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Abstract—In this article, a nonlocal boundary value problem for a fourth order partial differential
equation is solved. The method of separation of variables is used. The solution is constructing in the
form of Fourier series. Theorems on the existence and uniqueness of the solution to the problem are
proved.
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1. INTRODUCTION

A nonlocal problem for a fourth order differential equation is solved for the case, when initial and final
conditions are on the higher-order derivatives over the second argument y, i.e. the order of conditions
are exceeding the order of the given differential equation. A. N. Tikhonov was the first who studied the
problem of high order derivatives on a part of the domain boundary. In [1], for the homogeneous heat
equation, he was investigated the problem with the following conditions

∞∑
k=0

ak
∂ku

∂xk
(0, t) = f(t), u(x, 0) = 0

in domain (0 < x < ∞, t > 0). In [2], A. V. Bitsadze was investigated in n-dimensional bounded
domain D the problem

Δu(x) = 0,
dmu

dvm
= f(x), x ∈ D

and proved its Fredholm property. Boundary value problems with boundary conditions containing
higher order derivatives for the partial differential equations were studied in the works of I. I. Bavrin
[3], V. V. Karachik and B. Kh. Turmetov [4], V. B. Sokolovsky [5] and others. Boundary value problems
for many kind of higher order partial differential equations were studied in the works of many authors
(see, for example [6–18]).

The mixed problem for the heat conduction equation with initial conditions on the higher order
derivatives was studied in [19], and the mixed problem for the vibrating string equation with initial
conditions on the higher order derivatives was studied in [20]. Mixed problems for the fourth order
differential equations were studied, for example, in [21–29] and in other publications. The most complete
bibliography on these issues could be found in [21].
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2. FORMULATION OF THE PROBLEM

In this article, in the domain Ω = {(x, y) : 0 < x < p, 0 < y < q} we consider the following differen-
tial equation

∂2u

∂y2
− ∂4u

∂x4
= f(x, y), (1)

where f(x, y) is a given continuous function in Ω = {(x, y) : 0 ≤ x ≤ p, 0 ≤ y ≤ q}.

Problem A. Find a solution u(x, y) ∈ C4,k+1
x,y (Ω) to the differential equation (1) with conditions

u(0, y) = 0, u(p, y) = 0, 0 ≤ y ≤ q, (2)

uxx(0, y) = 0, uxx(p, y) = 0, 0 ≤ y ≤ q, (3)

∂ku

∂yk

∣∣∣∣
y=0

=
∂ku

∂yk

∣∣∣∣
y=q

, 0 ≤ x ≤ p, (4)

∂k+1u

∂yk+1

∣∣∣∣
y=0

=
∂k+1u

∂yk+1

∣∣∣∣
y=q

, 0 ≤ x ≤ p, (5)

where 1 ≤ k is a fixed natural number.

3. UNIQUENESS OF THE SOLUTION TO PROBLEM A

We will prove that the following theorem is true.
Theorem 1. A solution to Problem A is unique, if it exists.
Proof. We suppose that f(x, y) = 0 in Ω. Let us show that u(x, y) = 0 in Ω. Following [30], we

consider the following integral

αn(y) =

p∫
0

u(x, y)Xn(x)dx, 0 ≤ y ≤ q, (6)

with eigenfunctions

Xn(x) =

√
2

p
sinλnx, n = 1, 2, ... (7)

and eigenvalues λn = nπ
p , n = 1, 2, ... We note that the eigenfunctions (7) form a complete orthonormal

system in L2(0, p). Differentiating the function (6) twice in y, from the following homogeneous equation
uyy − uxxxx = 0, we find

α′′
n(y) =

p∫
0

uyy(x, y)Xn(x)dx or α′′
n(y) =

p∫
0

uxxxx(x, y)Xn(x)dx. (8)

Integrating the right-hand side of (8) by parts fourth times, we obtain

α′′
n(y)− λ4

n αn(y) = 0. (9)

The general solution of the countable system of second order ordinary differential equation (9) is written
as

