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Abstract—A domain, degenerating at the initial moment of time, is considered. A boundary value
problem of heat conduction in this domain is studied. By virtue of the isotropy property, the solvability
theorems for given boundary value problem are established in weight spaces of essentially bounded
functions. The proof of the theorems is based on the solvability conditions of a nonhomogeneous
integral equation of the third kind. Using the Fourier series method, the problem splits into families
of boundary value problems. The method of representation of the solution to the boundary value
problem in the form of sum of constructed thermal potentials is used. The given problem is reduced
to the problems of solvability of integral equations. In addition, the solvability theorems for the
boundary value problems are proved also for the case, when the axial symmetry property is absent.
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1. INTRODUCTION

In modern electrical devices, super-strong and ultra-weak currents are used very often, so there
is a need to study new phenomena that were not previously observed when using currents of the
normal, medium range. For example, it was experimentally established that when the contacts of the
current circuit breakers open, a liquid-metal bridge appears for a short time, which significantly affects
the erosion of the contact material [1]. In [2], a mathematical model is presented that describes the
transitional phenomena accompanying a vacuum short arc at the initial stage of contact opening. This
allows the authors to describe the evolution of the transitional short anode dominant arc, which appears
immediately after the fracture of the molten bridge.

Earlier, the boundary value problems (BVP) of heat conduction in one-dimensional degenerating
domains is studied (see [3–6]). The application of the method of thermal potentials [7] allows us to reduce
the boundary-value problem with a moving boundary to an Volterra type integral equation of the second
kind. The integral equation was singular, since the corresponding homogeneous equation (and hence
the original homogeneous boundary-value problem) had nonzero solutions [5, 6, 8, 9]. Moreover, the
method of successive approximations is not applicable to solve the integral equation in our case. So, we
have applied the Carleman–Vekua regularization method. The existence of a solution of the considered
problem is reduced to the investigation of a singular integral equation. The unique solvability of BVP
is also considered in [10, 11]. In [12], the BVP is equivalently reduced (in the meaning uniqueness and
existence of the solution) to Volterra integral equation of the second kind. Note that integral equations
with similar singularities arise in the study of BVP with loaded equations or problems with boundary
value conditions containing the derivatives [13, 14].
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In this paper, we study a two-dimensional BVP with respect to spatial variables in an inverted cone
G =

{
(x; y, t) : x2 + y2 < t2, 0 < t < T

}
for the equation

∂u(x, y, t)

∂t
= a2

(
∂2u(x, y, t)

∂x2 +
∂2u(x, y, t)

∂y2

)
(1)

on the lateral surface of the cone

u(x, y, t) = uc(x, y, t),
√

x2 + y2 = t, 0 < t < T, (2)

where uc(x, y, t) is a given function.
The BVP (1)–(2) simulates the temperature field in a plasma body of an electrical discharge between

high-voltage disconnecting contacts [15]. These contacts were initially in the closed state. Taking
into account the short duration of the process, there are no instruments that can measure the specified
temperature field. It is necessary, at least qualitatively, to evaluate the nature of the carrying out of these
thermal processes using methods of mathematical modeling.

In [16], the solvability of BVP (1), (2) in the case, when the isotropy property on an angular coordinate
holds, is studied. In other word, a BVP of heat conduction in polar coordinates is studied in [16].
The method of representation of the solution to the BVP in the form of a sum of constructed thermal
potentials is used. The problem was reduced to the study of a degenerating Abel integral equation. The
fundamental solution of the auxiliary initial-boundary value problem for the thermal potentials is studied
in [17]. In this case, the BVP for the ordinary differential equation is obtained. In [18], using the method
of the degenerate kernel, the BVP is also integrated as an ordinary differential equation.

