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Abstract—The paper considers the problem of the stability of an equilibrium position of nonlinear
periodic Hamiltonian systems with two degrees of freedom depending on a small parameter. The
main attention is paid to the study of critical cases when the unperturbed linearized equation has
second-order resonances. The main cases leading to these resonances are considered. Sufficient
conditions under which the equilibrium point of a Hamiltonian system will be formally stable or
unstable in the sense of Lyapunov are indicated as well. The results obtained are formulated in terms
of the original equations and brought to effective formulas and algorithms.
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1. INTRODUCTION AND STATEMENT OF THE PROBLEM

A nonlinear periodic Hamiltonian system with two degrees of freedom is considered depending on a
small parameter ε in the form of

dx

dt
= J∇H(x, t, ε), x ∈ R4; (1)

in which Hamiltonian H(x, t, ε) can be represented as H(x, t, ε) = H2(x, t, ε) +H3(x, t, ε) + . . .; here
Hj(x, t, ε) – are homogeneous order of j with respect to x and T -periodic in t functions;

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎥⎥⎥⎦
, ∇H(x, t, ε) =

⎡
⎢⎢⎢⎢⎢⎢⎣

H ′
x1

H ′
x2

H ′
x3

H ′
x4

⎤
⎥⎥⎥⎥⎥⎥⎦
, J =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Let x = 0 be the equilibrium position of the analytic Hamiltonian system (1).
It is assumed that H2 = H2(x, t, ε) can be represented as H2 = H20(x) + εH21(x, t), where

H20(x),H21(x, t) – are quadratic forms in x. In this case, the system (1) can be represented as

dx

dt
= J [A0 + εA1(t)] x+ a(x, ε, t), x ∈ R

4, (2)

where A0, A1(t) are real symmetric matrices, A1(t) is a T -periodic matrix (that is, A1(t+ T ) ≡ A1(t)),
the function a(x, ε, t) satisfies condition: ||a(x, ε, t)|| = O(||x2||) for x → 0, uniformly in ε and t. All
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functions in the system (1) are assumed to be continuous in t and smooth (continuously differentiable)
in ε.

Along with the equation (2) we consider a linear periodic Hamiltonian system (LPHS) of the form

dx

dt
= J [A0 + εA1(t)] x, x ∈ R

4. (3)

By virtue of the general properties of Hamiltonian systems (cf., for instance, [1, 2], the following is true: if
the matrix JA0 has at least one eigenvalue with a nonzero real part, then the LPHS (3) will be unstable
for all small |ε|. The equilibrium point x = 0 the nonlinear system (2) will be also unstable.

Further, we will assume that the eigenvalues of the matrix JA0 are purely imaginary, namely, they are
numbers

±iω1, ±iω2, where ωj > 0. (4)

One of the most interesting problems in studying systems (2) and (3) is the problem of parametric
resonance (cf., for example, [3]). As applied to the systems under consideration, the problem of
parametric resonance consists in studying the stability of the equilibrium point x = 0 of the system (2)
(stability of the system (3)) in the situation when one of the conditions:

S1) among the eigenvalues (4) of the matrix JA0 there is at least one iω0 such that the simple
resonance condition is satisfied

ω0 =
πk0
T

for some integer k0;

S2) the eigenvalues (4) the combinational resonance condition is satisfied

ω1 − ω2 =
2πk0
T

for some integer k0. (5)

In this case, it is assumed that when the risk conditions S1 (S2) are met, the detection of S2 (S1) is not
performed.

The problem of studying the stability of Hamiltonian systems (2) and (3) with a periodic perturbation
and, in particular, the problem of parametric resonance is the subject of many works. Most of the
research is based on the methods of normalization of Hamiltonian systems. A number of important
results have been obtained in this direction (cf., for instance, [1, 3–9]).

In the work [10] the problem of parametric resonance in the main resonances for LPHS of the form
(3) was studied. First approximation formulas were proposed for perturbations of multiple definite and
indefinite multipliers and their applications to the stability analysis of LPHS. This paper develops the
results of this work as applied to the problem of analyzing the stability of the equilibrium point x = 0 of
a nonlinear Hamiltonian system with two degrees of freedom (2).

2. AUXILIARY FACTS

Let us give some auxiliary information about the stability of the equilibrium points of nonlinear
periodic Hamiltonian systems of the form

dx

dt
= J∇H(x, t), x ∈ R4. (6)

We assume that the Hamiltonian H(x, t) can be represented as H(x, t) = H2(x) +H3(x, t) + . . ., where
(as above) Hj are homogeneous forms of order j with respect to x, while the quadratic form H2 does not
depend on t, and the forms H3, H4, . . . are T -periodic in t. Let x = 0 be the equilibrium position of the
system (6).