αn(y) = an e
λ2
ny + bn e

−λ2
ny, (10)

where an and bn are arbitrary constants. We differentiate the presentation (10) k and k + 1 times over y:

α(k)
n (y) = (λ2

n)
k an e

λ2
ny + (−λ2

n)
k bn e

−λ2
ny,

α(k+1)
n (y) = (λ2

n)
k+1 an e

λ2
ny + (−λ2

n)
k+1 bn e

−λ2
ny.
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Using the formulas (6) and (7), the conditions (4) and (5) we rewrite as

α(k)
n (y)

∣∣∣
y=0

= α(k)
n (y)

∣∣∣
y=q

, 0 ≤ x ≤ p,

α(k+1)
n (y)

∣∣∣
y=0

= α(k+1)
n (y)

∣∣∣
y=q

, 0 ≤ x ≤ p.

By virtue of last two conditions, for the unknown coefficients an and bn we obtain an = 0, bn = 0. Then
from the presentation (10) it follows that αn(y) = 0. Consequently, from the presentation (6) we obtain

p∫
0

u(x, y)Xn(x)dx = 0.

Since Xn(x), n = 1, 2, ... is the complete orthonormal system in L2(0, p), then u(x, y) = 0 almost
everywhere in Ω. From the inclusion u(x, y) ∈ C4,k+1

x,y (Ω) it follows that u(x, y) ≡ 0 in Ω. Theorem 1 is
proved. �

4. THE EXISTENCE OF A SOLUTION TO PROBLEM A

Taking the boundary value conditions (2) and (3) into account, we will seek the solution to equation
(1) in the form of Fourier series

u(x, y) =
∞∑
n=1

un(y)Xn(x), (11)

where eigenfunctions Xn(x) defines from the (7). We also expand the function f(x, y) in a Fourier series
by functions Xn(x), n = 1, 2, ...:

f(x, y) =
∞∑
n=1

fn(y)Xn(x), (12)

where

fn(y) =

p∫
0

f(x, y)Xn(x)dx. (13)

Substituting the Fourier series (11) and (12) into the equation (1), we obtain
∞∑
n=1

[
u′′n(y)Xn(x)− un(y)λ

4
nXn(x)

]
=

∞∑
n=1

fn(y)Xn(x).

Hence, we have the second order countable system of ordinary differential equations

u′′n(y)− λ4
nun(y) = fn(y).

The general solution of this system has the following form

un(y) = an(0) e
λ2
ny + bn(0) e

−λ2
ny +

1

λ2
n

y∫
0

sinhλ2
n(y − τ) fn(τ)dτ, (14)

where an(0) and bn(0) are the unknown constants.
It is easy to verify that from the presentation (14) we obtain

u(k)n (y) = (λ2
n)

k an(0) e
λ2
ny + (−λ2

n)
k bn(0) e

−λ2
ny +

[ k−2
2

]∑
s=0

λ4s
n f (k−2−2s)

n (y)
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+ λ2(k−1)
n

y∫
0

eλ
2
n(y−τ) + (−1)k+1 e−λ2

n(y−τ)

2
fn(τ)dτ, (15)

u(k+1)
n (y) = (λ2

n)
k+1 an(0) e

λ2
ny + (−λ2

n)
k+1 bn(0) e

−λ2
ny +

[ k−2
2

]∑
s=0

λ4s
n f (k−1−2s)

n (y)

+ λ2(k−1)
n

1 + (−1)k+1

2
fn(y) + λ2k

n

y∫
0

eλ
2
n(y−τ) + (−1)k+2 e−λ2

n(y−τ)

2
fn(τ)dτ. (16)

The conditions (4) and (5) we rewrite in the form of Fourier coefficients:

u(k)n (y)
∣∣∣
y=0

= u(k)n (y)
∣∣∣
y=q

, 0 ≤ x ≤ p,

u(k+1)
n (y)

∣∣∣
y=0

= u(k+1)
n (y)

∣∣∣
y=q

, 0 ≤ x ≤ p.

