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Abstract—It is considered a model operator hμ(k), k ∈ T ≡ (−π, π], corresponding to the Hamil-
tonian of systems of two arbitrary quantum particles on a one-dimensional lattice with a special
dispersion function that describes the transfer of a particle from one site to another interacting by a
some short-range attraction potential vμ, μ = (μ0, μ1, μ2, μ3) ∈ R4

+. The number of eigenvalues of
the operator hμ(k), k ∈ T depending on the energy of the particle interaction vector μ ∈ R4

+ and the
total quasi-momentum k ∈ T is studied.
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1. INTRODUCTION

In the continuous case, the study of spectral properties of the total Hamiltonian of a system of two
particles is reduced to investigating the two-particle Schrödinger operator by separating the energy
of motion of the center of mass so that the two-particle bound states are eigenvectors of the energy
operator with a separated total momentum (in this case, such type operator does not actually depend
on the values of the total momentum) [1]. For the lattice case, the separation of the center of mass
of the system corresponds to the realization of the Hamiltonian as a laminated operator, i.e., as the
direct integral of the family of energy operators h(k) of two particles, depending on the values of the
total quasi-momentum k on the d-dimensional torus Td ≡ (−π, π]d [2].

The two-particle Schrödinger operator hμ(k), k ∈ T3, associated with the Hamiltonian of a system of
two identical particles (bosons) interacting with the pair contact potential of attraction with interaction
energy μ > 0 was considered in [3]. It was shown that the operator has either a single eigenvalue or
no eigenvalues depending on the values of the interaction energy μ > 0 and the total quasi-momentum
k ∈ T3 of the system of two particles.

In the cases of two bosons or two fermions moving on the lattice and interacting only at the nearest
neighbouring sites, the exact number of eigenvalues of the corresponding two-particle Schrödinger
operator hμ(k), μ > 0, k ∈ Td, d = 1, 2 was found in [4, 5]. In addition, in the papers [6–10] the
spectral properties of the one-particle Hamiltonian describing the motion of one quantum particle on a
lattice in an external field were studied. The number of eigenvalues and their locations were investigated
depending on the values of the interaction energy λ, μ ∈ R (μ2 + λ2 > 0).

In the papers [11, 12], systems of two arbitrary quantum particles on a three-dimensional lattice
with some selected dispersion relations interacting with pair attraction potentials were considered. The
dependence of the number of eigenvalues of the family of operators hμ(k), k ∈ T3, μ = (μ1, . . . , μN ) ∈
RN
+ on the particle interaction energy μ ∈ RN

+ and the total quasi-momentum k ∈ T3 was investigated.
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In the paper [13] was considered a system of two arbitrary quantum particles on a one-dimensional
lattice with specially selected dispersion relations describing the transfer of a particle from the site s = 0
to the sites s = ±2n, n ∈ N interacting with the pair attraction potential. Moreover, in accordance
with the dispersion relations, the interaction potential vμ, μ = (μ0, μ1, . . . , μN ) ∈ RN+1

+ was chosen
so that the Fredholm determinant corresponding to the operator hμ(k) was reduced to the product of
the Fredholm determinants of the operators hμl

(k) and l ∈ {0, 1, . . . , N}. The number of eigenvalues
of the operator hμ(k) was investigated depending on the interaction energy of particles and the total
quasi-momentum k ∈ T. Conditions for the existence of the eigenvalues (counting multiplicities) of the
operator hμ(k) lying to the left of the essential spectrum were established.

In this paper, we consider the model operator hμ(k), k ∈ T, corresponding to the Hamiltonian of
a system of two arbitrary quantum particles on a one-dimensional lattice with special even dispersion
relations describing the transfer of a particle from the site s = 0 to sites s = ±2, interacting with the
pair short-range attraction potential. In this case, the energy of pair interactions of particles is an even
function and takes no more than four values μ0, μ1, μ2 and μ3.

Let us study the number of eigenvalues of the energy operator hμ(k) depending on the energy vector
of pair interactions of particles μ = (μ0, μ1, μ2, μ3) ∈ R4

+ and the total quasi-momentum k ∈ T of the
system of two particles.

Since the operator hμ(k), k ∈ T is decomposed into the direct sum of the operators hμ,e(k) and
hμ,o(k) acting in the Hilbert spaces of even and odd functions, respectively, it suffices to study the
discrete spectra of these operators.

Further, using properties of the dispersion relations, we represent the Fredholm determinant

Δe(μ, k; z)
(
Δo(μ, k; z)

)
of the operator hμ,e(k)

(
hμ,o(k)

)
as a product of the Fredholm determinants

h
(1)
μ,e(k) and h

(2)
μ,e(k)

(
h
(1)
μ,o(k) and h

(1)
μ,o(k)

)
depending only on two pairs of parameters (μ0, μ2) and

(μ1, μ3), respectively. Moreover,

Δe(μ, k; z) =

2∏
γ=1

Δ(γ)
e (μγ−1, μγ+1, k; z) and Δo(μ, k; z) =

2∏
γ=1

Δ(γ)
o (μγ−1, μγ+1, k; z)

and

hμ,e(k) = h(1)μ,e(k)⊕ h(2)μ,e(k), hμ,o(k) = h(1)μ,o(k) ⊕ h(2)μ,o(k).