This paper consists of an introduction, two sections, and a conclusion. In the first section, we present
results on the solvability issues for boundary value problem (1), (2) in the case of the isotropy property.
These results are stated in Theorem 2 (classes of solutions to the BVP of heat conduction in polar
coordinates) and Theorem 3 (classes of solutions to BVP (1), (2). The proofs of these theorems are
based on Theorem 1 regarding the solvability of integral equation to which the posed boundary value
problem is reduced. In [16] these results are presented without proofs. In this paper, we give a complete
proof of Theorem 3.

The second section provides a process for solving the original BVP that is a process for solving the
BVP in the absence of axial symmetry. To solve the problem, it is split into two families of BVP, for which
the solvability issues were studied in the previous section. The results of this section are formulated as
two theorems (Theorem 4 and Theorem 5).

2. SOME BACKGROUND

In this section we consider the case of the isotropy property on an angular coordinate for BVP (1),
(2). Then the BVP is reduced to an integral equation ([16]) and solvability theorems are formulated for
the obtained integral equation and the posed boundary value problem.

2.1. Reducing a Boundary Value Problem to an Integral Equation

Converting to polar coordinates in problem (1), (2) and assuming that the isotropy property is fulfilled
along the angular coordinate (case of axial symmetry), we encounter the following problem:

In the domain Ω = {(r, t) : 0 < r < t, 0 < t < T}, to find a solution to BVP:

∂u(r, t)

∂t
=

a2

r

∂

∂r

(
r
∂u(r, t)

∂r

)
, (3)

lim
r→0

u(r, t)

ln (1/r)
= u0(t), 0 < t < T, (4)

lim
r→t

u(r, t) = u1(t) ≡ uc(x, y, t)
∣∣√

x2+y2=t
, 0 < t < T. (5)

Usually, instead of condition (4), a limit relation on the boundedness of the solution is required, that
is, |u(r, t)| �= ∞ as r → 0. We assume that the solution u(r, t) has a singularity as r → 0, that is, we
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assume that u(r, t) may have some growth order as r → 0. We associate this assumption with the
property of a fundamental solution to the Laplace operator in the center of the circle. Thus, we admit the
presence of some growth property of the required solution u(r, t) to equation (3) (this will be specified
below in Theorems 2 and 3.

As is known (see [19, p. 76, Problem 1.2.2-7]), the function

G(r, ξ, t) =
ξ

2a2t
exp

{
−r2 + ξ2

4a2t

}
I0

(
rξ

2a2t

)

is a fundamental solution to equation (3), where ξ is a parameter. Iμ(η) is the modified Bessel function.
Using Green’s formula as in [7, p. 476–480], we write the integral representation of the solution to
equation (3). Satisfying this solution representation to conditions (4), (5), we get a degenerating Abel
integral equation (an integral equation of the third kind) [16]:

tϕ(t)− λ√
π

t∫
0

1√
t− τ

ϕ(τ)dτ = f(t), 0 < t < T, λ =
a

2
, (6)

where the right-hand side f(t) of equation (6) contains a unknown function ϕ(t).
Equations of the form (6) have been the subject of study for many authors. Here, we indicate only

the following papers [20–23] and note the numerous studies that are cited in them. In [22], the unique
solvability of the integral equation is established, under the assumption that a order of degeneracy is
strictly less than unity when degeneracy is determined by the degree of the independent variable t.
In ‘[20], an operator acts in the space of quadratically summable functions. Necessary and sufficient
conditions are established for representation of the operator as the sum of an operator of multiplication
by a bounded function and an integral operator. This sum is called the integral operator of the third kind.

In [21, 23–25] some Volterra-type integral equations are considered. Kernels of the integral operators
do not have singularities. Kernels of the integral operators with singularities are considered in [5].

The order of degeneracy in equation (6) is equal to unity, and the kernel of the integral operator
has a weak singularity and determines the Abel integral operator. We had studied [16] the solvability
of equation (6) in the weight class of essentially bounded functions. In general, when studying BVP,
approach based on reduction the problem to integral equations is used often. In [26] the existence of a
regular solution of the Gellerstedt spectral problem is also proved by the method of integral equations.