Using these conditions, from the presentations (15) and (16) we have

an(0) =
1

2 (λ2
n)

k+1 (1− eλ2
nq)

[ [ k−2
2

]∑
s=0

λ4s+2
n

(
f (k−2−2s)
n (q)− f (k−2−2s)

n (0)
)
+

[ k−2
2

]∑
s=0

λ4s
n

(
f (k−1−2s)
n (q)

− f (k−1−2s)
n (0)

)
+ (λ2

n)
k−1 1 + (−1)k+1

2

(
fn(q)− fn(0)

)
+ λ2k

n

q∫
0

eλ
2
n(q−τ) fn(τ)dτ

]
, (17)

bn(0) =
(−1)k

2 (λ2
n)

k+1(1− e−λ2
nq)

[ [ k−2
2

]∑
s=0

λ4s+2
n

(
f (k−2−2s)
n (q)− f (k−2−2s)

n (0)
)
−

[ k−2
2

]∑
s=0

λ4s
n

(
f (k−1−2s)
n (q)

− f (k−1−2s)
n (0)

)
− (λ2

n)
k−1 1 + (−1)k+1

2

(
fn(q)− fn(0)

)
− λ2k

n

q∫
0

(−1)ke−λ2
n(q−τ) fn(τ)dτ

]
. (18)

Substituting the values (17) and (18) into the presentation (14), we determine the Fourier coefficients of
unknown function u (x, y):

un(y) = K0n(y)

[ k−2
2

]∑
s=0

λ4s−2k
n

[
f (k−2−2s)
n (q)− f (k−2−2s)

n (0)
]

+M0n(y)

[ [ k−2
2

]∑
s=0

λ4s−2k−2
n

(
f (k−1−2s)
n (q)− f (k−1−2s)

n (0)
)
+

1 + (−1)k+1

2λ4
n

(
fn(q)− fn(0)

)]

+
1

λ2
n

q∫
0

K1n (y, τ) fn(τ)dτ, (19)

where, if k is an even number, then

K0n(y) =
coshλ2

ny − coshλ2
n(y − q)

2(1 − coshλ2
nq)

, M0n(y) =
sinhλ2

ny − sinhλ2
n(y − q)

2(1− cosh λ2
nq)

and, if k is an odd number, then

K0n(y) =
sinhλ2

ny − sinhλ2
n(y − q)

2(1 − cosh λ2
nq)

, M0(y) =
cosh λ2

ny − cosh λ2
n(y − q)

2(1− cosh λ2
nq)

,
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K1n (y, τ ) =

{
sinhλ2

n(y−τ)+sinhλ2
n(q−y+τ)

2 (1−cosh λ2
nq)

, τ ∈ [0, y],
sinhλ2

n(q+y−τ)−sinhλ2
n(y−τ)

2 (1−cosh λ2
nq)

, τ ∈ [y, q].

Substituting the presentation (19) into the series (11), we obtain the formal solution of the Problem
A:

u(x, y) =
∞∑
n=1

Xn(x)

[
K0n(y)

[ k−2
2

]∑
s=0

λ4s−2k
n

(
f (k−2−2s)
n (q)− f (k−2−2s)

n (0)
)

+M0n(y)

( [ k−2
2

]∑
s=0

λ4s−2k−2
n

(
f (k−1−2s)
n (q)− f (k−1−2s)

n (0)
)
+

1 + (−1)k+1

2λ4
n

(
fn(q)− fn(0)

))

+
1

λ2
n

q∫
0

K1n (y, τ) fn(τ)dτ

]
, (20)

where and hereinafter
m∑
s=0

(...) = 0 for m < 0.

