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Abstract—In this paper, the investigation of a generalized Dobrushin ergodicity coefficient to
obtain uniform ergodicity and uniform mean ergodicities of positive contractions of L1-spaces is
carried out. Through the introduction of notions such as mean P -completely mixing and P -
completely mixing, the last one being an extension of the complete mixing, several analogues of
the Akcoglu and Sucheston theorem are proved. As an applications of these results, we establish
mean ergodicities of positive contractions of L1-spaces. It is vital to note that P stands for a Markov
projection of L1.
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1. INTRODUCTION

Markov chains have many applications in natural sciences as they play an essential role which are
described by transition probabilities over some measurable space. There are many books on Markov
chains yet one that is remarkable to the extent that it stands out is the book of Foguel [14] where
probability theory and functional analysis methods are combined (for other monographs the reader
is referred to [11, 22, 27, 37]). Therefore, in this paper functional analysis language is going to be
used where the where the evolution and asymptotic properties of a Markov process is reflected as an
asymptotic limiting behaviour of iterates T n, where T is a linear, positive operator defined on some
Banach function space.

It is well known that Doeblin and Dobrushin [6, 18] characterized the convergence T n to its invariant
distribution in terms of the ergodicty coefficient δ(T ), i.e. if δ(P ) < 1. The Dobrushin’s condition played
a major role as a source of inspiration for many mathematicians to do interesting work on the theory
of Markov processes (see for example [18, 27, 35]). Nevertheless, if δ(T ) = 1, then such a coefficient
is not effective while T n converges. Hartfiel et al. [15, 16] introduced a generalized coefficient which
covers the mentioned type of convergence in the finite-dimensional setting. This type of coefficient has
not been thoroughly studied even in the classical L1-spaces. Recently, in [33] a generalized Dobrushin
ergodicity coefficient has been introduced abstract spaces. Therefore, we provide a simple calculation of
the generalized Dobrushin ergodicity coefficient [33] in the classical L1-spaces and it gets applied to the
investigation of uniform P-ergodicites of positive contractions on L1-spaces.

This paper by using methods of [33] we are going to extend the uniformP-ergodicity result for positive
contractions of L1-spaces. Furthermore, another aim of this work is to investigate pointwise asymptotic
stabilities of positive contractions of L1-spaces. To establish such kind of results, we introduce P-
complete mixing and mean P-completely mixing (see Section 4) are extended notions of completely
mixing are considered. By proving several analogues of well-known results of Akcoglu and Sucheston,
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and together with smoothing we establish mean ergodicities of positive contractions of L1-spaces. Note
that the smoothness that gets considered is closely related to the same notion given in [20, 21]. In [4, 17,
19] the smoothness in sense of [20] has been investigated in terms of constrictivity of Markov operators.
These investigates are related to the asymptotic periodicity of Markov operators which yields that the
iterates of Markov operator converges to some projection. In this paper, we are going to investigate the
asymptotic stability of Markov operators to some projection without using their periodicity.

It is stressed that there are several notions of mixing (see [1, p. 199], [22, Chapter 8]) (i.e. weak
mixing, mixing, completely mixing e.c.t.) of measure preserving transformation on a measure space in
the ergodic theory.

Now let us recall some notions and results. Let (Ω,F , μ) be a measure space with probability measure
μ. Let L1(Ω,F , μ) be the associated L1-space. A linear operator T : L1(Ω,F , μ) → L1(Ω,F , μ) is
called positive contraction if Tf ≥ 0 whenever f ≥ 0 and ||T || ≤ 1. Let L1

0 = {f ∈ L1(Ω,F , μ) :∫
fdμ = 0}. A positive contraction T in L1(Ω,F , μ) is called completely mixing if ||T nf || tends to

0 for all f ∈ L1
0. Some properties of this mixing was studied in [1]. In [2, Lemma 2.1] Akcoglu and

Sucheston (see also [22, Theorem 1.4, Chapter 8]) proved the following result.

Theorem 1.1. Let T : L1(Ω,F , μ) → L1(Ω,F , μ) be a positive contraction. Assume that for
z ∈ L1(Ω,F , μ) the sequence (T nz) converges weakly in L1(Ω,F , μ), then either lim

n→∞
||T nz|| = 0

or there exists a positive function h ∈ L1(Ω,F , μ), h �= 0 such that Th = h.