2.2. Solvability Theorems

The theorem on the solvability of integral equation (6) is valid:

Theorem 1. Let t−1/2f(t) ∈ L∞(0, T ). Then integral equation (6) has a general solution

ϕ(t) = Cϕhom(t) + ϕpart(t) ∈ L∞((0, T ); t−1/2),

i.e. t−1/2ϕ(t) ∈ L∞(0, T ), where C = const, ϕ1hom(t) and ϕ1part(t) are solutions to homogeneous
(when f(t) ≡ 0) and nonhomogeneous integral equations (6), respectively.

In [16], using the assertion of Theorem 1, we find the class of solutions to boundary value problem
(3)–(5).

Theorem 2. Let t−1u0(t), t−1/2u1(t) ∈ L∞(0, T ). Then, BVP (3)–(5) has a general solution

u(r, t) = Cuhom(r, t) + upart(r, t) ∈ L∞(Ω; r1/2),

i.e. r1/2u(r, t) ∈ L∞(Ω), where C = const, uhom(r, t) and upart(r, t) are solutions to homogeneous
(when u0(t) ≡ 0, u1(t) ≡ 0) and nonhomogeneous boundary value problems (3)–(5), respec-
tively.

For the axisymmetric case, the following result follows from Theorem 2.
Theorem 3. Let t−1/2u1(t) ≡ t−1/2uc(x, y, t)

∣∣√
x2+y2=t

∈ L∞(0, T ). Then, BVP (1), (2) has a

general solution

u(x, y, t) = Cuhom(x, y, t) + upart(x, y, t) ∈ L∞(G; (x2 + y2)1/4),
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i.e. (x2 + y2)1/4u(x, y, t) ∈ L∞(G), where C = const, uhom(x, y, t) and upart(x, y, t) are solutions to
(homogeneous, when uc(x, y, t) ≡ 0) nonhomogeneous boundary value problems (1), (2).

The proofs of these two theorems are based on Theorem 1 regarding the solvability of integral
equation (6).

2.3. Proof of Solvability Theorem for Integral Equation (6)

We study solvability issues in the class of essentially bounded functions ψ(t) ∈ L∞(0;+∞) for the
following degenerating Abel’s equation (integral equation of the third kind):

tψ(t)− λ√
π

t∫
0

ψ(τ)dτ√
t− τ

= F (t), t > 0, (7)

where λ is a given positive constant and F (t) is a given function such that F (t)/t ∈ L∞(0;+∞).
2.3.1. Solution to a homogeneous integral equation for (7). The homogeneous integral

equation

tψ(t)− λ√
π

t∫
0

1√
t− τ

ψ(τ)dτ = 0, ψ(t) ∈ L∞(0;+∞), (8)

along with a trivial solution has a nontrivial solution

ψhom(t) =
λ√
π
t−3/2 exp

{
−λ2

t

}
, t > 0, (9)

up to a constant factor. Indeed, applying the Laplace transform to equation (8), we obtain

−dψ̂hom(p)

dp
− λ

1
√
p
ψ̂hom(p) = 0, (10)

where ψ̂hom(p) is the Laplace image of the function ψhom(t).
A solution to equation (10) is determined by the formula

ψ̂hom(p) = exp {−2λ
√
p} . (11)

A simple substitution shows that function (9) really satisfies the homogeneous integral equation (8).
2.3.2. Particular solution to the nonhomogeneous integral equation (7): Construction of

the resolvent. Applying the Laplace transform to equation (7), we obtain

−dψ̂part(p)

dp
− λ

1
√
p
ψ̂part(p) = F̂ (p), (12)

where ψ̂part(p) is the Laplace image of the function ψpart(t). Using the solution (11) of homogeneous
differential equation (10), by the method of variation of a constant we find a particular solution ψ̂part(p)
of the nonhomogeneous equation (12):