We need to prove the absolute and uniform convergence of the series (20) and following series

∂2u

∂y2
=

∞∑
n=1

Xn(x)

[
K0(y)

[ k−2
2

]∑
s=0

λ4s−2k+4
n

(
f (k−2−2s)
n (q)− f (k−2−2s)

n (0)
)

+M0n(y)

( [ k−2
2

]∑
s=0

λ4s−2k+2
n

(
f (k−1−2s)
n (q)− f (k−1−2s)

n (0)
)
+

1 + (−1)k+1

2

(
fn(q)− fn(0)

))
+ fn(y)

+ λ2
n

q∫
0

K1n (y, τ) fn(τ)dτ

]
, (21)

∂4u

∂x4
=

∞∑
n=1

Xn(x)

[
K0n(y)

[ k−2
2

]∑
s=0

λ4s−2k+4
n

(
f (k−2−2s)
n (q)− f (k−2−2s)

n (0)
)

+M0n(y)

( [ k−2
2

]∑
s=0

λ4s−2k+2
n

(
f (k−1−2s)
n (q)− f (k−1−2s)

n (0)
)
+

1 + (−1)k+1

2

(
fn(q)− fn(0)

))

+ λ2
n

q∫
0

K1n (y, τ) fn(τ)dτ

]
, (22)

∂ku

∂yk
=

∞∑
n=1

Xn(x)

[
K3n (y)

[ k−2
2

]∑
s=0

λ4s
n

(
f (k−2−2s)
n (q)− f (k−2−2s)

n (0)
)

+K4n (y)

[ k−2
2

]∑
s=0

λ4s−2
n

(
f (k−1−2s)
n (q)− f (k−1−2s)

n (0)
)

+K4n (y)
1 + (−1)k+1

2
λ2k−4
n

(
fn(q)− fn(0)

)
+

[ k−2
2

]∑
s=0

λ4s
n f (k−2−2s)

n (y)
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+ λ2(k−1)
n

q∫
0

K1(y, τ) fn(τ)dτ

]
, (23)

∂k+1u

∂yk+1
=

∞∑
n=1

Xn(x)

[
K4n (y)

[ k−2
2

]∑
s=0

λ4s+2
n

(
f (k−2−2s)
n (q)− f (k−2−2s)

n (0)
)

+K3n (y)

[ k−2
2

]∑
s=0

λ4s
n

(
f (k−1−2s)
n (q)− f (k−1−2s)

n (0)
)

+K3n (y)
1 + (−1)k+1

2
λ2k−2
n

(
fn(q)− fn(0)

)
+

[ k−2
2

]∑
s=0

λ4s
n f (k−1−2s)

n (y)

+
1 + (−1)k+1

2
λ2k−2
n fn(y) + λ2k

n

q∫
0

K2(y, τ) fn(τ)dτ

]
, (24)

where, if k is an even number, then

K1n (y, τ ) =

{
sinhλ2

n(y−τ)+sinhλ2
n(q−y+τ)

2(1−cosh λ2
nq)

, τ ∈ [0, y],
sinhλ2

n(q+y−τ)−sinhλ2
n(y−τ)

2(1−cosh λ2
nq)

, τ ∈ [y, q],

K2n (y, τ ) =

{
cosh λ2

n(y−τ)−cosh λ2
n(q−y+τ)

2(1−cosh λ2
nq)

, τ ∈ [0, y],
cosh λ2

n(q+y−τ)−cosh λ2
n(y−τ)

2(1−cosh λ2
nq)

, τ ∈ [y, q],

and, if k is an odd number, then

K1n (y, τ ) =

{
cosh λ2

n(y−τ)−cosh λ2
n(q−y+τ)

2(1−cosh λ2
nq)

, τ ∈ [0, y],
cosh λ2

n(q+y−τ)−cosh λ2
n(y−τ)

2(1−cosh λ2
nq)

, τ ∈ [y, q],

K2n (y, τ ) =

{
sinhλ2

n(y−τ)+sinhλ2
n(q−y+τ)

2(1−cosh λ2
nq)

, τ ∈ [0, y],
sinhλ2

n(q+y−τ)−sinhλ2
n(y−τ)

2(1−cosh λ2
nq)

, τ ∈ [y, q],

K3n (y) =
coshλ2

ny − coshλ2
n(q − y)

2 (1− cosh λ2
nq)

, K4n (y) =
sinhλ2

ny + sinhλ2
n(q − y)

2 (1 − coshλ2
nq)

.