Therefore, the number of eigenvalues actually depends only on values of two pairs (μγ−1, μγ+1), γ = 1, 2
and quasi-momentum k ∈ T. Further, a geometric explanation of the conditions for the existence of

eigenvalues with respect of two pairs (μγ−1, μγ+1), γ = 1, 2 is given. We split the planeOμ0μ2

(
Oμ1μ3

)
of parameters μ0, μ2 ∈ R+

(
μ1, μ3 ∈ R+

)
(see Fig. 1 and 2) into two components E

(1)
1 and E

(1)
2

(
E
(2)
1

and E
(2)
2

)
and also into two components O

(1)
0 and O

(1)
1

(
into three components O

(2)
0 , O

(2)
1 and O

(2)
2

)
.

Moreover, the operators h
(γ)
μ,e(k) and h

(γ)
μ,o(k) acting in Hilbert spaces of even and odd functions have η

and ρ eigenvalues on the left threshold of the essential spectrum, respectively, for (μγ−1, μγ+1) ∈ E
(γ)
η ,

η = 1, 2 and (μγ−1, μγ+1) ∈ O
(γ)
ρ , ρ = 0, 1, 2.

Thus, this geometrical approach allows us to establish lower and upper bounds for the number of
eigenvalues of the operator hμ(k), k ∈ T.

Remark that the obtained results clarify and generalize the results of the works [6, 7], and also show
the complex dependence of the number of eigenvalues on the parameters of operators.
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2. FORMULATION OF THE MAIN RESULTS

Let Z be the set of integers and �2(Z× Z) be the Hilbert space of square-summable functions on
Z× Z.

The model operator ĥμ, corresponding to the Hamiltonian of a system of two arbitrary quantum
particles on a one-dimensional lattice, in the coordinate representation, is defined as a bounded self-
adjoint operator acting in �2(Z× Z) by ĥμ = ĥ0 − v̂μ, where

(ĥ0ψ̂)(n1, n2) =
∑
s∈Z

[
ε̂1(s)ψ̂(n1 + s, n2) + ε̂2(s)ψ̂(n1, n2 + s)

]
,

(v̂μψ̂)(n1, n2) = v̂μ(n1 − n2)ψ̂(n1, n2).

Here ε̂1(·), ε̂2(·) are dispersion functions describing the transfer of particles from a site to neighbouring
sites and v̂μ(·) is a pair interaction potential of particles defined on Z as

ε̂i(s) =

⎧⎪⎨
⎪⎩

1
mi

, if s = 0,

− 1
2mi

, if s = ±2,

0, otherwise,

and v̂μ(s) =

⎧⎪⎨
⎪⎩
2πμ0, if s = 0,

πμl, if s = ±l, l = 1, 2, 3,

0, otherwise,

where mi > 0 is the mass of the i-th particle, i = 1, 2 and μn ≥ 0, n = 0, 1, 2, 3.
Let L2(T× T) be the Hilbert space of square-integrable functions on T× T, T = (−π;π]. The

transition from the coordinate representation of the Hamiltonian ĥμ to the momentum one hμ is realized
by the Fourier transform (see, [2])

F : �2(Z× Z) → L2(T× T), (Fψ̂)(p) =
1

2π

∑
s∈Z2

ψ̂(s)ei(p,s).

The momentum representation hμ as a model operator in L2(T× T) is of the form

hμ := F ĥμF−1 = F ĥ0F−1 + F v̂μF−1.
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Two-particle problem on a lattice with dispersion relations ε1(k1) and ε2(k2), k1, k2 ∈ T, in the
momentum representation is reduced to study the effective one-particle problem by separating the total
quasi-momentum k = k1 + k2 of the two particles and the von Neumann expansion: the two-particle
Hilbert space L2(T× T) is represented as a direct integral associated to the discrete abelian group Z by
shift operators

L2(T× T) =

∫
k∈T

⊕L2(T)dk.

Hence, the total two-particle Hamiltonian hμ appears to be decomposable [14] and

hμ =

∫
T

⊕h̃μ(k)dk

holds, where the quasi-momentum k of a system of two particles runs through the first Brillouin zone
T = R/(2πZ). The layer operator h̃μ(k) continuously depends on k ∈ T. Bound states ψe,k of the
operator h̃μ(k) are solutions of the following Schrödinger equation

h̃μ(k)ψe,k = e(k)ψe,k, ψe,k ∈ L2(T).