ψ̂part(p) = C(p) exp {−2λ
√
p} , (13)

where from (12), it follows that

C(p) =

∞∫
p

F̂ (q) exp {2λ√q} dq. (14)

Hence, from (13), (14), for the Laplace image of the particular solution, we obtain

ψ̂part(p) =

∞∫
0

R̂∗(p, τ)F (τ)dτ, (15)
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where

F̂ (q) =

∞∫
0

F (τ) exp {−qτ} dτ,

R̂∗(p, τ) = exp {−2λ
√
p}

∞∫
p

exp {−qτ + 2λ
√
q} dq = exp {−2λ

√
p} Î(p, τ). (16)

Integrating in parts and using [27, p. 336, formula 3.322.1] for Î(p, τ), we obtain

Î(p, τ) =

∞∫
p

exp {−qτ + 2λ
√
q} dq

=
exp

{
−τp+ 2λ

√
p
}

τ
+ λ

√
π
exp

{
λ2/τ

}
τ3/2

erfc
(√

τp− λ/
√
τ
)
. (17)

From (16), (17), we obtain

R̂∗(p, τ) =
exp {−τp}

τ
+ R̂(p, τ), (18)

where

R̂(p, τ) = exp {−2λ
√
p}
[
λ
√
π exp

{
λ2/τ

}
τ3/2

erfc
(√

τp− λ/
√
τ
)]

. (19)

We now find an original for the image R̂(p, τ) (19). Obviously, the required original can be found as a
convolution of originals of the following two images exp

{
−2λ

√
p
}

and Ê(p, τ) = erfc
(√

τp− λ/
√
τ
)
.

Applying Jordan’s Lemma ([28, p. 410–412], we have

Ê(p, τ)÷ E(t, τ) =
1

2πi

a+i∞∫
a−i∞

exp{pt}erfc
(√

τp− λ/
√
τ
)
dp

=

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
I : p = xe−iπ = −x, II : p = xeiπ = −x,

√
p = −i

√
x,

√
p = i

√
x

dp = −dx dp = −dx

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
= lim

r→0
lim

R→∞

[
1

2πi

r∫
R

exp {−xt} erfc
(
−i

√
τx− λ/

√
τ
)
(−dx)

+
1

2πi

R∫
r

exp {−xt} erfc
(
i
√
τx− λ/

√
τ
)
(−dx)

]

=
i

2π

∞∫
0

exp {−xt}
[
erfc

(
i
√
τx− λ/

√
τ
)
− erfc

(
−i

√
τx− λ/

√
τ
)]

dx

=

∣∣∣∣∣∣
∣∣∣∣∣∣

the replacementz =
√
x,

we use([29, V ol. 2, formula1.5.3.10])

∣∣∣∣∣∣
∣∣∣∣∣∣
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=
i

π

∞∫
0

z exp
{
−tz2

} [
erfc

(
i
√
τz − λ/

√
τ
)
− erfc

(
−i

√
τz − λ/

√
τ
)]

dz

=
i

π

[
− i

√
τ

2t
√
t− τ

exp

{
− λ2t

τ(t− τ)

}
erf
(
z
√
t− τ − iλ√

t− τ

)

− 1

2t
exp

{
−tz2

}
erfc

(
zi
√
τ − λ√

τ

)
− i

√
τ

2t
√
t− τ

exp

{
− λ2t

τ(t− τ)

}

× erf
(
z
√
t− τ +

iλ√
t− τ

)
+

1

2t
exp

{
−tz2

}
erfc

(
−zi

√
τ − λ√

τ

)]∣∣∣∣∣
z=∞

z=0

=

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
in the last relation, the terms witherfc(·) are excluded,

since first, as z → ∞, they become equal to zero

= and second, as z → 0, they are mutually annihilating terms

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
=

√
τ

πt
√
t− τ

exp

{
− λ2t

τ(t− τ)

}
−

√
τ

2πt
√
t− τ

exp

{
− λ2t

τ(t− τ)

}

×
[

erf
(
− iλ√

t− τ

)
+ erf

(
iλ√
t− τ

)]
=

√
τ

πt
√
t− τ

exp

{
− λ2t

τ(t− τ)

}
.