This theorem gives an answer to the problem whether K-automorphisms of σ-finite measure space
are mixing, and showed that, in fact, invertible mixing measure preserving transformations of σ-finite
infinite space do not exist (see [23]) (see for review [22]). Moreover, Theorem 1.1 has a lot of applications,
but only a few get mentioned in this paper. Namely, using it in [10, Theorem 1] the existence of an
invariant measure for given positive contraction T on L1(Ω,F , μ) was proved, and in [38, Theorem 8] a
criterion of strong asymptotically stability for positive contractions was given by means of Theorem 1.1.

Hence, we bring forth the introduction of notions which are P-complete mixing and P-complete
mixing, the last one being an extension of the complete mixing. Here, P stands for a Markov projection of
L1(Ω,F , μ) (see Section 2 for detailed definitions). For these notions, we prove analogue of Theorem 1.1
in Section 4. In Section 3, we establish uniform ergodicity of positive contractions of L1-spaces in terms
of the generalized Dobrushin coefficient [33]. Furthermore, mean ergodocity is also proved in terms of
mean P-complete mixing.

2. UNIFORM ERGODICITIES

Throughout the paper, we always assume that (Ω,F , μ) is an arbitrary probability space, i.e. μ is a
probability measure. By L1(Ω,F , μ) we denote the usual L1-space. A positive operator T is called to be
Markov if ||Tf || = ||f || for every f ∈ L1(Ω,F , μ), f ≥ 0.

Given f ∈ L1(Ω,F , μ) we will denote by l[f ] the operator l[f ] : L1(Ω,F , μ) → L1(Ω,F , μ) defined
by l[f ](g) = f

∫
gdμ for every g ∈ L1(Ω,F , μ). If f �= 0, then l[f ] is usually called a rank one operator.

Denote

D = {f ∈ L1(Ω,F , μ) : f ≥ 0, ||f || = 1}.

Example 2.1. Assume that P (x,A) is transition probability on (Ω,F , μ) such that P (x, ·) is
absolutely continuous with respect to μ. Then it defines a Markov operator T on L1(Ω,F , μ), whose
dual T ′ acts on L∞(Ω,F , μ) as follows

(T ′f)(x) =

∫
f(y)P (x, dy), f ∈ L∞.

Let P : L1(Ω,F , μ) → L1(Ω,F , μ) be a positive projection (i.e. P 2 = P ). We notice that such kind
of operators can be characterized by conditional expectations [7].
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Now, we are going to define a generalized Dobrushin ergodicity coefficient of a Markov operator T
with respect to P as follows [33]:

δP (T ) = sup
f∈kerP, f �=0

||Tf ||
||f || , (2.1)

where
kerP = {f ∈ L1(Ω,F , μ) : Pf = 0}. (2.2)

If P = I, we put δP (T ) = 1. The quantity δP (T ) is called the generalized Dobrushin ergodicity
coefficient of T with respect to P . We notice that if P is takes as rank one projection, then δP (T )
reduces to the well-known Dobrushin’s ergodicity coefficient (see [33]).

We notice that if Ω = {1, . . . , n}, then there is some formulas to calculate this coefficient [16, Lemma
1] (see also [15]).

Before establishing our main result of this section, we need the following auxiliary fact.
Lemma 2.2. Let P : L1(Ω,F , μ) → L1(Ω,F , μ) be a Markov projection. Then for every x ∈ kerP

there exist u, v ∈ D with u ∧ v = 0, u− v ∈ kerP such that x = ||x||2(u− v)/2.
Proof. Given any x ∈ kerP , we have Px = 0. Moreover, there exist x+, x− ∈ L1(Ω,F , μ) such

that x = x+ − x−, x+, x− ≥ 0, x+ ∧ x− = 0 with ||x+||+ ||x−|| = ||x||. Clearly Px+ = Px−. As P a
Markov projection ||Px+|| = ||x+||, which yields ||x+|| = ||x−||. Therefore,

x =
x+

||x+||
||x+|| −

x−
||x−||

||x+|| = ||x+||
(

x+
||x+||

− x−
||x−||

)
.

Letting u = x+

||x+|| and v = x−
||x−|| , so u, v ∈ D. Moreover, Pu = Pv, and u− v ∈ kerP . Hence, the

lemma is proved. �

Let us denote by Σ the set of all Markov operators defined on L1(Ω,F , μ), and by ΣP we denote the
set of all Markov operators T on L1(Ω,F , μ) with PT = TP .