Therefore, the spectrum σ(hμ) of the operator hμ expressed in terms of the spectrum of the layer
Schrödinger operators h̃μ(k) with a fixed quasi-momentum, i.e.,

σ(hμ) = ∪k∈Tσ(h̃μ(k)) = ∪j=1 ∪k∈T {ej(k)} ∪ σ(h̃0(k)),

where ej(k), j = 1, 2, . . . are eigenvalues of the layer operator h̃μ(k).
Using the unitary operator U : L2(T) → L2(T) (see [13])

(Uf)(p) = f

(
p− θ(k)

2

)
, θ(k) = arccos

1
m1

+ 1
m2

cos 2k√
1
m2

1
+ 2

m1m2
cos 2k + 1

m2
2

,

we reduce the problem of investigating spectral properties of h̃μ(k) to the study of the family of operators
hμ(k), k ∈ T, acting in the Hilbert space L2(T) as hμ(k) = h0(k)−vμ, where h0(k) is the multiplication
operator by the function Ek(·) defined as

Ek(p) =
1

m1
+

1

m2
− a(k) cos 2p, a(k) =

√
1

m2
1

+
2

m1m2
cos 2k +

1

m2
2

and vμ is the integral operator with kernel vμ(p − s) =
3∑

n=0
μn cosn(p− s), i.e.,

(vμf)(p) =

3∑
n=0

∫
T

μn cosn(p− s)f(s)ds, f ∈ L2(T).

According to the Weyl’s theorem on the stability of the essential spectrum [16] the essential spectrum
σess(hμ(k)) of the operator hμ(k) remains unchanged under a compact perturbation vμ and coincides
with the spectrum of the unperturbed operator h0(k):

σess(hμ(k)) = σ(h0(k)) = [m(k),M(k)],

where

m(k) = min
p∈T

Ek(p) =
1

m1
+

1

m2
− a(k), M(k) = max

p∈T
Ek(p) =

1

m1
+

1

m2
+ a(k).

If vμ ≥ 0, then

(hμ(k)f, f) ≤ (h0(k)f, f) ≤ M(k)(f, f), f ∈ L2(T).
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Therefore, the operator hμ(k) has no eigenvalues lying to the right of the essential spectrum, that is,
σ(hμ(k)) ∩ (M(k),∞) = ∅.

Remark 1. Let L2
e(T) ⊂ L2(T) and L2

o(T) ⊂ L2(T) be subspaces of even and odd functions,
respectively. It is known that the equality L2(T) = L2

e(T)⊕ L2
o(T) holds. Hilbert spaces L2

e(T)
and L2

o(T) are invariant under the self-adjoint operator hμ(k). We denote by hμ,e(k) and hμ,o(k) the
restrictions hμ(k)

∣∣
L2
e(T)

and hμ(k)
∣∣
L2
o(T)

of the operator hμ(k) to L2
e(T) and L2

o(T), respectively. The

operators hμ,e(k) and hμ,o(k) act on L2
e(T) and L2

o(T) by the formulas hμ,e(k) = h0(k)− vμ,e hμ,o(k) =
h0(k)− vμ,o, respectively, where vμ,e and vμ,o are integral operators given as

vμ,ef(p) =

3∑
n=0

∫
T

μn cosnp cosnsf(s)ds, f ∈ L2
e(T),

vμ,of(p) =

3∑
n=0

∫
T

μn sinnp sinnsf(s)ds, f ∈ L2
o(T).

Hence,

σ(hμ(k)) = σ(hμ,e(k)) ∪ σ(hμ,o(k)) and σd(hμ(k)) = σd(hμ,e(k)) ∪ σd(hμ,o(k)).

We set

cnm(k; z) =

∫
T

cosnq cosmqdq

Ek(q)− z
, cn(k; z) = cnn(k; z), n,m = 0, 1, 2, 3 (1)

and

slr(k; z) =

∫
T

sin lq sin rqdq

Ek(q)− z
, sl(k; z) = sll(k; z), l, r = 1, 2, 3. (2)

Note that the function Ek(·) has a non-generated minimum only at the points p = 0 and p = π.
Therefore, the integral ∫

T

sin2 lqdq

Ek(q)−m(k)
, l = 1, 2, 3

is convergent and positive. Denote

μl(k) =
(
sl
(
k;m(k)

))−1
=

a(k)

lπ
, l = 1, 2, 3.

To formulate results on the number and locations of eigenvalues of the operators hμ,e(k) and hμ,o(k) we
introduce the following partitions for parameters μ0, μ2 ∈ R+ and μ1, μ3 ∈ R+:

R2
+ = E

(1)
1 ∪ E

(1)
2 = O

(1)
0 ∪O

(1)
1 and R2

+ = E
(2)
1 ∪ E

(2)
2 = O

(2)
0 ∪O

(2)
1 ∪O

(2)
2 ,

where

E
(γ)
1 =

{
(μγ−1, μγ+1) ∈ R2

+ : μγ+1 ≤ μ2(k) +
μ2
2(k)

μγ−1 − μ2(k)

}
,

E
(γ)
2 =

{
(μγ−1, μγ+1) ∈ R2

+ : μγ+1 > μ2(k) +
μ2
2(k)

μγ−1 − μ2(k)

}
,

O
(1)
0 =

{
(μ0, μ2) ∈ R2

+ : μ2 ≤ μ2(k)
}
, O

(1)
1 =

{
(μ0, μ2) ∈ R2

+ : μ2 > μ2(k)
}
,

O
(2)
0 =

{
(μ1, μ3) ∈ R2

+ : μ1 < 3μ2(k), μ3 ≤ μ2(k) +
μ2
2(k)

μ1 − 3μ2(k)

}
,
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O
(2)
1 =

{
(μ1, μ3) ∈ R2

+ : μ1 < 3μ2(k), μ3 > μ2(k) +
μ2
2(k)

μ1 − 3μ2(k)

or μ1 > 3μ2(k), μ3 ≤ μ2(k) +
μ2
2(k)

μ1 − 3μ2(k)

}
,

O
(2)
2 =

{
(μ1, μ3) ∈ R2

+ : μ1 > 3μ2(k), μ3 > μ2(k) +
μ2
2(k)

μ1 − 3μ2(k)

}
.