We first estimate the functional series (20) for absolute and uniform convergence:

|u(x, y)| ≤
∞∑
n=1

[ [ k−2
2

]∑
s=0

λ4s−2k
n

∣∣∣f (k−2−2s)
n (q)− f (k−2−2s)

n (0)
∣∣∣+ [ k−2

2
]∑

s=0

λ4s−2k−2
n

∣∣∣f (k−1−2s)
n (q)

− f (k−1−2s)
n (0)

∣∣∣ + 1 + (−1)k+1

λ4
n

∣∣∣fn(q)− fn(0)
∣∣∣ + 1

λ2
n

q∫
0

∣∣∣fn(τ)∣∣∣dτ
]
. (25)

If f(x, y) ∈ C0,k−1
x,y (Ω), then the number series on the right-hand side of (25) converges. By the

Weierstrass criterion, the convergence of a numerical series implies absolute and uniform convergence
of the series (20).

Now, we will investigate the absolute and uniform convergence of the series (21)–(24). According
to the comparison criterion, if the series (24) converges, then series (21)–(23) with terms less than the
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corresponding terms of the series (24) converge absolutely and uniformly. Let us show the absolute and
uniform convergence of the series (24):

∣∣∣∣∂k+1u

∂yk+1

∣∣∣∣ ≤
∞∑
n=1

[ [ k−2
2

]∑
s=0

λ4s+2
n

∣∣∣f (k−2−2s)
n (q)− f (k−2−2s)

n (0)
∣∣∣ +

[ k−2
2

]∑
s=0

λ4s
n

∣∣∣f (k−1−2s)
n (q)

− f (k−1−2s)
n (0)

∣∣∣+ 1 + (−1)k+1

2
λ2k−2
n

∣∣∣fn(q)− fn(0) + fn(y)
∣∣∣+ [ k−2

2
]∑

s=0

λ4s
n

∣∣∣f (k−1−2s)
n (y)

∣∣∣
+ λ2k

n

q∫
0

∣∣∣K2(y, τ) fn(τ)
∣∣∣dτ

]
. (26)

We estimate the terms in the right-hand side of the series (26).

Lemma 1. Let
1) k be an even number and f(x, y) ∈ W

(2k−1,k−2)
2 (Ω), ∂2lf(0,y)

∂x2l = ∂2lf(p,y)
∂x2l = 0, l = 0, k − 1,

2) k be an odd number and f(x, y) ∈ W
(2k−3,k−2)
2 (Ω), ∂2l+1f(0,y)

∂y∂x2l = ∂2l+1f(p,y)
∂y∂x2l = 0, l = 0, k − 1.

Then the series

∞∑
n=1

[ k−2
2

]∑
s=0

λ4s+2
n

∣∣∣f (k−2−2s)
n (q)

∣∣∣ (27)

and

∞∑
n=1

[ k−2
2

]∑
s=0

λ4s+2
n

∣∣∣f (k−2−2s)
n (0)

∣∣∣ (28)

converge absolutely and uniformly in Ω.

Proof. To prove the convergence of the series (27) and (28), we use the following series:

∞∑
n=1

[ k−2
2

]∑
s=0

λ4s+2
n

∣∣∣f (k−2−2s)
n (y)

∣∣∣ = ∞∑
n=1

[
λ2
n

∣∣∣f (k−2)
n (y)

∣∣∣+ λ6
n

∣∣∣f (k−4)
n (y)

∣∣∣]+ ...