Hence (according to the replacement z1 = iz) the following equality is true:

erf(−iz) + erf(iz) =
2i√
π

⎡
⎣ −z∫

0

exp
{
z21
}
dz1 +

z∫
0

exp
{
z21
}
dz1

⎤
⎦ = 0.

To obtain the resolvent of the studied equation, we write the above formulas for inverting the images
of the Laplace transform:

10. exp {−τp} ÷ δ(t − τ),

20. exp
{
−2λ

√
p
}
÷

λ exp
{
−λ2/t

}
√
πt3/2

,

30.
λ
√
π

τ3/2
exp

{
λ2/τ

}
erfc

(√
τp− λ/τ3/2

)
÷ λ√

πtτ
√
t− τ

exp

{
− λ2

t− τ

}
.

In addition, from (18), (19) and 10–30, we obtain

R∗(t, τ) =
δ(t− τ)

τ
+R(t, τ), (20)

where

R(t, τ) =
λ2

πτ

t∫
τ

exp
{
− λ2

t−ς

}
(t− ς)3/2

·
exp

{
− λ2

ς−τ

}
ς
√
ς − τ

dς =

∣∣∣∣
∣∣∣∣a replacementz =

√
ς − τ

t− ς

∣∣∣∣
∣∣∣∣

=
1

tτ

{
2λ2

π(t− τ)
exp

{
− 2λ2

t− τ

} ∞∫
0

[
1 +

(
1− τ

t

)(
z2 +

τ

t

)−1
]
exp

⎧⎨
⎩− λ2

t− τ

(
z2 +

1

z2

)}
dz

⎫⎬
⎭

=
1

tτ

[
λ√

π(t− τ)
exp

{
− 4λ2

t− τ

}
+

2λ2

πt
exp

{
− 2λ2

t− τ

}
g(t, τ)

]
. (21)

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 42 No. 15 2021



ON THE SOLVABILITY OF THE DIRICHLET PROBLEM 3721

We calculate in (21) the function g(t, τ):

g(t, τ) =

∞∫
0

1

z2 + τ
t

exp

{
− λ2

t− τ

(
z2 +

1

z2

)}
dz =

∣∣∣∣a replacementx = z2
∣∣∣∣

=

∞∫
0

1

2
√
x
(
x+ τ

t

) exp{− λ2

t− τ

(
x+

1

x

)}
dx

=
1

2

π
√
t√
τ

exp

{
λ2

t− τ

(
τ

t
+

t

τ

)}
erfc

[
λ√
t− τ

(√
τ

t
+

√
t

τ

)]
. (22)

Here, we have used formula 2.3.16.4 from [30, Vol. 1, p. 277]. Substituting (22) into formula (21), from
(20) we obtain

R∗(t, τ) =
1

t

[
δ(t− τ) +

λ

tτ
√
π(t− τ)

exp

{
− 4λ2

t− τ

}

+
λ2

√
tτ3/2

exp

⎧⎨
⎩ λ2

t− τ

(√
τ

t
−
√

t

τ

)2
⎫⎬
⎭ erfc

{
λ√
t− τ

(√
τ

t
+

√
t

τ

)}]
. (23)

According to relations (15), (23), we obtain the following result.
A particular solution ψpart(t) of the nonhomogeneous integral Abel equation (7) is determined by the

relation

ψpart(t) =
F (t)

t
+

t∫
0

[τR(t, τ)]
F (τ)

