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1. INTRODUCTION

In recent years, the field of mathematics, which is involved in the study of the properties of solutions to
various partial differential equations on spaces in connection with the geometry of the underlying space,
become increasingly popular. In particular, solutions of the equations on non-compact Riemannian
manifolds, on graphs, on fractals, etc. are studied. In this case most of the research is devoted to
finding conditions for the fulfillment of Liouville-type theorem which states the triviality of solutions of
the equations from some given classes of functions. A much smaller number of papers are devoted to
the study of the solvability of boundary value problems with boundary conditions at infinity. The latter
is due to the fact that even the formulation of a boundary value problem on an arbitrary non-compact
Riemannian manifold may cause difficulties.

One of the origin of this topic is the classification theory of two-dimensional non-compact Rieman-
nian surfaces. A distinctive property of two-dimensional surfaces of parabolic type is the fulfillment of
the Liouville theorem for them, which states that every positive superharmonic function on the surface
is an identical constant (see, for example, [1], [2]).

Exactly this property served as a basis for the extension of the concept of parabolicity for arbitrary
Riemannian manifolds. Namely, manifolds on which any lower bounded superharmonic function is
constant are called parabolic manifolds (see [3]).

One of the first results in determining the type of a Riemannian manifold using geometric character-
istics is the theorem of S. Y. Cheng and S. T. Yau [4], which states that a complete manifold is parabolic
if the volume of a geodesic ball of radius R grows no faster than R2 at R → ∞. However, there are
manifolds of parabolic type with an arbitrary increase in the volume of the geodesic ball.

In [5], A. Grigor’yan proved that the parabolic type of a complete Riemannian manifold M is
equivalent to the fact that the variational capacity of any compact in M is zero. The search for signs
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of parabolic type of a Riemannian manifold M has a long history. A general idea of modern research on
this topic can be obtained, for example, from the paper of A. Grigor’yan [3].

Problems of the existence of nontrivial harmonic and superharmonic functions naturally lead to
Liouville-type theorems. The classical formulation of Liouville’s theorem states that every bounded
harmonic function in Euclidean space is constant identically. At present, the following approach to
the problems is applied.

Let A be a class of functions and L be an elliptic operator on the Riemannian manifold M . We say that
the (A,L)-Liouville property is satisfied on M if any solution u ∈ A of the equation Lu = 0 is constant
identically (or trivial). If A is a linear space and L is a linear operator there are studies devoted to the
estimation of the dimensions of spaces of the solutions u ∈ A for the equation Lu = 0.

However, the class of Riemannian manifolds containing fairly ample sets of bounded harmonic
functions is quite extensive. In this regard, the solvability of the Dirichlet problem is of serious
interest. Note that even the formulation of boundary-value problems for elliptic differential equations
(in particular, the Dirichlet problem) on non-compact Riemannian manifolds can be problematic, since
it is unclear how we interpret the boundary data. One possible way to solve this problem is to use
the “Martin boundary” (see, for example, [6]), or to state boundary value problems using classes of
equivalent functions (see, for example, [7]).

In some cases, the geometric compactification of a manifold allows one to do this in a classical
formulation. One of the classes of Riemannian manifolds, which has natural geometric compactification,
is manifolds with negative sectional curvature. For example, in [8] and [9] it is shown that for a simply
connected Riemannian manifold with negative sectional curvature sect M satisfying conditions

−b2 ≤ sectM ≤ −a2 < 0,

there exists a geometric compactification that adds the sphere at infinity S(∞), and it is proved
that the Dirichlet problem with continuous boundary data on S(∞) is solvable on M = M ∪ S(∞).
Another class of manifolds admitting traditional statement of the Dirichlet problem is the class of
model Riemannian manifolds. A number of papers have been published in recent years, devoted to the
study of the behaviour of solutions of various elliptic equations on such manifolds and some of their
generalizations (see, for example, [10–14]). These manifolds will be described in more detail below.