In this paper, along with the notion of Lyapunov stability of the equilibrium point x = 0 of the
system (6), we also use the more general notion of formal stability (cf., for example, [11, 12]). The
equilibrium point x = 0 of the system (6) is called formally stable if there exists a formal sign-definite
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integral G(x, t) = G2(x)+G3(x, t)+G4(x, t)+ . . . of the system (6), and the homogeneous formG2(x)
vanishes only for x = 0. The formality is understood in the sense that the series G(x, t) can diverge.

In most physical problems, formal stability is quite sufficient (for a discussion cf., for example, [1,
11]). In the presence of formal stability, if there are trajectories that go far from the unperturbed motion,
then the motion along them is extremely slow.

Let us present some assertions regarding stability criteria for the equilibrium point x = 0 of the
system (6). Let the matrix JA0 of the linearized system

dx

dt
= JA0x, x ∈ R

4,

has its own values (4). According to Birkhoff (cf., for example, [1]) in this case the system (6) can be
reduced to normal form, in which the quadratic form H2(x) will look like:

10 if ω1 �= ω2 or ω1 = ω2 = ω0, where iω0 is a semi-simple eigenvalue of the matrix JA0, then

H2(x) =
ω1

2
(x21 + x23) + σ

ω2

2
(x22 + x24); where σ = 1 or σ = −1; (7)

20 if ω1 = ω2 = ω0, where iω0 is a non-semi-simple eigenvalue of the matrix JA0, then

H2(x) = ω0(x1x4 − x2x3) + σ
1

2
(x23 + x24); where σ = 1 or σ = −1. (8)

A resonance of order p (here p is a natural number) is said to take place if there are integers m1 and
m2 such that |m1|+ |m2| = p, wherein

m1ω1 +m2ω2 =
2πk0
T

(9)

for some integer k0.
Let the quantities ω1 and ω2 be not related by any resonance relation (9). Then the equilibrium x = 0

of the system (6) is formally stable according to J. Moser’s theorem (cf., for example, [13]).

3. THE STABILITY OF THE EQUILIBRIUM POSITION
OF A NONLINEAR HAMILTONIAN SYSTEM

Let us return to the main question about the stability of the equilibrium point x = 0 of the nonlinear
Hamiltonian system (2) in the above cases S1 and S2. Note that in each of these cases for the system (2)
for ε = 0 there is a resonance of order 2.

3.1. Case S1

Let’s start studying the problem with the case S1, i.e. let one of the eigenvalues (4) of the matrix JA0

in the system (2) be represented as ω0 = πk0/T for some natural k0. It is also assumed that another
purely imaginary eigenvalue of the matrix JA0 does not satisfy a similar relation.

There is a nonzero vector e+ ig ∈ C
4 (where e, g ∈ R

4) such that

JA0(e+ ig) = iω0(e+ ig);

for which the relation (e, Jg) �= 0 holds. Let us assume that ν = 1/(e, Jg).

Define a constant matrix

S0 =

T∫

0

A1(t) dt, (10)

where A1(t) is the matrix involved in the system (3). Let

Δ1 = a2 + b1b2, (11)
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where

a =

T∫

0

{cos(2ω0t) (A1(t)e, g) −
1

2
sin(2ω0t) [(A1(t)g, g) − (A1(t)e, e)]}dt,

b1 =

T∫

0

[cos2(ω0t) (A1(t)g, g) + sin2(ω0t) (A1(t)e, e) + sin(2ω0t) (A1(t)e, g)]dt,

b2 = b1 − [(S0e, e) + (S0g, g)].

Theorem 1. Let Δ1 > 0. Then for all small ε �= 0 the equilibrium point x = 0 the system (2) is
Lyapunov unstable.

Theorem 2. Let Δ1 < 0. Then for almost all small ε �= 0 the equilibrium point of the system
(2) is formally stable.

The proofs of these and other main statements of the article are given in Section 4.

3.2. Case S2

Consider now the case S2. This case is divided into subcases when in (5) k0 = 0 or k0 �= 0.

3.2.1. Subcase k0 �= 0. In this subcase, there is a pair of non-zero linearly independent vectors
e, g ∈ C

4 such that the following equalities hold

JA0e = iω1e, JA0g = iω2g. (12)

In this case, the vectors e, g can be chosen satisfying the equality (e, Jg) = 0.

