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Abstract—A class of systems of nonlinear differential equations is considered. It is assumed that the
linear part of the system has constant coefficients and is exponentially dichotomous. Conditions for
the existence of periodic solutions are established and their stability is proved for small perturbations
of the coefficients of the linear part and nonlinear terms.
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1. INTRODUCTION

In the present paper, we consider systems of nonlinear differential equations

dy

dt
= Ay + f(t, y), −∞ < t < ∞, (1)

where A is (n× n)-matrix with constant elements, continuous vector-function f(t, y) satisfies the
Lipschitz condition locally with respect to y

||f(t, y1)− f(t, y2)|| ≤ L||y1 − y2||

and the following conditions

f(t+ T, y) ≡ f(t, y), ||f(t, y)|| ≤ q(1 + ||y||)ω , (2)

where q > 0 and ω ≥ 0 are constants. We assume that the linear system

dy

dt
= Ay, −∞ < t < ∞, (3)

is exponentially dichotomous (see, for example, [1]). According to the spectral criterion, this is equivalent
to the fact that the spectrum of matrix A does not intersect with the imaginary axis. Our aim is to
study conditions for the existence of T -periodic solutions to system (1) and their stability for small
perturbations of the coefficients of the linear part and nonlinear terms.

We rely on the criterion of the exponential dichotomy for autonomous systems of differential equa-
tions, established in the works by M.G. Krein (see [1], chapter 1), which is formulated in terms of the
solvability of a special problem for the Lyapunov matrix equation. Namely, the exponential dichotomy of
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system (3) is equivalent to the existence of Hermitian positive definite matrix H and matrix P , which are
the solution to the problem⎧⎪⎨

⎪⎩
HA+A∗H = −P ∗CP + (I − P )∗C(I − P ), C = C∗ > 0,

H = P ∗HP + (I − P )∗H(I − P ),

P 2 = P, PA = AP.

(4)

Various proofs of theorems from [1] (chapter 1) are contained in [2–4]. Note that using M.G. Krein’s
theorems, in the works by S.K. Godunov and A.Ya. Bulgakov, algorithms with guaranteed accuracy was
developed for solving the dichotomy problem for autonomous systems of linear differential equations (see
[2, 3] and references therein).

Using M.G. Krein’s criterion of exponential dichotomy, it is not difficult to obtain estimates for all
dichotomy parameters (see [2–4]). Based on this criterion, we will show how to establish the existence
of T -periodic solutions to systems of nonlinear equations (1) and to prove their stability under small
perturbations of the right-hand sides.

As shown in [1] (chapter 1), the exponential dichotomy of system (3) implies the existence of a unique
solution H = H∗ > 0, P to the system of matrix equations (4), while matrix H is an analog of the
Lyapunov matrix integral

H =

∞∫
0

P ∗etA
∗
CetAPds+

0∫
−∞

(I − P )∗etA
∗
CetA(I − P )ds = H+ +H− (5)

and P is a projector on the maximal invariant subspace of matrix A, corresponding to the eigenvalues
lying in the left half-plane {λ : Reλ < 0}.

Hereinafter, for simplicity, we assume that C = I and using the matrices from (5) we introduce the
following notation

νH = ||H|| ||H−1||
is the number of conditionality of matrix H ,

pH = 2
√

νH ||H||
(√

||H+||+
√

||H−||
)
. (6)

We formulate the main results.
Theorem 1. Let L > 0 be the Lipschitz constant with respect to y of vector-function f(t, y) in

the ball B(0, Y ) = {y : ||y|| ≤ Y } and the conditions be valid

pHq(1 + Y )ω < Y, pHL < 1. (7)

Then the system of equations (1) has a unique T -periodic solution in the ball B(0, Y ).

Theorem 2. Let matrix A1 satisfy the condition

||A1||pH < 1, (8)

then the system with perturbations in the coefficients

dx

dt
= (A+A1)x, −∞ < t < ∞, (9)

is exponentially dichotomous, herewith matrices A and A+A1 have the same number of eigen-
values lying in the left half-plane {λ : Reλ < 0}.

Now we consider the question of stability of T -periodic solutions to system (1) with respect to small
perturbations of the coefficients and nonlinear terms.