The following theorems describe the number of the eigenvalues of the operators hμ,e(k) and hμ,o(k).
Theorem 1. Let either m1 = m2 and k ∈ T or m = m1 = m2 and k = ±π

2 .

1. If (μ0, μ2) ∈ E
(1)
α , (μ1, μ3) ∈ E

(2)
β , α, β = 1, 2, then the operator hμ,e(k) has exactly α+ β

eigenvalues (counting multiplicities) lying to the left of the essential spectrum.

2. If (μ0, μ2) ∈ O
(1)
α , (μ1, μ3) ∈ O

(2)
β , α = 0, 1, β = 0, 1, 2, then the operator hμ,o(k) has exactly

α+ β eigenvalues (counting multiplicities) lying to the left of the essential spectrum.
Theorem 2. Let m = m1 = m2 and k = ±π

2 . Then the operators hμ,e(k) and hμ,o(k) have exactly
four and three eigenvalues (counting multiplicities), respectively, lying to the left of the essential
spectrum.

The following theorem sets the lower and upper bounds for the number of eigenvalues of the operator
hμ(k).

Theorem 3. 1. Let either m1 = m2 and k ∈ T or m = m1 = m2 and k = ±π
2 . Then for each k ∈ T

the operator hμ(k) has at least two and at most seven eigenvalues (counting multiplicities) lying
to the left of the essential spectrum.

2. Let m = m1 = m2 and k = ±π
2 . Then the operator hμ(k) has exactly seven eigenvalues

(counting multiplicities) lying to the left of the essential spectrum.
Remark 2. Let the conditions of the Theorem 3 (1) be fulfilled. If (μ0, μ2) ∈ Pα, α = 1, 2, 3 and

(μ1, μ3) ∈ Qβ, β = 1, ..., 4, then for each k ∈ T the operator hμ(k) has exactly α+ β eigenvalues
(counting multiplicities) lying to the left of the essential spectrum, where

P1 = E
(1)
1 ∩O

(1)
0 , P2 = E

(1)
1 ∩O

(1)
1 , P3 = E

(1)
2 ∩O

(1)
1 ,

Q1 = E
(2)
1 ∩O

(2)
0 , Q2 = E

(2)
1 ∩O

(2)
1 , Q3 = E

(2)
2 ∩O

(2)
1 , Q4 = E

(2)
2 ∩O

(2)
2 .

3. PROOF OF THE MAIN RESULTS

Introduce the function Δ(k; ·) := Δμ(k; ·) defined in C\[m(k),M(k)] as

Δ(k; z) = Δe(k; z)Δo(k; z), (3)

where

Δe(k; z) = Δ(1)
e (k; z)Δ(2)

e (k; z), Δo(k; z) = Δ(1)
o (k; z)Δ(2)

o (k; z), (4)

Δ(γ)
e (k; z) =

(
1− μαcα(k; z)

)(
1− μβcβ(k; z)

)
− μαμβc

2
αβ(k; z), (5)

Δ(γ)
o (k; z) =

(
1− αμαsα(k; z)

)(
1− μβsβ(k; z)

)
− αμαμβs

2
αβ(k; z), (6)

α = γ − 1, β = γ + 1, γ = 1, 2. The relation between zeros of Δ(k; ·) and eigenvalues of the operator
hμ(k) is established by the following lemma.

Lemma 1. For any k ∈ T, the number z < m(k) is an m-multiple eigenvalue of the operator
hμ(k) if and only if z is a zero of Δ(k; ·) with multiplicity m.

A similar lemma was proved in [13].
Corollary 1. For any (μγ−1, μγ+1) ∈ R2

+, γ = 1, 2 and k ∈ T, the number z < m(k) is an

eigenvalue of the operator h
(γ)
μ,e(k)

(
h
(γ)
μ,o(k)

)
if and only if it is a zero of the function Δ

(γ)
e (k; ·)
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Δ

(γ)
o (k; ·)

)
, γ = 1, 2. Moreover, each eigenvalue of the operator h(γ)μ,e(k)

(
h
(γ)
μ,o(k)

)
is simple (see

offer below 3), where

h(γ)μ,e(k) = h0(k)− v(γ)
μ,e, h(γ)μ,o(k) = h0(k)− v(γ)

μ,o, γ = 1, 2,

v
(γ)
μ,e and v

(γ)
μ,o are the integral operators defined as(

v(γ)
μ,ef

)
(p) =

∫
T

(
μγ−1 cos(γ − 1)p cos(γ − 1)s + μγ+1 cos(γ + 1)p cos(γ + 1)s

)
f(s)ds,

(
v(γ)
μ,of

)
(p) =

∫
T

(
μγ−1 sin(γ − 1)p sin(γ − 1)s + μγ+1 sin(γ + 1)p sin(γ + 1)s

)
f(s)ds.