τ
dτ, (24)

where R(t, τ) and a resolvent R∗(t, τ) are defined according to the relations (20)–(23).
2.3.3. Estimate of the resolvent. According to the formulas (21) and (23)–(24), we represent the

resolvent in the form
τR(t, τ) = τR1(t, τ) + τR2(t, τ), 0 < τ < t < ∞, (25)

where

τR1(t, τ) =
λ√

πt2
√
t− τ

exp

{
− 4λ2

t− τ

}
;

τR2(t, τ) =
λ2

t3/2τ1/2
exp

⎧⎨
⎩ λ2

t− τ

(√
τ

t
−
√

t

τ

)2
⎫⎬
⎭ erfc

{
λ√
t− τ

(√
τ

t
+

√
t

τ

)}
.

The following result takes place.
For all {(t, τ) : 0 < τ < t < ∞}, the following estimates hold:

τR1(t, τ) ≤
Cλ√

π(t− τ)3/2
exp

{
− 2λ2

t− τ

}
, 0 < τ < t < ∞,

τR2(t, τ) ≤
Cλ√

π(t− τ)3/2
exp

{
− 2λ2

t− τ

}
, 0 < τ < t < ∞,

for resolvent τR(t, τ) (25). Indeed,

τR1(t, τ) =
λ√

π · t2
√
t− τ

exp

{
− 4λ2

t− τ

}
≤ λ√

π · (t− τ)2
√
t− τ

× exp

{
− 2λ2

t− τ
− 2λ2

t− τ

}
≤ C1λ√

π(t− τ)3/2
exp

{
− 2λ2

t− τ

}
,
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where C1 = const and

τR2(t, τ) =
λ2

t3/2τ1/2
exp

⎧⎨
⎩ λ2

t− τ

(√
τ

t
−
√

t

τ

)2
⎫⎬
⎭ erfc

{
λ√
t− τ

(√
τ

t
+

√
t

τ

)}

=
λ2

t3/2τ1/2
exp

{
λ2

t− τ

(
(t+ τ)2

tτ
− 4

)}
erfc

{
λ(t+ τ)√
tτ(t− τ)

}

=
λ2

t3/2τ1/2
exp

{
− 4λ2

t− τ

}
exp

{
λ2

t− τ

(t+ τ)2

tτ

}
erfc

{
λ(t+ τ)√
tτ(t− τ)

}

=
λ2

t3/2τ1/2
√
π
exp

{
− 4λ2

t− τ

} √
tτ(t− τ)

λ(t+ τ)
E

(
λ(t+ τ)√
tτ(t− τ)

)
,

where E(α) =
√
παerfc(α) exp(α2).

Here, we need to consider two kinds of features of the function R2(t, τ): first, as τ → t and t > 0, and
second, as t → 0. In both cases, we use the asymptotics ([7, p. 718]:

erfc(α) ≈
exp

{
−α2

}
√
πα

as α → ∞. (26)

Since by virtue of (26), E(α) → 1, α → +∞, and |E(α)| < M = const ∀τ > 0, t > 0. Then,

τR2(t, τ) ≤
Mλ√
π

1

t(t+ τ)
exp

{
− 2λ2

t− τ
− 2λ2

t− τ

}

≤ Mλ√
π

1

(t− τ)2
exp

{
− 2λ2

t− τ
− 2λ2

t− τ

}
≤ C2λ√

π(t− τ)3/2
exp

{
− 2λ2

t− τ

}
,

where C2 = const.
The application of Lemmas 2.1–2.4 from [16] completes the proof of Theorem 3.