Now, we note that most of the papers on this topic are devoted to solvability of various boundary-value
problems for harmonic functions, for solutions of stationary Schrödinger equation

Lu ≡ Δu− c(x)u = 0, where c(x) ≥ 0 (1)

and some other homogeneous linear and quasilinear elliptic equations. But studies of inhomogeneous
elliptic equations are of a single nature (see, for example, [15–18] and are mainly devoted to the study of
the asymptotic behavior of the solutions of these equations and not to the solvability of boundary-value
problems.

In this paper, we consider non-compact Riemannian manifolds, that are representable in the form
Mg = B ∪D, where B is some precompact with the non-empty interior, and D is isometric to the
Cartesian product [r0; +∞)× S (r0 > 0 and S is a closed Riemannian manifold (for example, a sphere))
with the metric

ds2 = dr2 + g2 (r) dθ2. (2)

Here g(r) is an arbitrary positive, smooth function on [r0; +∞) and dθ2 is Riemannian metric on S.
The manifolds Mg are usually called model manifolds or manifolds with metric horns. Examples of such
manifolds are Euclidean space Rn, hyperbolic space Hn, surfaces of revolution, and others.

Theorem 1. Manifold Mg is parabolic if and only if

K =

∞∫
r0

g1−n(t)dt = ∞. (3)
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This assertion has been proved in various versions by a number of authors (see, for example, [1], [2],
[5], [11]).

Everywhere else, we assume that the condition 0 ≤ c(r, θ) ≡ c(r) is fulfilled on D, and introduce the
following notation

I =

∞∫
r0

g1−n(t)

⎛
⎝ t∫

r0

gn−3(β)dβ

⎞
⎠ dt+ J,

where

J =

∞∫
r0

g1−n(t)

⎛
⎝ t∫

r0

c(β)gn−1(β) dβ

⎞
⎠ dt.

and r0 = const > 0, n = dimMg.

It is easy to verify (see also [12]) that exactly one of the conditions is satisfied on D

α) I < ∞; β) I = ∞, J < ∞; γ)K = ∞; δ) J = ∞, K < ∞.

Theorem 2. The following statements are true for Mg.
1) Let the condition α) be fulfilled on the Riemannian manifold Mg , i.e. I < ∞. Then

for any function Φ(θ) ∈ C (S) on M there exists a unique bounded solution of the Schrödinger
equation (1) such that lim

r→∞
u(r, θ) = Φ(θ).

2) Let the condition α) be fulfilled on Mg, i.e. I < ∞. Then for any functions Φ1(θ) ∈ C (S)
and Φ2(θ) ∈ C(S) on D there exists a unique bounded solution of the equation (1) such that

u(r0, θ) = Φ1(θ) and lim
r→∞

u(r, θ) = Φ2(θ).

3) Let the condition β) be fulfilled onMg, i.e. I = ∞, J < ∞. Then on Mg there exists nontrivial
bounded solution u(x) of the equation (1) such that there is a finite limit limr→∞ u(r, θ) that does
not depend on θ.

4) Let the condition β) be fulfilled on Mg, i.e. I = ∞, J < ∞. Then for any function Φ(θ) ∈
C (S) and constant C on D there exists a unique bounded solution of the equation (1) such that

u(r0, θ) = Φ(θ) and lim
r→∞

u(r, θ) = C.

5) Let at least one of the conditions γ) or δ) be fulfilled on Mg, i.e. K = ∞ or J = ∞. Then
every bounded solution of the equation (1) on M is identically equal to zero.

6) Let the condition γ) be fulfilled on Mg, i.e. K = ∞, and additionally
∞∫

r0

c(t)gn−1(t)dt = ∞,

or the condition δ) be fulfilled on Mg , i.e. K < ∞, J = ∞. Then there exists nontrivial bounded
solution u(x) on D of the equation (1) such that u(r0, θ) = Ψ(θ) and limr→∞ u(r, θ) = 0.