Proposition 1. I. For any k ∈ T, the functions cnm(k; ·), n+m = 0, 2, 4, 6, n,m = 0, 1, 2, 3 and
slr(k; ·), l + r = 2, 4, 6, l, r = 1, 2, 3 are analytic in C\[m(k),M(k)], and positive, increasing mono-
tonically in (−∞,m(k)).

II. Let either m1 = m2 and k ∈ T or m = m1 = m2 and k = ±π
2 . Then for any μγ−1 ≥ 0, μγ+1 ≥ 0,

γ = 1, 2 the equalities (asymptotic expansions)

Δ(γ)
e (k; z) = E

(γ)

− 1
2

(k)
(
m(k)− z

)− 1
2 +E

(γ)
0 (k) +O

(
(m(k)− z)

1
2
)
, z → m(k)− 0, (7)

Δ(γ)
o (k; z) = O

(γ)
0 (k) +O

(
(m(k)− z)

1
2

)
, z → m(k)− 0 (8)

hold, where

E
(γ)

− 1
2

(k) =

√
π
[
μγ−1μγ+1 − (μγ−1 + μγ+1)μ2(k)

]
√

μ3
2(k)

,

E
(γ)
0 (k) =

2μ2
2(k) +

[
(γ − 1)μγ−1 + (γ + 1)μγ+1

]
μ2(k) − (γ + 1)μγ−1μγ+1

2μ2
2(k)

,

O
(γ)
0 (k) =

2μ2
2(k)−

[
(γ − 1)μγ−1 + (γ + 1)μγ+1

]
μ2(k) + (γ − 1)μγ−1μγ+1

2μ2
2(k)

.

Proof. I. The positivity of the functions cn(k; ·), n = 0, 1, 2, 3 and sl(k; ·), l = 1, 2, 3, defined by (1)
and (2), directly follows from the nonnegativity of the integrands and the monotonicity of the Lebesgue
integral.

Let’s represent the functions c02(k; ·), c13(k; ·) and s13(k; ·) as

c02(k; z) =
1

a(k)

π∫
−π

cos 2q

A− cos 2q
dq, c13(k; z) =

1

a(k)

π∫
−π

cos q cos 3q

A− cos 2q
dq,

s13(k; z) =
1

a(k)

π∫
−π

sin q sin 3q

A− cos 2q
dq,

where A := 1 + m(k)−z
a(k) > 1 for z < m(k). One can easily check that

π∫
−π

cos 2q

A− cos 2q
dq = 2π

A−
√
A2 − 1√

A2 − 1
,
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π∫
−π

cos q cos 3q

A− cos 2q
dq =

π√
A2 − 1

A−
√
A2 − 1 + 1

A+
√
A2 − 1

,

π∫
−π

sin q sin 3q

A− cos 2q
dq =

π√
A2 − 1

√
A2 − 1− (A− 1)

A+
√
A2 − 1

.

From these and the inequality A > 1, it follows that the functions c02(k; ·), c13(k; ·) and s13(k; ·) are
positive for z < m(k).

The positivity of the derivatives of the functions cn(k; ·), n = 0, 1, 2, 3 and sl(k; ·), l = 1, 2, 3 in z also
follows from the nonnegativity of the integrands and the monotonicity of the Lebesgue integral.

The derivatives of the functions c02(k; ·), c13(k; ·) and s13(k; ·) in z are represented as

∂c02(k; z)

∂z
=

1

a(k)

π∫
−π

cos 2q(
F (z)− cos 2q

)2dq,
∂c13(k; z)

∂z
=

1

a(k)

π∫
−π

cos q cos 3q(
F (z)− cos 2q

)2dq,
∂s13(k; z)

∂z
=

1

a(k)

π∫
−π

sin q sin 3q(
F (z)− cos 2q

)2dq,
where F (z) :=

(
m−1

1 +m−1
2 − z

)
/a(k) > 1 for z < m(k). Hence, we have

∂c02(k; z)

∂z
=

2

a(k)

π∫
0

cos 2q(
F (z) − cos 2q

)2 dq.
Representing the integral as a sum of two integrals over the intervals [0, π2 ] and [π2 , π], in the second
integral making the change of variable q := q + π

2 and using the identity cos(x− π) = − cosx we get

2

a(k)

π∫
0

cos 2q

(F (z) − cos 2q)2
dq =

8F (z)

a(k)

π
2∫

0

cos2 2q(
F (z) − cos 2q

)2 dq > 0.

The nonnegativity of the integrands and the monotonicity of the Lebesgue integral imply the
positivity of ∂c02(k; z)/∂z. Therefore, the function c02(k; ·) monotonically increases in (−∞,m(k)). The
monotonicity of the functions c13(k; ·) and s13(k; ·) is proved similarly.

II. We prove assertion II of the Proposition 1 for γ = 1. For the case γ = 2, the proof is similar to that
of part I. Note that for γ = 1 the equalities (5) and (6) have the following forms

Δ(1)
e (k; z) =

(
1− μ0c0(k; z)

)(
1− μ2c2(k; z)

)
− μ0μ2c

2
02(k; z), Δ(1)

o (k; z) = 1− μ2s2(k; z).