3. FURTHER RESULTS: BVP (1), (2) IN A DEGENERATING DOMAIN IN THE CASE
OF ANISOTROPY OF THE HEAT CONDUCTION ALONG AN ANGULAR COORDINATE

In this case, boundary value problem (3)–(5) takes the following form: in the domain Ω1 = {(r, θ, t) :
0 < r < t, 0 ≤ θ < 2π, 0 < t < T}, find a solution to the equation

∂u(r, θ, t)

∂t
= a2

[
1

r

∂

∂r

(
r
∂u(r, θ, t)

∂r

)
+

1

r2
∂2u(r, θ, t)

∂θ2

]
(27)

satisfying the boundary conditions

lim
r→0

u(r, θ, t)

ln (1/r)
= u0(t), 0 ≤ θ < 2π, 0 < t < T, (28)

lim
r→t

u(r, θ, t) = u1(θ, t) ≡ uc(x, y, t)
∣∣√

x2+y2=t
, {θ, t} ∈ ∂Ω1, (29)

where ∂Ω1 is a lateral surface of the cone.
We apply the Fourier series method (variable separation method) to boundary value problem (27)–

(29). So, we seek the required solution u(r, θ, t) in the form

u(r, θ, t) = U(r, t)Θ(θ). (30)

Substituting (30) into (27)–(29), we obtain

r2

a2

[
∂U(r, t)

∂t
− a2

r

∂

∂r

(
r
∂U(r, t)

∂r

)]/
U(r, t) =

d2Θ(θ)

dθ2

/
Θ(θ) = −λ. (31)
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The solution to the spectral problem:

d2Θ(θ)

dθ2
= −λΘ(θ), Θj(0) = Θj(2π), j = 0, 1 (32)

is a system of eigenfunctions and eigenvalues:

Θn(θ) = exp{inθ}, λn = n2, n ∈ Z ≡ {0,±1,±2, ...}. (33)

As a result, we obtain

u(r, θ, t) =
∑
n∈Z

Un(r, t)Θn(θ). (34)

Furthermore, taking into account (31)–(34) from (27)–(29), we obtain a family of boundary value
problems for the heat equation:

∂vn(r, t)

∂t
=

a2

r

∂

∂r

(
r
∂vn(r, t)

∂r

)
, n ∈ Z, (35)

lim
r→0

v0(r, t)

ln (1/r)
= u0(t),

vn(r, t)

ln (1/r)
= 0, n ∈ Z \ {0}, 0 < t < T, (36)

lim
r→t

vn(r, t) = v1n(t), n ∈ Z, 0 < t < T, (37)

where

vn(r, t) = Un(r, t) exp

{
a2n2

r2
t

}
,

v1n(t) = u1n(t) exp

{
a2n2

t

}
, u1n(t) =

2π∫
0

u1(θ, t) exp{inθ}dθ.

Thus, we obtain a family of boundary value problems (35)–(37), each of which is a boundary value
problem of the form (3)–(5). The solvability of these boundary value problems has already been
considered (Theorems 2 and 3). According to the assertion of Theorem 2, we find their solutions
{vn(r, t), n ∈ Z}, and further, using (33)–(34), we formally construct the series

u(r, θ, t) =
∑
n∈Z

Un(r, t) exp{inθ} =
∑
n∈Z

vn(r, t) exp

{
−a2n2

r2
t+ inθ

}
. (38)

According to Theorem 2, the solutions of boundary value problems (35)–(37) satisfy the estimate

vn(r, t) ≤ Cr−1/2, where the constant C is independent of n,

and a series (formula 5.4.11.2 from [30, p. 585]):∑
n∈Z

exp

{
−a2n2

r2
t+ inθ

}

converges for ∀t > 0. Thus, due to the convergence of series (38) and according to the assertion of
Theorem 2, we obtain the following estimate:

|u(r, θ, t)| ≤ Cr−1/2for∀{r, θ, t} ∈ Ω1.

Remark. For equation (27), the fundamental solution is a function [19, p. 181, Problem 2.2.2-1]:

G1(r, ξ, θ, t) =
ξ

2a2t
exp

{
−r2 + ξ2 − 2rξ cos θ

4a2t

}
.

