

$$f(S) = H(\Phi[S]) = \operatorname{Tr} K(S)S,$$

$$K(S) = -\Phi^* \left[\log \Phi[S]\right].$$

2. A similar case is the classical capacity of quantum-classical channel (observable) given by the map $M: S \to p_S(z) = \text{Tr } Sm(z)$, where m(z) is a uniformly bounded positive-operator-valued function of $z \in Z$, such that $\int m(z)dz = I$ (the unit operator). Here (Z, dz) is a measure space. Then $p_S(z)$ is the probability density of the outcomes of the quantum measurement described by m(z). In this case the classical capacity of the channel is equal to the χ -capacity (the channel is entanglement-breaking) and

$$C(M) = C_{\chi}(M) = \sup_{S} \left[h\left(p_{S}\right) - \inf_{\pi:\overline{S}_{\pi}=S} \int_{\mathfrak{S}} h\left(p_{S}\right) \pi(dS) \right],$$

where $h(p_S) = -\int p_S(z) \log p_S(z) dz$ is the differential entropy of this probability density and

$$f(S) = h(p_S) = \operatorname{Ir} K(S)S,$$

$$K(S) = -\int m(z) \log p_S(z) dz.$$

3. Another case of interest described e.g. in Sec. 7.5 of [1] is the Entanglement of Formation. Let S_{12} be a state in the tensor product of two Hilbert spaces $\mathcal{H}_1 \otimes \mathcal{H}_2$. Entanglement of Formation of the state S_{12} is the convex closure of $H(S_1)$, where $S_1 = \text{Tr}_2 S_{12}$ is the partial state:

$$E_F(S_{12}) = \inf_{\substack{\pi:\overline{S}_{\pi}=S_{12}\\\mathfrak{S}(\mathcal{H}_1\otimes\mathcal{H}_2)}} \int H(\operatorname{Tr}_2 S) \, \pi(dS),$$

minimization is over all probability measures $\pi(dS)$ on $\mathfrak{S}(\mathcal{H}_1 \otimes \mathcal{H}_2)$ satisfying $\int_{\mathfrak{S}(\mathcal{H}_1 \otimes \mathcal{H}_2)} S \pi(dS) = S_{12}$. In that case $f(S_{12}) = H(S_1), K(S_{12}) = -(\log S_1 \otimes I_2)$.

In all these cases we are looking for the solution of the convex programming problem

$$F(\pi) \equiv \int_{\mathfrak{S}} \operatorname{Tr} K(S) S \pi(dS) \longrightarrow \min$$
$$\pi \in \mathcal{P}(\mathfrak{S})$$
$$\int_{\mathfrak{S}} S \pi(dS) = \overline{S},$$
(3)

where \overline{S} is a fixed density operator. We will give the duality relation and necessary and sufficient conditions for optimality basing on the results obtained in the monograph [5].

We start by introducing an equivalent but more convenient definition: we now call *ensemble* a measure $\Pi(dS)$ on \mathfrak{S} with values in the positive cone of $\mathfrak{T}(\mathcal{H})$, such that $\Pi(\mathfrak{S}) \in \mathfrak{S}$. We call $\Pi(\mathfrak{S}) \equiv \overline{S}_{\Pi}$ the *average state* of the ensemble. The equivalence with the initial definition is established by the relations

$$\Pi(dS) = S\pi(dS); \quad \overline{S}_{\Pi} = \int_{\mathfrak{S}} S\pi(dS),$$

where $\pi(A) = \text{Tr}\Pi(A)$, A is any Borel subset of \mathfrak{S} . Then the minimized functional can be rewritten as the *scalar integral* of the operator-valued function K(S) with respect to the operator-valued measure

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 43 No. 7 2022

 $\Pi(dS)$, the construction of which was given in the infinite-dimensional case in Ch. I of [5] (see also [4]):

$$F(\pi) = \int_{\mathfrak{S}} \langle K(S), \Pi(dS) \rangle$$

In what follows we assume that \mathcal{H} is *finite-dimensional*. In that case case we can just assume that K(S) is measurable function with values in the cone of positive operators on \mathcal{H} and the scalar integral can be understood via the expression $\int_{\mathfrak{S}} \operatorname{Tr} K(S) S \pi(dS)$. Then the optimization problem

$$\int_{\mathfrak{S}} \langle K(S), \Pi(dS) \rangle \longrightarrow \min$$
$$\Pi(A) \ge 0 \text{ for any Borel } A \subseteq \mathfrak{S},$$
$$\Pi(\mathfrak{S}) = \overline{S},$$

becomes similar to a generalization of the Bayes problem [4, 5]. Combination of Theorem 2.1 and Theorem 2.2 from Ch. II of [5] implies

Theorem. *The problem dual to (3) is*

$$\max\left\{\operatorname{Tr}\overline{S}\Lambda:\Lambda^*=\Lambda,\,\Lambda\leq K(S)\text{ for all }S\in\mathfrak{S}\right\}.$$
(4)

The following statements are equivalent:

(i) $\Pi_0(dS)$ is the solution of the problem (3); Λ_0 is the solution of the problem (4);

- (ii) a. $\Lambda_0 \leq K(S)$ for all $S \in \mathfrak{S}$;
 - **b.** $\int_A [K(S) \Lambda_0] \Pi_0(dS) = 0$ for any Borel subset $A \subseteq \mathfrak{S}$.