Remark. All statements of Theorem 2 were proved earlier in [11, 12]. If c(x) ≡ 0, then the assertions 3),
5) and 6) of the Theorem 2 are replaced by the following statement proved earlier in [11]: If Mg is such
that I = ∞, then every bounded harmonic function on Mg is constant identically.

When proving the statements, we used a specific form of the Laplace–Beltrami operator on D in the
coordinates (r, θ) (see, for example, [11, 12]):

Δ =
∂2

∂r2
+ (n− 1)

g′(r)

g(r)

∂

∂r
+

1

g2(r)
Δθ,
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where Δθ is the interior Laplacian on S.

In this paper we study the asymptotic behavior of bounded solutions u ∈ C2(Mg) of the inhomoge-
neous Schrödinger equation

Lu ≡ Δu− c(x)u = f(x), (4)

where c(x) ≥ 0 on Mg , c(x), f(x) ∈ Cα(G) for any precompact subset G ⊂ Mg, 0 < α < 1, f(x) 
≡ 0.

Earlier in [19], the behavior of solutions of the Poisson equation Δu = f(x), where f is a sufficiently
smooth function, on model manifolds was investigated. Let us describe the result of this paper in more
detail. Let

Gp(Mg) = {φ ∈ C(Mg) : t ∈ [r0,∞), φ(t, θ) ∈ Cp(S)}

be the subset of the space of continuous functions on Mg formed by the functions that are p times
continuously differentiable with respect to the second argument on D. In [19] it is assumed that

f ∈ G[ 3n
2
](Mg) and denoted

ϕ0(r) = ||f(r, θ)||L1(S), ϕm(r) = ||Δm
θ f(r, θ)||L2(S),

where m = [3n4 ]. Further, let

Iϕ =

∞∫
r0

g1−n(t)

⎛
⎝ t∫

r0

(
1

g2(ξ)
+ ϕ0(ξ) + ϕm(ξ)

)
gn−1(β) dβ

⎞
⎠ dt.

In [19], sharp conditions for the unique solvability of the Dirichlet problem for the Poisson equation
with continuous boundary data at "infinity" are found. Namely, the following theorem is proved: if the
Riemannian manifold Mg and the right-hand side f of the Poisson equation are such that Iϕ < ∞
then for each function Φ(θ) ∈ C (S) on Mg there exists a unique bounded solution of the Poisson
equation such that on D lim

r→∞
u(r, θ) = Φ(θ).

Accordingly, in present paper everywhere else we assume c(x) 
≡ 0 on Mg, and moreover c(x) > 0 in
some neighborhood of the precompact B. Also, let the conditions f1(r) ≤ f(x) ≤ f2(r) be fulfilled on
D, where fi(r) ∈ Cα(G) for i = 1, 2. Let us introduce additional notation

If = I +

∞∫
r0

g1−n(t)

⎛
⎝ t∫

r0

max{|f1(ξ)|, |f2(ξ)|}gn−1(ξ)dξ

⎞
⎠ dt, (5)

Jf = J +

∞∫
r0

g1−n(t)

⎛
⎝ t∫

r0

max{|f1(ξ)|, |f2(ξ)|}gn−1(ξ)dξ

⎞
⎠ dt. (6)

We formulate the main result of present paper, its proof is given in Section 3.

Theorem 3. 1) Let the manifold Mg and the right-hand side f of the Schrödinger equation (2)
such that If < ∞. Then for any function Φ(θ) ∈ C (S) on Mg there exists a unique bounded
solution of the equation (2) such that on D lim

r→∞
u(r, θ) = Φ(θ).