It can be assumed that the quadratic form H20(x) of the Hamiltonian H(x, t, ε) of the system (1)
is chosen in accordance with the formula (7). There are two mutually exclusive cases when σ = 1 or
σ = −1.

Lemma 1. If σ = 1, then the vectors e, g from (12) can be normalized according to one and only
one pair of equalities (iJe, e) = (iJg, g) = 1 or (iJe, e) = (iJg, g) = −1.

If σ = −1, then the vectors e, g can be normalize according to the equalities (iJe, e) = −1,
(iJg, g) = 1.

Further let

a = (S0e, e), b = (S0g, g), c =

T∫

0

e−2πik0t/T (A1(t)g, e)dt;

where S0 is matrix (10). Note that the numbers a and b are real, while the number c, is generally complex.

Consider first the case when σ = 1. In this case, let Δ2 = (a− b)2 + 4cc.

Theorem 3. Let σ = 1. If Δ2 �= 0, then for almost all small ε �= 0 the equilibrium point x = 0 is
formally stable.

Let now σ = −1. In this case let Δ3 = (a+ b)2 − 4cc.

Theorem 4. Let σ = −1. Then if Δ3 < 0, then for all small ε �= 0 the equilibrium point x = 0 of
the system (2) is Lyapunov unstable. If Δ3 > 0, then for almost all small ε �= 0 the equilibrium
point x = 0 of the system (2) is formally stable.

3.2.2. Subcase k0 = 0. In the situation under consideration, the matrix JA0 has a multiple
eigenvalue iω0 = iω1 = iω2, where ω0 �= πk/T for natural k.

If iω0 is a semi-simple eigenvalue, then the study can be carried out according to the same scheme
that was given for the subcase k0 �= 0.
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Let now the eigenvalue iω0 be non-semi-simple. In this subcase, there is a pair of non-zero linearly
independent vectors e, g ∈ C

4 such that the equalities

JA0e = iω0e, JA0g = iω0g + e.

Then (e, Je) = 0 and (e, Jg) �= 0, and the number (e, Jg) is real. The vector g can be chosen from the
condition that the equality (g, Jg) = 0.

We can assume that the quadratic form H20(x) of the Hamiltonian H(x, t, ε) system (1) is chosen
according to the formula (7).

Theorem 5. Let εσ(S0e, e) > 0. Then for almost all small ε �= 0 the equilibrium x = 0 of the
system (2) is formally stable.

Theorem 6. Let εσ(S0e, e) < 0. Then for almost all small nonzero |ε| the equilibrium x = 0 of
the system (2) is unstable.

4. PROOF OF MAIN STATEMENTS

Let’s limit to to giving the proof of the Theorems 1 and 2; Theorems 3–6 are proved similarly.

Denote by V (ε) the monodromy matrix of the system (3). Then V0 = eJA0T is the monodromy matrix
of the system (3) for ε = 0. In the case of S1 the matrix V0 has a semi-simple eigenvalue μ0 of multiplicity
2, where μ0 = 1 (if k0 is even) or μ0 = −1 (if k0 is odd). In the research [10, 14] it was determined that
for a small |ε| matrix V (ε) has a pair of eigenvalues μ1(ε) and μ2(ε), they can be represented as

μ1(ε) = μ0 + μ
(1)
1 ε+O(ε3/2), μ2(ε) = μ0 + μ

(2)
1 ε+O(ε3/2). (13)

The coefficients μ(1)
1 and μ

(2)
1 are numbers

μ
(1)
1 = νμ0

√
Δ1, μ

(2)
1 = −μ

(1)
1 ; (14)

here the number Δ1 is defined according to (11).
IfΔ1 > 0, then for small nonzero |ε| we have |μ1(ε)| �= 1 and |μ2(ε)| �= 1. Therefore, for small nonzero

|ε|, the equilibrium point x = 0 of the system (2) is Lyapunov unstable. Theorem 1 is proved.
Now let Δ1 < 0. Then for small |ε| we have |μ1(ε)| = |μ2(ε)| = 1. Moreover, for almost all small

|ε| �= 0 in the system (2), there are no resonances of all orders. This fact follows from the formulas (13)
and (14). Therefore, by Moser’s theorem, the equilibrium point x = 0 will be formally stable for almost
all small |ε| �= 0. Theorem 2 is proved.
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