Let matrix function A(μ) ∈ C([−μ0, μ0]) be such that A(0) = A. We assume that the condition is
valid

||A(μ)−A||pH < 1, |μ| ≤ μ0. (10)
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Then, by Theorem 2, the system of differential equations with a parameter μ ∈ [−μ0, μ0]

dx

dt
= A(μ)x, −∞ < t < ∞,

is exponentially dichotomous. For this system, we write out an analog of problem (4):⎧⎪⎨
⎪⎩
HA(μ) +A∗(μ)H = −P∗P + (I −P)∗(I − P),

H = P∗HP + (I − P)∗H(I − P),

P2 = P, PA(μ) = A(μ)P.

(11)

This problem, like (4), has a unique solution H(μ) = H∗(μ) > 0, P(μ). Obviously, its solution has the
same properties as the solution to problem (4) and, in particular, for matrix H(μ), an analog of formula
(5) is valid for C = I

H(μ) =

∞∫
0

P∗(μ)etA
∗(μ)etA(μ)P(μ)ds

+

0∫
−∞

(I − P(μ))∗ etA
∗(μ)etA(μ) (I −P(μ)) ds = H+(μ) +H−(μ). (12)

Theorem 3. Under condition (10), the convergence takes place

||H(μ)−H|| → 0, ||P(μ) − P || → 0, μ → 0. (13)

By analogy with (6), we introduce the notation

ν(H(μ)) = ||H(μ)|| ||H−1(μ)||,

p(H(μ)) = 2
√

ν(H(μ))||H(μ)||
(√

||H+(μ)||+
√

||H−(μ)||
)
. (14)

We consider the system of nonlinear differential equations with a parameter μ ∈ [−μ0, μ0]

dx

dt
= A(μ)x+ f̂(t, x, μ), −∞ < t < ∞, (15)

where matrix function A(μ) is specified above, continuous vector-function f̂(t, y, μ) satisfies the
Lipschitz condition locally with respect to y

||f̂(t, y1, μ)− f̂(t, y2, μ)|| ≤ L||y1 − y2||, −∞ < t < ∞, μ ∈ [−μ0, μ0],

the Lipschitz constant L > 0 is specified in Theorem 1, while

f̂(t, y, 0) ≡ f(t, y), f̂(t+ T, y, μ) ≡ f̂(t, y, μ), ||f̂(t, y, μ)|| ≤ q(1 + ||y||)ω ,

and constants q > 0, ω ≥ 0 are specified in (2).

By virtue of the definition of constant (15), it follows from Theorem 3 that there exists μ1 ≤ μ0 such
that, for μ ∈ [−μ1, μ1], the conditions of the form (7) are valid

p(H)q(1 + Y )ω < Y, p(H)L < 1.

Then, as in Theorem 1, the system of equations (15) has a unique T -periodic solution x(t, μ) in the ball
B(0, Y ).

Theorem 4. Let the conditions of Theorem 1 be satisfied and y(t) be T -periodic solution to
system (1) in the ball B(0, Y ). Then the convergence takes place

max
t∈[0,T ]

||x(t, μ)− y(t)|| → 0, μ → 0.
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2. ESTIMATES OF SOLUTIONS TO LINEAR SYSTEMS

This section contains auxiliary statements that will be used in the proofs of theorems.
We consider the boundary value problem on the whole axis for the system of linear differential

equations ⎧⎪⎨
⎪⎩

dy

dt
= Ay + ϕ(t), −∞ < t < ∞,

sup
−∞<t<∞

||y(t)|| < ∞.
(16)

Due to the exponential dichotomy of system (3), this problem has a unique solution y(t) ∈ C1(R) for
any bounded continuous vector-function ϕ(t), herewith it can be written in the integral form

y(t) =

t∫
−∞

e(t−s)APϕ(s)ds −
∞∫
t

e(t−s)A(I − P )ϕ(s)ds. (17)

The following lemma is valid.
Lemma 1. The estimate holds

||y(t)|| ≤ pH sup
ξ∈R

||ϕ(ξ)||, −∞ < t < ∞. (18)

Proof. First, by analogy with [5], we obtain the following inequalities

||etAP ||2 ≤ ||H−1|| ||H+|| exp
(
− t

||H||

)
, t ≥ 0, (19)

||e−tA(I − P )||2 ≤ ||H−1|| ||H−|| exp
(
− t

||H||

)
, t ≥ 0. (20)

Using the solution H , P to system (4), obviously, we have the identity

d

dt
〈HetAPv, etAPv〉+ 〈etAPv, etAPv〉 ≡ 0, v ∈ C

n, −∞ < t < ∞.