+
∞∑
n=1

⎧⎨
⎩
λ2k−2
n

∣∣∣fn(y)∣∣∣, k = 2m, m ∈ N,

λ2k−4
n

∣∣∣f ′
n(y)

∣∣∣, k = 2m+ 1, m ∈ N.
(29)

Let k be an even number. If the series
∞∑
n=1

λ2k−2
n

∣∣∣fn(y)∣∣∣ (30)

converges, then the series (29) also converges. Integrating the Fourier coefficients (13) by parts (2k− 1)
times, we have ∣∣∣fn(y)∣∣∣ = 1

λ2k−1
n

∣∣∣f (2k−1,0)
n (y)

∣∣∣, (31)

where

f (2k−1,0)
n (y) =

p∫
0

∂2k−1f(x, y)

∂x2k−1

√
2

p
sin

(
(2k − 1)

π

2
+ λnx

)
dx.
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By virtue of (31), the series (30) takes the form
∞∑
n=1

λ2k−2
n

∣∣∣fn(y)∣∣∣ = ∞∑
n=1

1

λn

∣∣∣f (2k−1,0)
n (y)

∣∣∣.
Applying Cauchy–Schwartz inequality for the sum on the right-hand side of the last equality, we obtain

∞∑
n=1

1

λn

∣∣∣f (2k−1,0)
n (y)

∣∣∣ ≤ p

π

( ∞∑
n=1

1

n2

)1/2( ∞∑
n=1

∣∣∣f (2k−1,0)
n (y)

∣∣∣2)1/2

=
p√
6

( ∞∑
n=1

∣∣∣f (2k−1,0)
n (y)

∣∣∣2)1/2

.

Applying Bessel’s inequality, we find( ∞∑
n=1

∣∣∣f (2k−1,0)
n (y)

∣∣∣2)1/2

≤
∣∣∣∣
∣∣∣∣∂2k−1f

∂x2k−1

∣∣∣∣
∣∣∣∣
L2(Ω)

< ∞.

So, we obtain
∞∑
n=1

λ2k−2
n

∣∣∣fn(y)∣∣∣ ≤ p√
6

∣∣∣∣
∣∣∣∣∂2k−1f

∂x2k−1

∣∣∣∣
∣∣∣∣
L2(Ω)

< ∞.

The convergence of series (30) for even k is proved.

Let k be an odd number. If the series
∞∑
n=1

λ2k−4
n

∣∣∣f ′
n(y)

∣∣∣ converges, then the series (29) also converges

for odd k. The proof of this assertion is similar to the proof of the convergence of series (30). Lemma 1 is
proved. �

Lemma 2. Let
1) k be an even number and f(x, y) ∈ W

(2k−3,k−1)
2 (Ω), ∂2l+1f(0,y)

∂y∂x2l = ∂2l+1f(p,y)
∂y∂x2l = 0, l = 0, k − 2,

2) k be an odd number and f(x, y) ∈ W
(2k−5,k−1)
2 (Ω), ∂2l+2f(0,y)

∂y2∂x2l = ∂2l+2f(p,y)
∂y2∂x2l = 0, l = 0, k − 3.

Then the following series

∞∑
n=1

[ k−2
2

]∑
s=0

λ4s
n

∣∣∣f (k−1−2s)
n (q)

∣∣∣, (32)

∞∑
n=1

[ k−2
2

]∑
s=0

λ4s
n

∣∣∣f (k−1−2s)
n (0)

∣∣∣ (33)

and

∞∑
n=1

[ k−2
2

]∑
s=0

λ4s
n

∣∣∣f (k−1−2s)
n (y)

∣∣∣ (34)

converge absolutely and uniformly in Ω.
Proof. The series (34) we write as following series

∞∑
n=1

[ k−2
2

]∑
s=0

λ4s
n

∣∣∣f (k−1−2s)
n (y)

∣∣∣
=

∞∑
n=1

[∣∣∣f (k−1)
n (y)

∣∣∣+ λ4
n

∣∣∣f (k−2)
n (y)

∣∣∣]+ ...+

∞∑
n=1

⎧⎨
⎩
λ2k−4
n

∣∣∣f ′
n(y)

∣∣∣, k = 2m, m ∈ N,

λ2k−6
n ·

∣∣∣f ′′
n(y)

∣∣∣, k = 2m+ 1, m ∈ N.
(35)

Let k be an even number. If the series
∞∑
n=1

λ2k−4
n

∣∣∣f ′
n(y)

∣∣∣ (36)
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converges, then the series (35) also converges. Integrating the Fourier coefficients (13) by parts (2k− 3)
times, we have the equality ∣∣∣f ′

n(y)
∣∣∣ = 1

λ2k−3
n

∣∣∣f (2k−3,1)
n (y)

∣∣∣, (37)

where

f (2k−3,1)
n (y) =

p∫
0

∂2k−2f(x, y)

∂y∂x2k−3

√
2

p
sin

(
(2k − 3)

π

2
+ λnx

)
dx.