The condition (ii.b) can be rewritten as

$$[K(S) - \Lambda_0] S = 0 \pmod{\pi_0},$$

which means that the equality holds a.e. with respect to the measure π_0 . By integrating, we obtain

$$\int_{\mathfrak{S}} K(S) \, S \, \pi_0(dS) = \Lambda_0 \overline{S}$$

which gives equation for determination of Λ_0 . Note that Λ_0 must be Hermitean operator.

In the case of measurement channel, this equation reduces to

$$-\int_{\mathfrak{S}} \int m(z) \log p_S(z) dz \, S \, \pi_0(dS) = \Lambda_0 \overline{S}.$$

For completeness, we give the proof of the Theorem, taking into account simplifications due to finite dimensionality of \mathcal{H} . An infinite-dimensional generalization of the Theorem would have important applications to ensemble optimization problems.

Proof. In what follows we use the notation $\langle X, Y \rangle = \operatorname{Tr} X Y$. Let us fix $S_0 \in \mathfrak{S}$ and show that

$$\inf \left\{ \int_{\mathfrak{S}} \left\langle K(S), \Pi(dS) \right\rangle : \Pi(\mathfrak{S}) = \overline{S} \right\}$$
$$= \inf \left\{ \int_{\mathfrak{S}} \left\langle K(S) - K(S_0), \Pi(dS) \right\rangle : \Pi(\mathfrak{S}) \le \overline{S} \right\} + \left\langle K(S_0), \overline{S} \right\rangle.$$

1648

It is sufficient to show that

$$\inf\left\{ \int_{\mathfrak{S}} \langle K(S) - K(S_0), \Pi(dS) \rangle : \Pi(\mathfrak{S}) = \overline{S} \right\}$$
$$= \inf\left\{ \int_{\mathfrak{S}} \langle K(S) - K(S_0), \Pi(dS) \rangle : \Pi(\mathfrak{S}) \le \overline{S} \right\}.$$
(5)

Let Π be such that $\Pi(\mathfrak{S}) \leq \overline{S}$. Defining

$$\overline{\Pi}(A) = \Pi(A) + \left(\overline{S} - \Pi(\mathfrak{S})\right) \mathbf{1}_A(S_0)$$

we get $\overline{\Pi}(\mathfrak{S}) = \overline{S}$ and equality in (5).

Denote $G(\Pi) = \Pi(\mathfrak{S}) - \overline{S}$ and consider the problem of minimizing the functional

$$F(\Pi) = \int_{\mathfrak{S}} \langle K(S) - K(S_0), \Pi(dS) \rangle + \langle K(S_0), \overline{S} \rangle$$

over the convex set of II's satisfying $G(\Pi) \leq 0$. For this we compute the dual functional $\varphi(S) = \inf \{F(\Pi) + \langle S, G(\Pi) \rangle\},\$

where the infimum is over the set of all positive \mathfrak{S} -valued measures. We show that

$$\varphi(S) = \begin{cases} \langle K(S_0), \overline{S} \rangle - \langle S, \overline{S} \rangle, & \text{if } S \ge K(S_0) - K(S'), \quad \forall S'; \\ -\infty & \text{otherwise.} \end{cases}$$
(6)

Let S be such that for some S' and some $X \ge 0$

$$\langle S, X \rangle < \langle K(S_0) - K(S'), X \rangle$$

Defining $\Pi_n(A) = nX \, \mathbf{1}_A(S')$, we have

$$\varphi(S) \le n \left[\langle S, X \rangle - \left\langle K(S_0) - K(S'), X \right\rangle \right] + \left\langle K(S_0), \overline{S} \right\rangle - \left\langle S, \overline{S} \right\rangle$$

whence $\varphi(S) = -\infty$.

Let now

$$S \ge K(S_0) - K(S') \quad \forall S'.$$

$$\tag{7}$$

By letting $\Pi(A) \equiv 0$, we obtain $\varphi(S) \leq \langle K(S_0), \overline{S} \rangle - \langle S, \overline{S} \rangle$. The converse inequality follows from

$$\langle S, \Pi(\mathfrak{S}) \rangle \ge \int_{\mathfrak{S}} \left\langle K(S_0) - K(S'), \Pi(dS') \right\rangle,$$
(8)

which is obtained from (7) by integration (see Lemma 2.1 in Ch. I of [5]). This implies the first line in (6).