Since

〈HetAPv, etAPv〉 ≤ ||H|| ||etAPv||2,
then

d

dt
〈HetAPv, etAPv〉+ 1

||H|| 〈HetAPv, etAPv〉 ≤ 0.

Therefore,

〈HetAPv, etAPv〉 ≤ exp

(
− t

||H||

)
〈HPv, Pv〉, t ≥ 0,

and taking into account the equality 〈HPv, Pv〉 = 〈H+Pv, Pv〉, we obtain (19). Estimate (20) is proved
in the same way.

Using inequalities (19), (20) and formula (17), we have

||y(t)|| ≤
√
||H−1|| ||H+||

⎛
⎝

t∫
−∞

exp

(
− t− s

2||H||

)
ds

⎞
⎠ sup

ξ∈R
||ϕ(ξ)||

+
√

||H−1|| ||H−||

⎛
⎝

∞∫
t

exp

(
t− s

2||H||

)
ds

⎞
⎠ sup

ξ∈R
||ϕ(ξ)||

= 2
√

||H−1||||H||
(√

||H+||+
√

||H−||
)
sup
ξ∈R

||ϕ(ξ)||.
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By virtue of the definition of constant (6), from this inequality, estimate (18) follows.

Lemma is proved. �

When proving Theorem 2, we will use the theorem on the unique solvability of the system

dy

dt
= Ay + ϕ(t), −∞ < t < ∞, (21)

in the Sobolev space W 1
2 (R) for any ϕ(t) ∈ L2(R) (see, for example, [4, 6]). In the following lemma, we

will give estimates for the L2-norm of the solution y(t) ∈ W 1
2 (R) to equation (21).

Lemma 2. The estimate holds

||y(t), L2(R)|| ≤ pH ||ϕ(t), L2(R)||. (22)

Proof. By virtue of the embedding theorem of the Sobolev space W 1
2 (R) in C(R), the solution to

system (21) from W 1
2 (R) is the solution to problem (16). Therefore, for ϕ(t) ∈ L2(R), the solution has

the form (17).

Using the Heaviside function θ(t), formula (17) can be written in the following form

y(t) =

∞∫
−∞

θ(t− s)e(t−s)APϕ(s)ds −
∞∫

−∞

θ(s− t)e(t−s)A(I − P )ϕ(s)ds.

Applying the Minkowski and Young inequalities, we have

||y(t), L2(R)|| ≤

∣∣∣∣∣∣
∣∣∣∣∣∣

∞∫
−∞

||θ(t− s)e(t−s)AP || ||ϕ(s)||ds, L2(R)

∣∣∣∣∣∣
∣∣∣∣∣∣

+

∣∣∣∣∣∣
∣∣∣∣∣∣

∞∫
−∞

||θ(s− t)e(t−s)A(I − P )|| ||ϕ(s)||ds, L2(R)

∣∣∣∣∣∣
∣∣∣∣∣∣

≤

⎛
⎝

∞∫
0

||etAP ||dt+
0∫

−∞

||etA(I − P )||dt

⎞
⎠ ||ϕ(s), L2(R)||.

Using estimates (19) and (20), we obtain

||y(t), L2(R)|| ≤

⎛
⎝√

||H−1|| ||H+||
∞∫
0

exp

(
− t

2||H||

)
dt

+
√
||H−1|| ||H−||

0∫
−∞

exp

(
t

2||H||

)
dt

⎞
⎠ ||ϕ(t), L2(R)||.

By virtue of the definition of constant (6), from this inequality, estimate (22) follows.