2) Let the manifold Mg and the right-hand side f of the Schrödinger equation (2) such that
If = ∞, Jf < ∞. Then for any constant C on Mg there exists a unique bounded solution of the
equation (2) such that on D lim

r→∞
u(r, θ) = C.
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2. SOLVABILITY OF THE DIRICHLET PROBLEM ON MODEL ENDS

At first, we study the solvability of the Dirichlet problem for the equation (2) on the so-called model
ends D = Mg \B. Consider the inhomogeneous equation

Lu = f1(r), (7)

where the Schrödinger operator L is defined above in (2). The following statements are true on D.

Lemma 1. 1) Let the manifold Mg and the right-hand side f1 of the Schrödinger equation (7) such
that If < ∞. Then for any functions Φ1(θ) ∈ C (S) and Φ2(θ) ∈ C(S) on D there exists a unique
bounded solution of the equation (7) such that u(r0, θ) = Φ1(θ) and limr→∞ u(r, θ) = Φ2(θ).

2) Let the manifold Mg and the right-hand side f1 of the Schrödinger equation (7) such that
If = ∞, Jf < ∞. Then for any function Φ1(θ) ∈ C (S) and constant C on D there exists a unique
bounded solution of the equation (7) such that u(r0, θ) = Φ1(θ) and limr→∞ u(r, θ) = C.

Proof. 1) Let us prove the first assertion of the Lemma 1. We seek the solution of the boundary value
problem in the form u(r, θ) = u1(r, θ) + u2(r), where the function u1(r, θ) is a solution of the problem⎧⎪⎨

⎪⎩
Lu1 = 0,

u1(r0, θ) = Φ1(θ),

limr→∞ u1(r, θ) = Φ2(θ),

(8)

and the function u2(r) is a radially symmetric solution of the problem⎧⎪⎨
⎪⎩
Lu2 = f1(r),

u2(r0) = 0,

limr→∞ u2(r) = 0.

(9)

Let the parameters If and Jf be determined by the formulas (5) and (6), respectively. The condition
I < ∞ immediately follows from the condition If < ∞. Then we obtain the unique solvability of the
boundary value problem (8) by Theorem 2.

Set f+
1 (r) = max{f1(r), 0}, f−

1 (r) = max{−f1(r), 0}. It is clear that f+
1 ≥ 0 and f−

1 ≥ 0.
We seek the solution of the problem (9) in the form u2(r) = u+(r)− u−(r), where the functions u+(r)

and u−(r) are solutions of the boundary value problems⎧⎪⎨
⎪⎩
Lu+ = f+

1 (r),

u+(r0) = 0,

limr→∞ u+(r) = 0,

(10)

and ⎧⎪⎨
⎪⎩
Lu− = f−

1 (r),

u−(r0) = 0,

limr→∞ u−(r) = 0.

(11)

From the representation of the Laplace-Beltrami operator on D and the condition c(r, θ) ≡ c(r) it is
easy to verify that the function u+(r) must be a solution of the following boundary value problem⎧⎪⎨

⎪⎩
(u+(r))

′′
+ (n− 1)g

′(r)
g(r) (u

+(r))
′ − c(r)u+(r) = f+

1 (r),

u+(r0) = 0,

limr→∞ u+(r) = 0.

(12)

We write the ordinary differential equation in (12) as

((u+(r))
′
gn−1(r))

′
= c(r)gn−1(r)u+(r) + f+

1 (r)gn−1(r).
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It follows that

(u+(r))
′
=

1

gn−1(r)

r∫
r0

(
c(t)u+(t) + f+

1 (t)
)
gn−1(t)dt+

(u+(r0))
′
gn−1(r0)

gn−1(r)
. (13)

Let us prove the existence of a solution of the boundary value problem (12). We denote by l(r) the
solution of the equation (13) with initial conditions l(r0) = 0, l

′
(r0) = 1. It immediately follows from

(13) that the function l(r) is monotone increasing. Let us prove that it is bounded above.
Assume the opposite, i.e. l(r) monotonically tends to infinity. Then, without loss of generality, we

can assume that l(r) ≥ 1 for all r ≥ r1 ≥ r0. Since the function l(r) is monotone increasing, we obtain
the inequality

l
′
(r) ≤ l(r)

gn−1(r)

r∫
r0

c(t)gn−1(t)dt+
l(r)

gn−1(r)

r∫
r0

f+
1 (t)gn−1(t)dt+

l
′
(r0)g

n−1(r0)

gn−1(r)
.

