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Abstract—It is shown that a number of optimization problems in quantum information theory: the
χ-capacity (called the Holevo capacity in literature) of a quantum channel; the classical capacity
of quantum observable; entanglement of formation—can be recast as a generalization of a Bayes
problem over the set of all quantum states. This allows us to consider it as a convex programming
problem for which necessary and sufficient optimality conditions along with the dual problem can be
formulated.

DOI: 10.1134/S1995080222100158

Keywords and phrases: quantum state ensemble, positive operator-valued measure, convex
optimization.

Let H be a finite-dimensional Hilbert space, T(H) the Banach space of operators on H equipped with
trace norm, S = S(H) the compact convex set of quantum states equipped with trace-norm distance.
An ensemble is a probability measure π(dS) on the set S, cf. [2], and the set of all such measures is
denoted P(S).

Let f be a continuous concave function on the compact convex set S. The proof of theorem below
uses very little of other special properties of f and S. Consider the functional

F (π) =

∫

S

f(S)π(dS), (1)

on P(S). From the definition, it is a continuous affine functional. We are interested in minimization of
this functional on the closed convex subset PS of probability measures π with the fixed given barycenter

S =

∫

S

S π(dS). (2)

Under mild additional conditions the functional F (π) attains its minimum F(S) on the compact set PS .
The resulting function F(S), S ∈ S, is convex, in fact it is equal to the convex closure of f(S) i.e. the
greatest lower semicontinuous convex function majorized by f(S) [7]. Concavity of f implies then that
we can choose the minimizing measure π to be supported by the pure states since we can always make
spectral decompositions of all the density operators S into pure states without changing the barycenter
and without increasing the value F (π).

This problem is relevant to a number of issues in quantum information theory.
1. Computation of the χ-capacity [2] of a quantum channel Φ defined as

Cχ(Φ) = sup
π

⎡
⎣H

⎛
⎝Φ

⎡
⎣
∫

S

S π(dS)

⎤
⎦
⎞
⎠−

∫

S

H(Φ[S])π(dS)

⎤
⎦
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= sup
S

⎡
⎣H (

Φ
[
S
])

− inf
π∈PS

∫

S

H(Φ[S])π(dS)

⎤
⎦ .

Here the second term in the squared brackets is the convex closure of the channel output entropy, with

f(S) = H(Φ[S]) = TrK(S)S,

K(S) = −Φ∗ [log Φ[S]] .

2. A similar case is the classical capacity of quantum-classical channel (observable) given by the
map M : S → pS(z) = TrSm(z), where m(z) is a uniformly bounded positive-operator-valued function
of z ∈ Z, such that

∫
m(z)dz = I (the unit operator). Here (Z, dz) is a measure space. Then pS(z) is

the probability density of the outcomes of the quantum measurement described by m(z). In this case the
classical capacity of the channel is equal to the χ-capacity (the channel is entanglement-breaking) and

C(M) = Cχ(M) = sup
S

⎡
⎣h (pS)− inf

π:Sπ=S

∫

S

h (pS) π(dS)

⎤
⎦ ,

where h (pS) = −
∫
pS(z) log pS(z)dz is the differential entropy of this probability density and

f(S) = h (pS) = Tr K(S)S,

K(S) = −
∫

m(z) log pS(z)dz.

3. Another case of interest described e.g. in Sec. 7.5 of [1] is the Entanglement of Formation. Let
S12 be a state in the tensor product of two Hilbert spaces H1 ⊗H2. Entanglement of Formation of the
state S12 is the convex closure of H(S1), where S1 = Tr2S12 is the partial state:

EF (S12) = inf
π:Sπ=S12

∫

S(H1⊗H2)

H(Tr2S)π(dS),

minimization is over all probability measures π(dS) on S(H1 ⊗H2) satisfying
∫
S(H1⊗H2)

S π(dS) =

S12. In that case f(S12) = H(S1),K(S12) = − (logS1 ⊗ I2) .

In all these cases we are looking for the solution of the convex programming problem

F (π) ≡
∫

S

Tr K(S)S π(dS) −→ min

π ∈ P(S)∫

S

S π(dS) = S, (3)

where S is a fixed density operator. We will give the duality relation and necessary and sufficient
conditions for optimality basing on the results obtained in the monograph [5].