Lemma is proved. �

3. PROPERTIES OF SOLUTIONS TO NONLINEAR SYSTEMS

In this section, the main theorems will be proved.
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3.1. Proof of Theorem 1

When proving Theorem 1, we use a well-known technique, consisting in the application of the
contraction mapping principle (see, for example, [1]).

We consider the system of nonlinear equations (1). It follows from the exponential dichotomy of
the homogeneous system (3) and conditions on vector-function f(t, y) that, by virtue of formula (17),
finding bounded solutions to system (1) on R is equivalent to constructing a solution to the system of
integral equations

y(t) =

t∫
−∞

e(t−s)APf(s, y(s))ds −
∞∫
t

e(t−s)A(I − P )f(s, y(s))ds (23)

or, in the operator form, y(t) = (Gy)(t). Obviously, from the definition of operator G and conditions on
f(t, y), it follows that this operator maps T -periodic vector-functions to T -periodic ones. Therefore, to
prove the existence and uniqueness of T -periodic solution to system (1) in the ballB(0, Y ), it is sufficient
to prove the unique solvability of system (23) in the space of continuous T -periodic vector-functions CT

such that ||y(t)|| ≤ Y < ∞.

If y(t) is bounded solution to system (1), therefore, the solution to the operator equation (23), then,
taking into account condition (2), the definition of constant (6), and inequality (18), we have

||y(t)|| ≤ pHq sup
ξ∈R

(1 + ||y(ξ)||)ω .

It follows from this inequality that for any solution y(t) from CT such that y(t) ∈ B(0, Y ), the estimate
holds

||y(t)|| ≤ pHq (1 + Y )ω .

Therefore, if condition (7) is fulfilled, then, by virtue of definition (23), the operator G : CT → CT maps
the closed ball B(0, Y ) to itself.

We show that under condition (7), the operator G : B(0, Y ) → CT is a contraction operator.

Indeed, for any vector-functions y1(t), y2(t) ∈ CT such that ||yi(t)|| ≤ Y , i = 1, 2, by virtue of the
definition of operator G, we have

(Gy1)(t)− (Gy2)(t) ≡
t∫

−∞

e(t−s)AP
(
f(s, y1(s))− f(s, y2(s))

)
ds

−
∞∫
t

e(t−s)A(I − P )
(
f(s, y1(s))− f(s, y2(s))

)
ds.

Then, taking into account the local Lipschitz condition and inequality (18), we obtain the estimate

max
t∈[0,T ]

||(Gy1)(t)− (Gy2)(t)|| ≤ pHL max
s∈[0,T ]

||y1(s)− y2(s)||,

where the Lipschitz constant L is defined in Theorem 1 and, by the condition on f(t, y), depends on Y .
Therefore, if pHL < 1, then the mapping G : B(0, Y ) → CT is a contraction mapping.

It follows from the conducted reasoning that if vector-function f(t, y) is such that the constants q
and L satisfy inequalities (7), then, by virtue of the contraction mapping principle, the operator equation
(23) is uniquely solvable in the space CT , herewith the solution lies in the ball B(0, Y ). Therefore, the
system of equations (1) has a unique T -periodic solution, ||y(t)|| ≤ Y .

Theorem 1 is proved.
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3.2. Proof of Theorem 2

Obviously, to prove Theorem 2, it is sufficient to show that the system of linear equations with
perturbations in the coefficients

dv

dt
= (A+A1)v + F (t), −∞ < t < ∞, (24)

has a solution v(t) ∈ W 1
2 (R) for any vector-function F (t) ∈ L2(R). To do this, as in [4, 6], we find a

solution to system (24) in the form

v(t) = Bf(t) =

t∫
−∞

e(t−s)APf(s)ds−
∞∫
t

e(t−s)A(I − P )f(s)ds, f(t) ∈ L2(R). (25)

It is clear that vector-function f(t) must be a solution to the integral equation

f(t)−A1Bf(t) = F (t). (26)

From the explicit form of the operator B and Lemma 2, it follows that this operator is linear and
continuous in L2(R). Then the operator