Taking into account the initial condition l′(r0) = 1 ≤ l(r), we get

l
′
(r) ≤ l(r)

gn−1(r)

r∫
r0

c(t)gn−1(t)dt+
l(r)

gn−1(r)

r∫
r0

f+
1 (t)gn−1(t)dt+

l(r)gn−1(r0)

gn−1(r)

for all r ≥ r1 ≥ r0.
Let us rewrite the last inequality in the form

l
′
(r)

l(r)
≤ 1

gn−1(r)

⎛
⎝ r∫

r0

(c(t)gn−1(t) + f+
1 (t)gn−1(t))dt + gn−1(r0)

⎞
⎠

and integrate this expression on the interval r ≥ r1. We get the following chain of inequalities

l(r) ≤ l(r1) exp

⎛
⎝ r∫

r1

dt

gn−1(t)

t∫
r0

(c(z)gn−1(z) + f+
1 (z)gn−1(z))dz

⎞
⎠

× exp

⎛
⎝gn−1(r0)

r∫
r1

dt

gn−1(t)

⎞
⎠

≤ l(r1) exp

⎛
⎝ r∫

r1

dt

gn−1(t)

t∫
r0

(c(z)gn−1(z) + |f1(z)|gn−1(z))dz

⎞
⎠ exp

⎛
⎝gn−1(r0)

r∫
r1

dt

gn−1(t)

⎞
⎠

≤ l(r1) exp

⎛
⎝ ∞∫

r1

dt

gn−1(t)

t∫
r0

(c(z) + |f1(z)|)gn−1(z))dz

⎞
⎠ exp

⎛
⎝gn−1(r0)

∞∫
r1

dt

gn−1(t)

⎞
⎠ .

The convergence of integrals K and If (see (3) and (5)) implies the boundedness of the function
l(r), and hence, the existence of a limit limr→∞ l(r) = b. In addition, the convergence of the integral
If implies the convergence of the integral I < ∞, which implies the existence of a solution m(r) of the
equation (see also [11, 12])

m
′′
(r) + (n− 1)

g′(r)

g(r)
m

′
(r)− c(r)m(r) = 0,

such that m(r0) = 0 and limr→∞m(r) = −b. Then the function u+(r) = l(r) +m(r) is the solution of
the boundary value problem (12), and therefore u+(r) is the solution of the boundary value problem (10).
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Similarly, it is possible to prove the existence of a solution u−(r) to the boundary value problem (11).
And so the function u2(r) = u+(r)−u−(r) is the solution of the boundary value problem (9), that proves
the first part of Lemma 1.

2) Let us prove the second assertion of the lemma. As above, we consider the solution of the boundary
value problem in the form u(r, θ) = u1(r, θ) + u2(r), where u1(r, θ) is a solution of the next problem⎧⎪⎨

⎪⎩
Lu1 = 0,

u1(r0, θ) = Φ1(θ),

limr→∞ u1(r, θ) = C,

(14)

and u2(r) is the radially symmetric solution of the problem (9). Its existence is shown in assertion 1) of
the Lemma 1, i.e. ⎧⎪⎨

⎪⎩
Lu2 = f1(r),

u2(r0) = 0,

limr→∞ u2(r) = 0.

We prove that under the conditions of assertion 2) of the Lemma 1 there is a solution of the problem
(14). First, from the definition of the integrals If , Jf (see (5), and (6)), and the conditions If = ∞
and Jf < ∞, it follows the fulfillment of conditions I = ∞ and J < ∞. Then, taking into account
assertion 4) of Theorem 2, we obtain the unique solvability of the boundary value problem (14), and
hence the solvability of the boundary value problem in assertion 2).