We start by introducing an equivalent but more convenient definition: we now call ensemble a
measure Π(dS) on S with values in the positive cone of T(H), such that Π(S) ∈ S. We call Π(S) ≡ SΠ

the average state of the ensemble. The equivalence with the initial definition is established by the
relations

Π(dS) = Sπ(dS); SΠ =

∫

S

Sπ(dS),

where π(A) = TrΠ(A), A is any Borel subset of S. Then the minimized functional can be rewritten as
the scalar integral of the operator-valued function K(S) with respect to the operator-valued measure
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Π(dS), the construction of which was given in the infinite-dimensional case in Ch. I of [5] (see also [4]):

F (π) =

∫

S

〈K(S),Π(dS)〉 .

In what follows we assume that H is finite-dimensional. In that case case we can just assume that
K(S) is measurable function with values in the cone of positive operators on H and the scalar integral
can be understood via the expression

∫
S

Tr K(S)S π(dS). Then the optimization problem∫

S

〈K(S),Π(dS)〉 −→ min

Π(A) ≥ 0 for any Borel A ⊆ S,

Π(S) = S,

becomes similar to a generalization of the Bayes problem [4, 5]. Combination of Theorem 2.1 and
Theorem 2.2 from Ch. II of [5] implies

Theorem. The problem dual to (3) is

max
{

TrSΛ : Λ∗ = Λ, Λ ≤ K(S) for all S ∈ S
}
. (4)

The following statements are equivalent:

(i) Π0(dS) is the solution of the problem (3); Λ0 is the solution of the problem (4);

(ii) a. Λ0 ≤ K(S) for all S ∈ S;

b.
∫
A [K(S)− Λ0] Π0(dS) = 0 for any Borel subset A ⊆ S.

The condition (ii.b) can be rewritten as

[K(S)− Λ0] S = 0 (mod π0),

which means that the equality holds a.e. with respect to the measure π0. By integrating, we obtain∫

S

K(S)S π0(dS) = Λ0S,

which gives equation for determination of Λ0. Note that Λ0 must be Hermitean operator.
In the case of measurement channel, this equation reduces to

−
∫

S

∫
m(z) log pS(z)dz S π0(dS) = Λ0S.

For completeness, we give the proof of the Theorem, taking into account simplifications due to
finite dimensionality of H. An infinite-dimensional generalization of the Theorem would have important
applications to ensemble optimization problems.

Proof. In what follows we use the notation 〈X,Y 〉 = TrX Y. Let us fix S0 ∈ S and show that

inf

⎧⎨
⎩
∫

S

〈K(S),Π(dS)〉 : Π(S) = S

⎫⎬
⎭

= inf

⎧⎨
⎩
∫

S

〈K(S)−K(S0),Π(dS)〉 : Π(S) ≤ S

⎫⎬
⎭+

〈
K(S0), S

〉
.
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It is sufficient to show that

inf

⎧⎨
⎩
∫

S

〈K(S)−K(S0),Π(dS)〉 : Π(S) = S

⎫⎬
⎭

= inf

⎧⎨
⎩
∫

S

〈K(S)−K(S0),Π(dS)〉 : Π(S) ≤ S

⎫⎬
⎭ . (5)

Let Π be such that Π(S) ≤ S. Defining

Π(A) = Π(A) +
(
S −Π(S)

)
1A(S0),

we get Π(S) = S and equality in (5).

Denote G(Π) = Π(S)− S and consider the problem of minimizing the functional

F (Π) =

∫

S

〈K(S)−K(S0),Π(dS)〉 +
〈
K(S0), S

〉

over the convex set of Π’s satisfying G(Π) ≤ 0. For this we compute the dual functional

ϕ(S) = inf {F (Π) + 〈S,G(Π)〉} ,
where the infimum is over the set of all positive S−valued measures. We show that

ϕ(S) =

{〈
K(S0), S

〉
−

〈
S, S

〉
, if S ≥ K(S0)−K(S′), ∀S′;

−∞ otherwise.
(6)

Let S be such that for some S′ and some X ≥ 0

〈S,X〉 <
〈
K(S0)−K(S′),X

〉
.

Defining Πn(A) = nX 1A(S
′), we have

ϕ(S) ≤ n
[
〈S,X〉 −

〈
K(S0)−K(S′),X

〉]
+

〈
K(S0), S

〉
−

〈
S, S

〉
whence ϕ(S) = −∞.