A1B : L2(R) → L2(R)

is also linear and continuous, while due to inequality (22), the estimate is valid

||A1Bf(t), L2(R)|| ≤ ||A1||pH ||f(t), L2(R)||.
Due to the arbitrariness of f(t) ∈ L2(R) and condition (8), the norm of the operator A1B is strictly less
than 1. Therefore, according to the Neumann theorem, equation (26) has a unique solution

f(t) = (I −A1B)−1F (t) ∈ L2(R)

for any vector-function F (t) ∈ L2(R). Consequently, substituting f(t) in (25), we obtain the formula
for the solution to equation (24)

v(t) = B(I −A1B)−1F (t) ∈ W 1
2 (R)

for any F (t) ∈ L2(R). Using properties of the Fourier operator in L2(R) and repeating the reasoning
from [4] (chapter 2), it can be shown the uniqueness of a solution to equation (24). Hence we obtain that
matrix (A+A1) has no eigenvalues on the imaginary axis, i.e., system (9) is exponentially dichotomous.

It is not difficult to show that the number of eigenvalues of the perturbed matrix (A+A1) lying in the
left half-plane is equal to the number of eigenvalues of matrix A lying in the left half-plane.

Theorem 2 is proved.

3.3. Proof of Theorem 3

We prove Theorem 3. As already noted, problem (11) has a unique solution H(μ), P(μ), and by
analogy with problem (4), for these matrix functions, we can write explicit formulas. In particular, for
matrix H(μ), formula (12) is valid, herewith projector P(μ) can be written as the Riesz integral

P(μ) =
1

2πi

∫
γ

(λI −A(μ))−1 dλ,

where the contour γ covers only the eigenvalues of matrix A(μ) lying in the left half-plane (see, for
example, [1], chapter 1; [4], chapter 2).

It is not difficult to show that the integral formula (12) for the representation of H(μ) can be rewritten
as

H(μ) =
1

2π

∞∫
−∞

((iξI −A(μ))∗)−1
(iξI −A(μ))−1 dξ
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(see [4], chapter 2).
Note that the solution to problem (4) can be written using similar formulas

P =
1

2πi

∫
γ

(λI −A)−1 dλ, H =
1

2π

∞∫
−∞

((iξI −A)∗)−1
(iξI −A)−1 dξ.

Then by virtue of the continuity of matrix function A(μ) on the segment [−μ0, μ0] and the equality
A(0) = A, we obtain the convergence (13). Theorem 3 is proved.

3.4. Proof of Theorem 4

We prove Theorem 4. Since y(t), x(t, μ) are T -periodic solutions to systems (1), (15), respectively,
then for vector-function u(t, μ) = y(t)− x(t, μ), the identity is valid

du(t, μ)

dt
≡ Au(t, μ) + (A−A(μ))x(t, μ) + f(t, y(t))− f̂(t, x(t, μ), μ), −∞ < t < ∞. (27)

We introduce notation for the last two terms

F (t, μ) = f(t, y(t))− f̂(t, x(t, μ), μ)

and rewrite it in the following form

F (t, μ) = (f(t, (u(t, μ) + x(t, μ)))− f(t, x(t, μ))) +
(
f̂(t, x(t, μ), 0) − f̂(t, x(t, μ), μ)

)
.

Taking into account the Lipschitz condition, we have the estimate

||F (t, μ)|| ≤ L||u(t, μ)|| + max
ξ∈[0,T ],||v||≤Y

||f(ξ, v)− f̂(ξ, v, μ)||. (28)

By virtue of (27), vector-function u(t, μ) is T -periodic solution to the system

du

dt
= Au+ (A−A(μ))x(t, μ) + F (t, μ),

therefore, using Lemma 1 and estimate (28), we obtain the inequality

(1− pHL) max
t∈[0,T ]

||u(t, μ)|| ≤ pHY ||A−A(μ)||+ pH max
ξ∈[0,T ],||v||≤Y

||f(ξ, v)− f̂(ξ, v, μ)||.

By condition (7), we have pHL < 1, therefore, due to the conditions on matrix functions and nonlinear
terms in systems (1) and (15), from this estimate, the convergence follows

max
t∈[0,T ]

||u(t, μ)|| → 0, μ → 0.

Theorem 4 is proved.
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