Next, we consider an inhomogeneous equation on D

Lu = f2(r). (15)

As above, the following statement holds.

Lemma 2. 1) Let the manifold Mg and the right-hand side f2 of the Schrödinger equation (15)
such that If < ∞. Then for any functions Φ1(θ) ∈ C (S) and Φ2(θ) ∈ C(S) on D there exists
a unique bounded solution of the equation (15) such that u(r0, θ) = Φ1(θ) and limr→∞ u(r, θ) =
Φ2(θ).

2) Let the manifold Mg and the right-hand side f2 of the Schrödinger equation (15) such that
If = ∞, Jf < ∞. Then for any function Φ1(θ) ∈ C (S) and constant C on D there exists a unique
bounded solution of the equation (15) such that u(r0, θ) = Φ1(θ) and limr→∞ u(r, θ) = C.

Now, we prove the solvability of the Dirichlet problem for the equation (2) on the model end D.

Lemma 3. 1) Let the manifold Mg and the right-hand side f of the Schrödinger equation (2) such
that If < ∞. Then for any functions Φ1(θ) ∈ C (S) and Φ2(θ) ∈ C(S) on D there exists a unique
bounded solution of the equation (2) such that u(r0, θ) = Φ1(θ) and limr→∞ u(r, θ) = Φ2(θ).

2) Let the manifold Mg and the right-hand side f of the Schrödinger equation (2) such that
If = ∞, Jf < ∞. Then for any function Φ1(θ) ∈ C (S) and constant T on D there exists a unique
bounded solution of the equation (2) such that u(r0, θ) = Φ1(θ) and limr→∞ u(r, θ) = C.

Proof. We seek the solution of the boundary value problem of assertion 1) in the form u(r, θ) =
u1(r, θ) + u2(r, θ), where u1(r, θ) is the solution of the problem (8)⎧⎪⎨

⎪⎩
Lu1 = 0,

u1(r0, θ) = Φ1(θ),

limr→∞ u1(r, θ) = Φ2(θ),
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and u2(r, θ) is the solution of the next problem⎧⎪⎨
⎪⎩
Lu2 = f(r, θ),

u2(r0, θ) = 0,

limr→∞ u2(r, θ) = 0.

(16)

As in Lemma 1, the existence of a solutionu1(r, θ) follows from the convergence of the integral I < ∞
by the Theorem 1. We show the unique solvability of the boundary value problem (16).

Due to the convergence of integral If < ∞ by Lemmas 1 and 2 there are bounded solutions v0(r, θ)
and u0(r, θ) for the corresponding problems⎧⎪⎨

⎪⎩
Lv0 = f1(r),

v0(r0, θ) = 0,

limr→∞ v0(r, θ) = 0

and

⎧⎪⎨
⎪⎩
Lu0 = f2(r),

u0(r0, θ) = 0,

limr→∞ u0(r, θ) = 0.

Since f1(r) ≤ f2(r), then Lv0 ≤ Lu0. Therefore, according to the comparison theorem for linear
elliptic equations (see, for example, [20, p. 41]), the inequality v0 ≥ u0 is fulfilled on D.

Let {Bk}∞k=1 be an exhaustion of Mg, i.e. a sequence of nonempty precompact open subsets of Mg

such that Bk ⊂ Bk+1 and Mg = ∪∞
k=1Bk. Throughout the sequel, we assume that boundaries ∂Bk are

C1-smooth submanifolds and B ⊂ Bk for all k.

We consider the sequences of functions uk and vk that are solutions of the problems⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Luk = f in Bk \B,

uk|∂Bk
= u0|∂Bk

,

uk|∂B = 0,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Lvk = f in Bk \B,

vk|∂Bk
= v0|∂Bk

,

vk|∂B = 0.