Let now

S ≥ K(S0)−K(S′) ∀S′. (7)

By letting Π(A) ≡ 0, we obtain ϕ(S) ≤
〈
K(S0), S

〉
−

〈
S, S

〉
. The converse inequality follows from

〈S,Π(S)〉 ≥
∫

S

〈
K(S0)−K(S′),Π(dS′)

〉
, (8)

which is obtained from (7) by integration (see Lemma 2.1 in Ch. I of [5]). This implies the first line in
(6).

According to the general Lagrange duality theorem (see Appendix)

inf
G(Π)≤0

F (Π) = max {ϕ(S) : S ≥ 0} ,

i.e. taking into account (5), (6)

inf

⎧⎨
⎩
∫

S

〈K(S),Π(dS)〉 : Π(S) = S

⎫⎬
⎭

= max
{〈

K(S0), S
〉
−

〈
S, S

〉
: S ≥ K(S0)−K(S′) ∀S′} .

Denoting Λ = K(S0)− S, we come to (4).
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Let (i) be fulfilled, (4) implies ∫

S

〈K(S),Π0(dS)〉 =
〈
Λ0, S

〉
. (9)

The inequality (iia): Λ0 ≤ K(S), S ∈ S holds by (4). It follows for any Borel A ⊆ S :

〈Λ0,Π0(A)〉 =
∫

A

〈Λ0,Π0(dS)〉 ≤
∫

A

〈K(S),Π0(dS)〉 . (10)

By (9) it should be equality here, i.e.
∫
A 〈K(S)− Λ0,Π0(dS)〉 = 0. But since K(S)− Λ0 ≥ 0, this

implies (iib) (for detail see Proposition 3.3 from Ch. I of [5]).

Conversely, for arbitrary Π satisfying Π(S) = S we have by (iia)∫

S

〈K(S),Π(dS)〉 ≥
〈
Λ0, S

〉

and taking A = S in (iib) we obtain (9) whence (i) follows. �

Appendix. Let F be a convex functional on a convex subset S of a linear subspace L and G be a
convex map of S into partially ordered Banach space L1.

Consider the optimization problem

F (x) −→ inf, x ∈ S; G(x) ≤ 0. (11)

The following duality theorem holds (see e.g. [6], pp. 217, 224):
Theorem. Assume that the positive cone of L1 contains an inner point, and there exists x1 ∈ S

such that 〈λ,G(x1)〉 < 0 for all λ ∈ L∗
1, λ > 0. Then if the quantity (11) is finite,

inf {F (x) : x ∈ S; G(x) ≤ 0} = max {ϕ(λ) : λ ∈ L∗
1, λ ≥ 0} , (12)

where
ϕ(λ) = inf

x∈S
{F (x) + 〈λ,G(x)〉}

is the dual functional.
Let λ0 be a solution of the dual problem in the right-hand side of (12). If the infi-

mum in the left-hand side of (12) is attained on x0, then x0 is a solution of the problem
min {F (x) + 〈λ0, G(x)〉 ;x ∈ S} and 〈λ0, G(x0)〉 = 0.

FUNDING

This work is supported by Russian Science Foundation under the grant no. 19-11-00086,
https://rscf.ru/project/19-11-00086/. The author is grateful to M. E. Shirokov for useful remarks.

REFERENCES
1. A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, 2nd ed. (De

Gruyter, Berlin, 2019).
2. A. S. Holevo and M. E. Shirokov, “Continuous ensembles and the capacity of infinite-dimensional quantum

channels,” Theory Probab. Appl. 50, 86–98 (2005).
3. A. S. Holevo, “Statistical decision theory for quantum systems,” J. Multivariate Anal. 3, 337–394 (1973).
4. A. S. Holevo, “On a vector-valued integral in the noncommutative statistical decision theory,” J. Multivariate

Anal. 5, 462–465 (1975).
5. A. S. Holevo, “Studies in general theory of statistical decisions,” Proc. Steklov Math. Inst. 124 (1978).
6. D. G. Luenberger, Optimization by Vector Space Methods (Wiley, New York, 1969).
7. M. E. Shirokov, “On properties of the space of quantum states and their application to construction of

entanglement monotones,” Izv.: Math. 74, 849–882 (2010).

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 43 No. 7 2022


		2022-11-07T18:46:12+0300
	Preflight Ticket Signature