Computing the integrals in (1) and (2), we obtain the following equalities

c0(k; z) =

√
2π

(
m(k)− z

)− 1
2√

a(k)
f(k; z),

c02(k; z) =

√
2π

(
m(k)− z

)− 1
2√

a(k)
f(k; z)− 2π

a(k)
+

√
2π

(
m(k)− z

) 1
2√

a3(k)
f(k; z),

c2(k; z) =

√
2π

(
m(k)− z

)− 1
2√

a(k)
f(k; z)− 2π

a(k)
+

2
√
2π

(
m(k)− z

) 1
2√

a3(k)
g(k; z) −

2π
(
m(k)− z

)
a2(k)

,

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 43 No. 2 2022



ON THE NUMBER OF EIGENVALUES 361

s2(k; z) =
2π

a(k)
−

2
√
2π

(
m(k)− z

) 1
2√

a3(k)
g(k; z) +

2π
(
m(k)− z

)
a2(k)

,

where

f(k; z) =
1

g(k; z)
, g(k; z) =

√
1 +

m(k)− z

2a(k)
.

Further, expanding the functions f(k; z) and g(k; z) in Taylor series in neighbourhood of the point
z = m(k), we obtain

f(k; z) = 1− 1

4a(k)

(
m(k)− z

)
+O

(
(m(k)− z)2

)
, z → m(k)− 0,

g(k; z) = 1 +
1

4a(k)

(
m(k)− z

)
+O

(
(m(k)− z)2

)
, z → m(k)− 0.

Using these equations, we obtain the following asymptotic expansions

c0(k; z) =

√
2π√
a(k)

(
m(k)− z

)− 1
2 −

√
2π

4
√

(a(k))3

(
m(k)− z

) 1
2
+O

(
(m(k)− z)

3
2

)
, z → m(k)− 0,

c02(k; z) =

√
2π√
a(k)

(
m(k)− z

)− 1
2 − 2π

a(k)
+

3
√
2π

4
√

(a(k))3

(
m(k)− z

) 1
2
+O

(
(m(k) − z)

3
2

)
,

z → m(k)− 0,

c2(k; z) =

√
2π√
a(k)

(
m(k)− z

)− 1
2 − 2π

a(k)
+

7
√
2π

4
√

(a(k))3

(
m(k)− z

) 1
2

− 2π

a2(k)

(
m(k)− z

)
+O

(
(m(k) − z)

3
2

)
, z → m(k)− 0,

s2(k; z) =
2π

a(k)
− 2

√
2π√

(a(k))3

(
m(k)− z

) 1
2
+O

(
m(k)− z

)
, z → m(k)− 0.

Substituting these expansions into (5) and (6), respectively, we obtain the relations (7) and (8) for γ = 1.
�

Proposition 2. I. For any μn ≥ 0, n = 0, 1, 2, 3 and k ∈ T, the function 1− μncn(k; ·) has a unique
zero ζn(k) ∈ (−∞,m(k)), i.e.,

1− μncn(k; ζn(k)) = 0, n = 0, 1, 2, 3. (9)

II. Let either m1 = m2 and k ∈ T or m = m1 = m2 and k = ±π
2 . Then for any μl ≥ 0, l = 1, 2, 3

and k ∈ T the following statements are true:
1. If μl ≤ μl(k), then the function 1− μlsl(k; ·), l = 1, 2, 3 has no zeros in (−∞,m(k)).
2. If μl > μl(k), then the function 1− μlsl(k; ·), l = 1, 2, 3 has a single zero ξl(k) < m(k).
Proof. I. By virtue of the Proposition 1 for fixed μn, n = 0, 1, 2, 3 and k ∈ T the function 1−μncn(k; ·)

continuous and monotonically decreases in (−∞,m(k)). In addition, the equalities

lim
z→−∞

(
1− μncn(k; z)

)
= 1, lim

z→m(k)−0

(
1− μncn(k; z)

)
= −∞

hold. This implies statement I of Proposition 2.
II.1. By virtue of the Proposition 1 for fixed μl, l = 1, 2, 3 and k ∈ T the function 1− μlsl(k; ·) is

continuous and monotonically decreases in (−∞,m(k)). In addition, the following relations

lim
z→m(k)−0

(
1− μlsl(k; z)

)
= 1− μlsl(k;m(k)) = 1− μl

μl(k)
≥ 0 as 0 < μl ≤ μl(k)
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hold. Hence,

1− μlsl(k; z) > 1− μlsl(k;m(k)) ≥ 0 for z < m(k).

II.2. Let μl > μl(k), l = 1, 2, 3. Since the function sl(k; ·) is continuous and monotone, taking into
account the relations

lim
z→−∞

(
1− μlsl(k; z)

)
= 1,

lim
z→m(k)−0

(
1− μlsl(k; z)

)
=

(
1− μlsl(k;m(k))

)
= 1− μl

μl(k)
< 0,

we obtain statement II.2. �

Note that rank(v(γ)
μ,e) = 2

(
rank(v

(γ)
μ,o) ≤ 2

)
, γ = 1, 2. Therefore, the following lemma holds.