(17)

Since on D the condition f1(r) ≤ f(r, θ) ≤ f2(r) is fulfilled, hence we have in Bk \B
Lv0 ≤ Lvk = Luk ≤ Lu0,

vk|∂Bk
= v0|∂Bk

≥ u0|∂Bk
= uk|∂Bk

,

vk|∂B = v0|∂B = u0|∂B = uk|∂B .

Then, according to the comparison theorem for linear elliptic equations in Bk \B (see, for example,
[20, p. 41]) for all k, we get

v0 ≥ vk ≥ uk ≥ u0. (18)

The boundedness of solutions v0 and u0 implies the uniform boundedness of the families {uk}∞k=1 and
{vk}∞k=1 for an arbitrary compact subset G ⊂ D. Uniform boundedness of the sequences and Schauder’s
internal estimates (see, for example, [20, p. 94–95]) imply the compactness of these families of functions
in the class C2(G) for an arbitrary compact subset G ⊂ D. In turn, compactness of families {uk}∞k=1,
{vk}∞k=1 entails the existence of limit functions v = lim

k→∞
vk and u = lim

k→∞
uk, which are solutions of the

equation (2) on D. Taking the limit in (18) for k → ∞, we have v0 ≥ v ≥ u ≥ u0 on D.

Since limr→∞ v0(r, θ) = limr→∞ u0(r, θ) = 0, then limr→∞ v(r, θ) = limr→∞ u(r, θ) = 0. In addi-
tion, given the boundary conditions of the problem (17), we get v|∂B = u|∂B = 0 or v(r0, θ) = u(r0, θ).
So, by the comparison theorem for linear elliptic equations we have u ≡ v on D. We denote the common
limit function by u2 = lim

k→∞
vk = lim

k→∞
uk, which is the desired solution to the problem (16).

The proof of the second assertion of the Lemma 3 is done analogy. Lemma 3 is proved.
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3. SOLVABILITY OF THE DIRICHLET PROBLEM ON MODEL MANIFOLDS

This section is devoted to the proof of Theorem 3. First, we formulate an auxiliary statement from
[13], that plays an essential role in the proof of the Theorem 3.

Lemma 4. ([13]) Let G be a precompact subset in Mg, and a function u ∈ C(G) ∩ C2(G) satisfies
the equation (2) on G, where f ∈ C0(G), Ω := supp f and Ω ⊂⊂ G, c ≥ 0 on G and c 
= 0 on Ω.
Then

sup
G

|u| ≤ sup
∂G

|u|+ sup
Ω

|f |
c
.

Now, we go directly to the proof of the Theorem 3.

Proof. Also, as in the above proof of Lemma 3, by the assertion 1) and 3) of Theorem 2, it is sufficient
to show the solvability of the boundary value problem{

Lu = f,

limr→∞ u(r, θ) = 0.
(19)

Lemma 3 implies the existence of a function u0(r, θ), such that⎧⎪⎨
⎪⎩
Lu0 = f(r, θ),

u0(r0, θ) = 0,

limr→∞ u0(r, θ) = 0.

Denote by B′′ the neighborhood of compact set B, where c(x) > 0. We consider a function U0 ∈
C2,α(M), such that U0 = u0 outside B′′, U0 = 0 on some subset B′ ⊂⊂ B. It is clear that LU0 = f0(x)
on Mg , where the function f0(x) ∈ Cα(Mg) satisfies the following conditions: f0(x) = 0 in B′, f0(x) ≡
f(x) outside B′′, f0(x) 
≡ f(x) in B′′ \B′.

Consider now the sequence of functions ϕk that are solutions of the problems⎧⎨
⎩ Lϕk = f(x) in Bk,

ϕk |∂Bk
= u0|∂Bk

and the sequence of functions ψk = ϕk − U0. It is clear, that ψk are solutions of the problems⎧⎨
⎩ Lψk = f(x)− f0(x) in Bk,

ψk |∂Bk
= 0,

where the function f(x)− f0(x) ∈ Cα(Mg) and satisfies the following conditions: f(x)− f0(x) = f(x)
on the compact set B′, f(x)− f0(x) = 0 outside of B′′. Thus, Ω := supp{f(x)− f0(x)} is a compact
and Ω ⊂ B′′.