By virtue of the formula (37), the series (36) takes the form
∞∑
n=1

λ2k−4
n

∣∣∣f ′
n(y)

∣∣∣ = ∞∑
n=1

1

λn

∣∣∣f (2k−3,1)
n (y)

∣∣∣.
Applying Cauchy–Schwartz inequality for the series on the right-hand side of the last equality, we obtain

∞∑
n=1

1

λn

∣∣∣f (2k−3,1)
n (y)

∣∣∣ ≤ p

π

( ∞∑
n=1

1

n2

)1/2( ∞∑
n=1

∣∣∣f (2k−3,1)
n (y)

∣∣∣2)1/2

=
p√
6

( ∞∑
n=1

∣∣∣f (2k−3,1)
n (y)

∣∣∣2)1/2

.

Applying Bessel’s inequality, we find
∞∑
n=1

λ2k−4
n

∣∣∣f ′
n(y)

∣∣∣ ≤ p√
6

∣∣∣∣
∣∣∣∣ ∂2k−2f

∂y∂x2k−3

∣∣∣∣
∣∣∣∣
L2(Ω)

< ∞.

The convergence of series (32)–(34) is proved for the even k.

Let k be an odd number. If the series
∞∑
n=1

λ2k−6
n

∣∣∣f ′′
n(y)

∣∣∣ converges, then the series (35) also converges

for odd k. The proof of this assertion is similar to the proof of the convergence of the series (36). Lemma 2
is proved. �

We also need in following two lemmas.

Lemma 3. We suppose that f(x, y) ∈ W
(2k−1,0)
2 (Ω), ∂2lf(0,y)

∂x2l = ∂2lf(p,y)
∂x2l = 0, l = 0, k − 1. Then

the following series
∞∑
n=1

λ2k−2
n

∣∣∣fn(q)∣∣∣, ∞∑
n=1

λ2k−2
n

∣∣∣fn(0)∣∣∣, ∞∑
n=1

λ2k−2
n

∣∣∣fn(y)∣∣∣
converge absolutely and uniformly in Ω.

Lemma . Assume that f(x, y) ∈ W
(2k+1,0)
2 (Ω), ∂2lf(0,y)

∂x2l = ∂2lf(p,y)
∂x2l = 0, l = 0, k. Then the series

∞∑
n=1

λ2k
n

∣∣∣∣
q∫

0

K2(y, τ) fn(τ) dτ

∣∣∣∣
converges absolutely and uniformly in Ω.

The proofs of these last two lemmas are similar to those of the previous two lemmas. Therefore, we
will not present their proofs here.

Theorem 2. We suppose that f(x, y) ∈ W
(2k+1,k−1)
2 (Ω), ∂2lf(0,y)

∂x2l = ∂2lf(p,y)
∂x2l = 0, l = 0, k,

∂2l+1f(0,y)
∂y∂x2l = ∂2l+1f(p,y)

∂y∂x2l = 0, l = 0, k − 1, ∂2l+2f(0,y)
∂y2∂x2l = ∂2l+2f(p,y)

∂y2∂x2l = 0, l = 0, k − 3. Then the series

(12), (20)–(24) converge absolutely and uniformly in Ω. The solution (20) satisfies the given
equation (1) and conditions (2)–(5).

Proof. By virtue of the lemmas proved that the series (20)–(24) converge absolutely and uniformly.
Subtracting the series (21) from (22), we make sure that the solution (20) satisfies differential equation
(1). The conditions (2) and (3) are satisfied due to the properties of function Xn(x). From the (23) and
(24) we make sure that the conditions (4) and (5) are satisfied. Theorem 2 is proved. �
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