Lemma 2. The operator h
(γ)
μ,e(k)

(
h
(γ)
μ,o(k)

)
, γ = 1, 2 has at most two eigenvalues (counting

multiplicities) lying to the left of z = m(k).
Note that by virtue of the corollary 1 and the relation (3) the study of the zeros of the function Δ(k; ·)

reduces to study of zeros of the functions Δ
(γ)
e (k; ·) and Δ

(γ)
o (k; ·), γ = 1, 2, defined by (5) and (6),

respectively.
We set

η
(γ)
min(k) = min{ηγ−1(k), ηγ+1(k)}, η(γ)max(k) = max{ηγ−1(k), ηγ+1(k)}, γ = 1, 2

and
ξmin(k) = min{ξ1(k), ξ3(k)}, ξmax(k) = max{ξ1(k), ξ3(k)}.

The following proposition completely describe locations of the eigenvalues of the operators hμ,e(k)
and hμ,o(k).

Proposition 3. Let either m1 = m2 and k ∈ T or m = m1 = m2 and k = ±π
2 . Then for any

(μγ−1, μγ+1) ∈ R2
+, γ = 1, 2 the following statements are true:

I. If (μγ−1, μγ+1) ∈ E
(γ)
1 , then the function Δ

(γ)
e (k; ·) has a single zero in z

(γ1)
e (k) < m(k).

Moreover, z(γ1)e (k) < η
(γ)
min(k).

II. If (μγ−1, μγ+1) ∈ E
(γ)
2 , then the function Δ

(γ)
e (k; ·) has only two zeros z

(γ1)
e (k) < m(k) and

z
(γ2)
e (k) < m(k). Moreover, the inequalities

z(γ1)e (k) < η
(γ)
min(k) ≤ η(γ)max(k) < z(γ2)e (k)

hold.
III. If (μ0, μ2) ∈ O

(1)
0

(
(μ1, μ3) ∈ O

(2)
0

)
, then the function Δ

(1)
o (k; ·)

(
Δ

(2)
o (k; ·)

)
has no zeros in

(−∞,m(k)).

IV. If (μ0, μ2) ∈ O
(1)
1

(
(μ1, μ3) ∈ O

(2)
1

)
, then the function Δ

(1)
o (k; ·)

(
Δ

(2)
o (k; ·)

)
has a single zero

z
(1)
o (k) < m(k)

(
z
(21)
o (k) < m(k) and z

(21)
o (k) < ξmin(k)

)
.

V. If (μ1, μ3) ∈ O
(2)
2 , then the function Δ

(2)
o (k; ·) has only two zeros z

(21)
o (k) < m(k) and

z
(22)
o (k) < m(k). Moreover, the inequalities

z(21)o (k) < ξmin(k) ≤ ξmax(k) < z(22)o (k)

hold.
Proof. I. By the statement I of the Proposition 2, the functions 1− μγ−1cγ−1(k; ·) and 1−

μγ+1cγ+1(k; ·), γ = 1, 2 decrease monotonically and have unique zeros ηγ−1(k) and ηγ+1(k) in

(−∞,m(k)), respectively. Therefore for any z < η
(γ)
min(k), we have

1− μγ−1cγ−1(k; z) > 1− μγ−1cγ−1(k; ηγ−1(k)) = 0,

1− μγ+1cγ+1(k; z) > 1− μγ+1cγ+1(k; ηγ+1(k)) = 0.
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From these and the statement I of the Proposition 3, we obtain the inequality

∂Δ
(γ)
e (k; z)

∂z
= −μα

∂cα(k; z)

∂z

(
1− μβcβ(k; z)

)
− μβ

∂cβ(k; z)

∂z

(
1− μαcα(k; z)

)
− 2μαμβcαβ(k; z)

∂cαβ(k; z)

∂z
< 0, α = γ − 1, β = γ + 1, γ = 1, 2

for all z < η
(γ)
min(k), i.e., the function Δ

(γ)
e (k; ·) decreases monotonically in (−∞, η

(γ)
min(k)). The equalities

(1), (5) and (9) imply the equalities

lim
z→−∞

Δ(γ)
e (k; z) = 1, Δ(γ)

e (k; η
(γ)
min(k)) = −μαμβc

2
αβ(k; η

(γ)
min(k)) < 0 (10)

for α = γ − 1, β = γ +1, γ = 1, 2. Therefore, there exists a unique number z(γ1)e (k) < η
(γ)
min(k) such that

Δ
(γ)
e (k; z

(γ1)
e (k)) = 0.

The function Δ
(γ)
e (k; ·) has no zeros in the interval (η(γ)min(k),m(k)), namely

Δ(γ)
e (k; z) < 0 for z ∈ (η

(γ)
min(k),m(k)). (11)

Indeed, assuming contrary, for (μγ−1, μγ+1) ∈ E
(γ)
1 , γ = 1, 2 and η ∈ (η

(γ)
min(k),m(k)) the inequality

Δ
(γ)
e (k; η) ≥ 0 is executed. Then by virtue (10) and lim

z→m(k)−0
Δ

(γ)
e (k; z) < 0, according to continuity

Δ
(γ)
e (k; ·), it has at least two zeros (counting multiplicities) in (η

(γ)
min(k),m(k)), hence by (5) the function

Δ
(γ)
e (k; ·) has at least three zeros in (−∞,m(k)), which contradicts the assertion of the Lemma 2.