By Lemma 4, for all k for x ∈ Bk we have

|ψk| ≤ sup
Bk

|ψk| ≤ sup
∂Bk

|ψk|+ sup
Ω

|f(x)− f0(x)|
c(x)

= sup
Ω

|f(x)− f0(x)|
c(x)

,

which implies the uniform boundedness of the family of functions {ψk}∞k=1 on Mg . Hence, as above,
we obtain compactness of this family in the class C2(G) for an arbitrary compact subset G ⊂ Mg. One
implies the existence of the limit function ψ = limk→∞ ψk on Mg such that Lψ = f(x)− f0(x) on Mg .

The existence of the function ψ = limk→∞ ψk implies the existence of the limit function u =
limk→∞ ϕk such that Lu = f(x) on Mg.

To finish the proof of the theorem, we need to show the fulfillment of the boundary condition
limr→∞ u(r, θ) = 0. We denote A = maxS |u(r0, θ)|. The existence of the limit of sequence {ϕk} implies
that we have −(A+ 1) < ϕk|∂B < A+ 1 for sufficiently large values k.
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Obviously, the following inequality holds

−(A+ 1) < u0|∂B = u0(r0, θ) < A+ 1.

By Lemma 3, we obtain the existence of solutions to the following boundary value problems on D⎧⎪⎨
⎪⎩
Lu1 = f(r, θ),

u1(r0, θ) = −(A+ 1),

limr→∞ u1(r, θ) = 0.

and

⎧⎪⎨
⎪⎩
Lu2 = f(r, θ),

u2(r0, θ) = A+ 1,

limr→∞ u2(r, θ) = 0.

Then applying the comparison theorem for linear elliptic equations as above, we get on D

u1(r, θ) ≤ u0(r, θ) ≤ u2(r, θ),

and for sufficiently large values k on Bk \B u1 ≤ ϕk ≤ u2. Passing to the limit as k → ∞ in last
inequality on D, we get u1 ≤ u ≤ u2. According to the asymptotic behavior of functions u1 and u2,
we have limr→∞ u(r, θ) = 0.

So, the function u is the desired solution of the boundary value problem (19). To complete the proof,
we note that under the conditions of this theorem, the conditions of assertions 1) and 3) of Theorem 2
are fulfilled, i.e. there are bounded solutions on Mg with a given asymptotic behavior for the stationary
Schrödinger equation (1). These solutions, combined with the solution u of the problem (19), give the
desired solutions to the boundary value problems in assertions 1) and 2) of Theorem 3.

REMARK

When studying the solvability of boundary value problems for solutions of inhomogeneous elliptic
equations on non-compact Riemannian manifolds, in addition to Hölder continuity, some additional
conditions are imposed on the right-hand side. For example, the condition of infinite differentiability
was imposed on the right-hand side of the Poisson equation and it was supplemented with a condition
on the rate of decay to zero at infinity in [17]. In [15], the nonnegativity condition was imposed on the
right-hand side of the equation, and the boundedness condition, in addition to Hölder continuity, was
imposed on the right-hand side of the equation in [18]. In [19], a smoothness condition for the right-hand
side of f ∈ C [ 3n

2
](Mg), where n = dim(Mg), is imposed. It is sufficient for the solvability of the Dirichlet

problem on a model manifold for the Poisson equation.
In this paper, similar results are obtained for a more general inhomogeneous equation, while the

conditions for the smoothness of the right-hand side f(x) of the inhomogeneous equation (2) is
weakened due to the requirement of its boundedness from above and below on D. Moreover, these
majorants and minorants depend only on the radial coordinate, i.e. f1(r) ≤ f(x) ≤ f2(r).
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