According to the general Lagrange duality theorem (see Appendix)

$$\inf_{G(\Pi)\leq 0}F(\Pi)=\max\left\{\varphi(S):S\geq 0\right\}$$

i.e. taking into account (5), (6)

$$\inf \left\{ \int_{\mathfrak{S}} \langle K(S), \Pi(dS) \rangle : \Pi(\mathfrak{S}) = \overline{S} \right\}$$
$$= \max \left\{ \langle K(S_0), \overline{S} \rangle - \langle S, \overline{S} \rangle : \quad S \ge K(S_0) - K(S') \quad \forall S' \right\}.$$

Denoting $\Lambda = K(S_0) - S$, we come to (4).

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 43 No. 7 2022

HOLEVO

Let (i) be fulfilled, (4) implies

$$\int_{\mathfrak{S}} \langle K(S), \Pi_0(dS) \rangle = \left\langle \Lambda_0, \overline{S} \right\rangle.$$
(9)

The inequality (iia): $\Lambda_0 \leq K(S), S \in \mathfrak{S}$ holds by (4). It follows for any Borel $A \subseteq \mathfrak{S}$:

$$\langle \Lambda_0, \Pi_0(A) \rangle = \int_A \langle \Lambda_0, \Pi_0(dS) \rangle \le \int_A \langle K(S), \Pi_0(dS) \rangle \,. \tag{10}$$

By (9) it should be equality here, i.e. $\int_A \langle K(S) - \Lambda_0, \Pi_0(dS) \rangle = 0$. But since $K(S) - \Lambda_0 \ge 0$, this implies (iib) (for detail see Proposition 3.3 from Ch. I of [5]).

Conversely, for arbitrary Π satisfying $\Pi(\mathfrak{S}) = \overline{S}$ we have by (iia)

$$\int_{\mathfrak{S}} \langle K(S), \Pi(dS) \rangle \ge \left\langle \Lambda_0, \overline{S} \right\rangle$$

and taking $A = \mathfrak{S}$ in (iib) we obtain (9) whence (i) follows.

Appendix. Let F be a convex functional on a convex subset \mathfrak{S} of a linear subspace L and G be a convex map of \mathfrak{S} into partially ordered Banach space L_1 .

Consider the optimization problem

$$F(x) \longrightarrow \inf, \quad x \in \mathfrak{S}; \quad G(x) \le 0.$$
 (11)

The following duality theorem holds (see e.g. [6], pp. 217, 224):

Theorem. Assume that the positive cone of L_1 contains an inner point, and there exists $x_1 \in S$ such that $\langle \lambda, G(x_1) \rangle < 0$ for all $\lambda \in L_1^*, \lambda > 0$. Then if the quantity (11) is finite,

$$\inf \{F(x): x \in \mathfrak{S}; \quad G(x) \le 0\} = \max \{\varphi(\lambda): \lambda \in L_1^*, \lambda \ge 0\},$$
(12)

where

$$\varphi(\lambda) = \inf_{x \in \mathfrak{S}} \left\{ F(x) + \langle \lambda, G(x) \rangle \right\}$$

is the dual functional.

Let λ_0 be a solution of the dual problem in the right-hand side of (12). If the infimum in the left-hand side of (12) is attained on x_0 , then x_0 is a solution of the problem $\min \{F(x) + \langle \lambda_0, G(x) \rangle; x \in \mathfrak{S}\}$ and $\langle \lambda_0, G(x_0) \rangle = 0$.

FUNDING

This work is supported by Russian Science Foundation under the grant no. 19-11-00086, https://rscf.ru/project/19-11-00086/. The author is grateful to M. E. Shirokov for useful remarks.

REFERENCES

- 1. A. S. Holevo, *Quantum Systems, Channels, Information: A Mathematical Introduction,* 2nd ed. (De Gruyter, Berlin, 2019).
- A. S. Holevo and M. E. Shirokov, "Continuous ensembles and the capacity of infinite-dimensional quantum channels," Theory Probab. Appl. 50, 86–98 (2005).
- 3. A. S. Holevo, "Statistical decision theory for quantum systems," J. Multivariate Anal. 3, 337–394 (1973).
- 4. A. S. Holevo, "On a vector-valued integral in the noncommutative statistical decision theory," J. Multivariate Anal. 5, 462–465 (1975).
- 5. A. S. Holevo, "Studies in general theory of statistical decisions," Proc. Steklov Math. Inst. 124 (1978).
- 6. D. G. Luenberger, Optimization by Vector Space Methods (Wiley, New York, 1969).
- 7. M. E. Shirokov, "On properties of the space of quantum states and their application to construction of entanglement monotones," Izv.: Math. 74, 849–882 (2010).

1650