By virtue of the Lemma 2, the inequality (11) implies that the function Δ
(γ)
e (k; ·) has no zeros in

(η
(γ)
min(k),m(k)), which proves the assertion I of the proposition.

II. Since the condition of this item gives the relations

lim
z→m(k)−0

Δ(γ)
e (k; z) = +∞

and Δ
(γ)
e (k; z) < 0 for z ∈ (z

(γ1)
e (k), η

(γ)
max(k)), the function Δ

(γ)
e (k; ·) has a zero z = z

(γ2)
e (k) on

(η
(γ)
max(k),m(k)). This z = z

(γ2)
e (k) is a single zero in (η

(γ)
max(k),m(k)), since by the Lemma 2 the

operator h(γ)μ,e(k), γ = 1, 2 has at most two eigenvalues.

III. Let z < m(k). By the statement I of the Proposition 1 the functions sn(k; ·), n = 1, 2, 3 and
s13(k; ·) monotonically increase in (−∞,m(k)). Therefore, by virtue of the statement II.1 of the
Proposition 2, the following inequalities s13(k; z) < s13(k;m(k)) and

1− μnsn(k; z) > 1− μnsn(k;m(k)) ≥ 0 for z < m(k)

hold. Hence, from (6) and (μγ−1, μγ+1) ∈ O
(γ)
0 , γ = 1, 2, we have

Δ(1)
o (k; z) > Δ(1)

o (k;m(k)) ≥ 0,

Δ(2)
o (k; z) >

(
1− μ1s1(k;m(k))

)(
1− μ3s3(k;m(k))

)
− μ1μ3s

2
13(k;m(k)) ≥ 0.

Therefore, the function Δ
(γ)
o (k; ·), γ = 1, 2 does not have zeros in (−∞,m(k)).

The assertions IV and V of the proposition are proved similarly. �

Proof of the Theorem 1. 1. Let z < m(k). According to the statements I and II of the Proposition 3,
we have

Δ(1)
e (k; ·) =

{
has a single zero if (μ0, μ2) ∈ E

(1)
1 ,

has only two zeros if (μ0, μ2) ∈ E
(1)
2 ,
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Δ(2)
e (k; ·) =

{
has a single zero if (μ1, μ3) ∈ E

(2)
1 ,

has only two zeros if (μ1, μ3) ∈ E
(2)
2 .

By the Lemma 1, taking into account the representations (3)–(6) and statement 1 of the Theorem 1,

the operator hμ,e(k) has α+ β, α, β = 1, 2 eigenvalues for (μ0, μ2) ∈ E
(1)
α and (μ1, μ3) ∈ E

(2)
β .

2. Let z < m(k). By the statements III–V of the Proposition 3, we have

Δ(1)
o (k; ·) =

{
has no zeros if (μ0, μ2) ∈ O

(1)
0 ,

has a single zero if (μ0, μ2) ∈ O
(1)
1 ,

Δ(2)
o (k; ·) =

⎧⎪⎨
⎪⎩

has no zeros if (μ1, μ3) ∈ O
(2)
0 ,

has a single zero if (μ1, μ3) ∈ O
(2)
1 ,

has only two zeros if (μ1, μ3) ∈ O
(2)
2 .

The statement 2 of Theorem 1 follows from the Lemma 1. �

Proof of the Theorem 2. Let m = m1 = m2 and k = ±π
2 . In this case, the function Ek(·) does

not depend on p ∈ T, that is, Ek(p) = m(k) = 2
m . This implies c02(k; z) = c13(k; z) = s13(k; z) = 0.

Elementary calculations show that the functions Δe(k; ·) and Δo(k; ·), determined by (4), have the forms

Δe(k; z) =
3∏

n=0

φn(k; z) and Δo(k; z) =
3∏

l=1

ψl(k; z),

where

φ0(k; z) = 1− μ0
2πm

2− zm
, φn(k; z) = ψn(k; z) = 1− μn

πm

2− zm
, n = 1, 2, 3.

Due to the continuity and monotonicity of the function φn(k; ·)
(
resp. ψl(k; ·)

)
, taking into account the

equalities

lim
z→ 2

m
−0

φn(k; z) = −∞, lim
z→−∞

φn(k; z) = 1

(
resp. lim

z→ 2
m
−0

ψl(k; z) = −∞, lim
z→−∞

ψl(k; z) = 1

)
,

we conclude that the function φn(k; ·)
(
respectively, ψl(k; ·)

)
has a unique zero in (−∞,m(k)).

Therefore, the function Δe(k; ·)
(
respectively, Δo(k; ·)

)
has four zeros z(0)e (μ0) =

2
m − 2πμ0, z

(n)
e (μn) =

2
m − πμn, n = 1, 2, 3

(
resp. three zeros z(l)o (μl) =

2
m − πμl, l = 1, 2, 3

)
in the interval (−∞,m(k)).

According to the Lemma 1, we obtain the proof of the assertion of the Theorem 2. �

The proof of the Theorem 3 follows from the Lemma 1, Proposition 3 and Theorems 1, 2.
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