Then, for its averaging over the angular coordinate with weights

{sin(nθ), n ∈ {1, 2, 3, ...}} and {cos(nθ), n ∈ {0, 1, 2, 3, ...}},
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the following relations are valid:

1

2π

2π∫
0

G1(r, ξ, θ, t) sin(nθ)dθ = 0, n ∈ {1, 2, 3, ...}, (39)

1

π

π∫
0

G1(r, ξ, θ, t) cos(nθ)dθ =
ξ

2a2t
exp

{
−r2 + ξ2

4a2t

}
In

(
rξ

2a2t

)
, (40)

n ∈ {0, 1, 2, 3, ...}.
Equalities (39) follow from a property of evenness in a variable θ of the functionG1, and equalities (40)

are obtained using formula 2.5.40.3 from [30, p. 370] (in addition to the property of evenness). When
n = 0, this formula follows from the following remarkable identity: ∀η ∈ [0, 2π]

1

π

π∫
0

exp

{
rξ cos(θ − η)

2a2t

}
dθ =

1

π

π∫
0

exp

{
rξ cos θ

2a2t

}
dθ = I0

(
rξ

2a2t

)
.

Furthermore, from (39)–(40), we obtain for all n ∈ Z

1

2π

2π∫
0

G1(r, ξ, θ, t) exp{inθ}dθ =
ξ

2a2t
exp

{
−r2 + ξ2

4a2t

}
In

(
rξ

2a2t

)
. (41)

Thus, we find that each of the boundary problems (35)–(37) corresponds to its own fundamental
solution, defined by formulas (41). Using the corresponding fundamental solutions (41), we can solve
each of the BVP (35)–(37). Note that this way differs from the proof of Theorems 2 and 3. As a result,
taking into account the fact that modified Bessel functions {In(x), n = 0, 1, 2, ...} for large values of the
argument x have the same asymptotics, we can obtain the same result that is formulated below theorem.
Note that these asymptotics determine the characteristic parts of the integral equations that are usually
defined in the Carleman–Vekua regularization method.

Thus, the following theorems are proved for the case where there is no condition of axial symmetry in
the angular coordinate θ.

Theorem 4. Let t−1u0(t), t−1/2v1n(t) ∈ L∞(0, T ), n ∈ Z. Then, each of the BVP (35)–(37) has a
general solution vn(r, t) = Cvn,hom(r, t) + vn,part(r, t) ∈ L∞(Ω; r1/2), i.e. r1/2vn(r, t) ∈ L∞(Ω), n ∈
Z, where C = const, vn,hom(r, t) and vn,part(r, t) are solutions to (homogeneous, when u0(t) ≡ 0,
vn,1(t) ≡ 0) nonhomogeneous boundary value problems (35)–(37).

Theorem 5. Let t−1/2u1(arctan (y/x) , t)
∣∣√

x2+y2=t
≡ t−1/2uc(x, y, t)

∣∣√
x2+y2=t

∈ L∞(∂Ω1). Then,

BVP (1), (2) has a general solution

u(x, y, t) = Cuhom(x, y, t) + upart(x, y, t) ∈ L∞(G; (x2 + y2)1/4),

i.e. (x2 + y2)1/4u(x, y, t) ∈ L∞(G), where C = const, uhom(x, y, t) and upart(x, y, t) are solutions to
(homogeneous, when uc(x, y, t) ≡ 0) nonhomogeneous BVP (1)–(2).

4. CONCLUSION

By the axial symmetry, the initial BVP (1), (2) was reduced to the BVP (3)–(5). Furthermore, the
last problem was reduced to solving the degenerating Abel integral equation of the second kind and the
solvability of which was studied. We also noted that boundary condition (4) agrees with the found class
of solutions u(r, t) ≤ Cr−1/2, {r, t} ∈ Ω.

We studied a general case where there is no property of axial symmetry. In this case, we proved that
Theorems 4 and 5 establish the solvability of boundary value problem (1), (2). The results of this work
are a continuation of the research from the work [16].
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