Now, using Lemma 2.2 and the argument of [33, Theorem 3.7], one gets.
Theorem 2.3. Let P : L1(Ω,F , μ) → L1(Ω,F , μ) be a Markov projection. Then for any T ∈ Σ,

one has

δP (T ) = sup

{
||Tu− Tv||

2
: u, v ∈ D, u ∧ v = 0 with u− v ∈ kerP

}
. (2.3)

From this result, one finds

1− δP (T ) = inf

{
1− ||Tu− Tv||

2
: u, v ∈ D, u ∧ v = 0 with u− v ∈ kerP

}

= inf

{
1− ||Tu+ Tv − 2(Tu ∧ Tv)||

2
: u, v ∈ D, u ∧ v = 0 with u− v ∈ kerP

}

= inf

{
1− 2− 2||Tu ∧ Tv||

2
: u, v ∈ D, u ∧ v = 0 with u− v ∈ kerP

}

= inf

{
||Tu ∧ Tv|| : u, v ∈ D, u ∧ v = 0 with u− v ∈ kerP

}
. (2.4)

Let P : L1(Ω,F , μ) → L1(Ω,F , μ) be a Markov projection. A linear operator T ∈ Σ is called
uniformly P -ergodic if limn→∞ ||T n − P || = 0.

We notice if T is uniformly P-ergodic operator on L1(Ω,F , μ), then TP = PT = P . If P is a
rank one projection, then the notion of uniformly P-ergodic was called uniformly ergodic or uniform
asymptotically stable (see [3, 28, 30, 32, 34]).

Theorem 2.4. Let P : L1(Ω,F , μ) → L1(Ω,F , μ) be a Markov projection and T ∈ Σ. Then the
following conditions are equivalent:

(i) T is uniformly P -ergodic;
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(ii) One has PT = TP = P and there exists n0 ∈ N such that δP (T n0) < 1;

(iii) One has PT = TP = P and there exists ρ > 0 and n0 ∈ N such that ||T n0u ∧ T n0v|| ≥ ρ for
every u, v ∈ D, u ∧ v = 0 with u− v ∈ kerP .

Moreover, there are constants C,α ∈ R+ and n0 ∈ N such that ||T n − P || ≤ Ce−αn, ∀n ≥ n0.

Proof. The implications (i)⇔ (ii) has been proved in [33, Corollary 4.7]. From (2.4) it follows that
δP (T

n0) ≤ 1− ρ which implies (ii)⇔ (iii). �

Remark 2.5. In case of P is a rank one projection, analogous results can be found in [3, 8, 28, 31, 38].
Now, we provide an extension of Theorem 2.4 to positive contractions of L1(Ω,F , μ). Given a linear

operator T : L1(Ω,F , μ) → L1(Ω,F , μ) by T ′ we denote its dual, which acts on L∞(Ω,F , μ).
Theorem 2.6. Let P : L1(Ω,F , μ) → L1(Ω,F , μ) be a finite rank Markov projection and T :

L1(Ω,F , μ) → L1(Ω,F , μ) be a positive contraction such that

TP = PT, TPg = P (gT ′1l) = (Pg)T ′1l, (2.5)

for all g ∈ L1(Ω,F , μ). Assume that there exists ρ > 0 and n0 ∈ N such that

||T n0u ∧ T n0v|| ≥ ρ (2.6)

for every u, v ∈ D, u∧ v = 0with u− v ∈ kerP . Then {T n} converges uniformly to some projection
Q with Q = QPQ.

Proof. Now, we are going to associate with T a Markov operator S : L1(Ω,F , μ) → L1(Ω,F , μ)
such that T ≤ S. Let T ′ : L∞(Ω,F , μ) → L∞(Ω,F , μ) be the dual of T . Let h := 1l− T ′1l. The
contractivity of T implies T ′1l ≤ 1l which yields 0 ≤ h ≤ 1l. Now, we define a linear operator S by

S(g) = Tg + gh, g ∈ L1(Ω,F , μ).

It is clear that S : L1(Ω,F , μ) → L1(Ω,F , μ) . According to∫
fSgdμ =

∫
S′fgdμ =

∫
g(T ′f + fh)dμ, f ∈ L∞(Ω,F , μ), g ∈ L1(Ω,F , μ),

one finds that S′f = T ′f + fh, for every f ∈ L∞(Ω,F , μ).
It is obvious that S′1l = 1l, which implies S is a Markov operator.
From 0 ≤ T ≤ S, it follows that 0 ≤ T n0 ≤ Sn0 ; therefore, ||Sn0u ∧ Sn0v|| ≥ ρ for every u, v ∈ D,

u ∧ v = 0 with u− v ∈ kerP . From (2.5), we obtain that SP = PS = P . Hence, Theorem 2.4 yields
that S is uniformly P-ergodic. Since P is finite rank, then by [34, Theorem 2.2], the sequence {T n}
converges uniformly to some projection Q. Due to 0 ≤ T n ≤ Sn, n ∈ N and the positivity of T , we
have 0 ≤ Q ≤ P . This implies 0 ≤ QPQ−Q = Q(P −Q)Q ≤ P (P −Q)Q = PQ− PQ = 0, hence
Q = QPQ. This completes the proof. �

Remark 2.7. From the condition of Theorem 2.6, we infer that TP is compact, and (2.6) due to [33,
Corollary 3.15] implies that T is quasi-compact operator. However, the theorem yields T is uniformly
Q-ergodic.

Remark 2.8. We note that if T converges uniformly to Q, then clearly one has TQ = QT and
TQ = Q, but Q is not necessary to be a Markov projection. The first condition in (2.5) means that T has
some invariant subspace, however, it is not a’priori known that T converges to the given projection P .
It is not known that whether the condition (2.5) is necessary or not.

The second condition in (2.5) is satisfied if P is a conditional expectation and T ′1l belongs to the range
of P . Let us provide an example for which condition (2.5) holds.

Example 2.9. Let us consider R3. Define

T =

⎛
⎜⎜⎜⎝
0 0 a

0 1 0

0 0 a

⎞
⎟⎟⎟⎠ , P =

⎛
⎜⎜⎜⎝
0 0 1

0 1 0

0 0 1

⎞
⎟⎟⎟⎠ ,
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where 0 < a < 1. Then it is clear that T is a positive contraction and P is a Markov projection. Moreover,
for these operators (2.5) is satisfied. We also have that T n → Q, where

Q =

⎛
⎜⎜⎜⎝
0 0 0

0 1 0

0 0 0

⎞
⎟⎟⎟⎠ .

3. MEAN ERGODICITY AND MEAN COMPLETELY MIXING

Given a bounded linear operator T : L1(Ω,F , μ) → L1(Ω,F , μ), we set An(T ) =
1
n

∑n
k=1 T

k. Recall
that T is said to be

(a) mean ergodic if for every x ∈ L1(Ω,F , μ)

lim
n→∞

An(T )x = Qx (in norm);

(b) uniformly mean ergodic if

lim
n→∞

||An(T )−Q|| = 0;

for some operator Q on L1(Ω,F , μ).

In this setting, it is well-known that Q is a projection [22], which is called the limiting projection of
T , and denoted by QT . Moreover, if T ∈ Σ, then QT is also Markov.

By [33, Theorem 6.3] and (2.4), we obtain the following fact.

Theorem 3.1. Assume that T ∈ Σ and T is mean ergodic with its limiting projection QT . Then
the following statements are equivalent:

(i) T is uniformly mean ergodic;

(ii) there exists an n0 ∈ N such that δQT
(An0(T )) < 1.

(iii) there exists ρ > 0 and n0 ∈ N such that ||An0(T )u∧An0(T )v|| ≥ ρ for every u, v ∈ D, u∧ v =
0 with u− v ∈ kerQT .

Moreover,

||An(T )−QT || ≤
2(n0 + 1)

1− δQT
(An0(T ))

1

n
.

Remark 3.2. There are a few results in the literature on uniform ergodicities of bounded linear
operators on Banach spaces (see, [24–26]).

Definition 3.3. A positive contraction T : L1(Ω,F , μ) → L1(Ω,F , μ) is called:

(i) completely mixing if

lim
n→∞

||T n(u− v)|| = 0 for all u, v ∈ L1(Ω,F , μ), u, v ≥ 0, u �= v, ||u|| = ||v||; (3.1)

(ii) mean completely mixing if

lim
n→∞

||An(T )(u− v)|| = 0 for all u, v ∈ L1(Ω,F , μ), u, v ≥ 0, u �= v, ||u|| = ||v||. (3.2)
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We emphasize that mean completely mixing coincides the ergodicity of T [1]. However, for the sake
of similarity, in what follows, we will use the mean completely mixing.

Following [38] we introduce a notion of mean smoothing. A positive contraction T : L1(Ω,F , μ) →
L1(Ω,F , μ) is called mean smoothing with respect to f ∈ L1(Ω,F , μ), f ≥ 0, f �= 0, if for every ε > 0
there exists τ > 0 such that ∫

E

An(T )fdμ < ε (3.3)

for every E ∈ F with μ(E) < τ and for all n ∈ N.
We point out that the definition of smoothing is closely related to a notion of ε-sweeping given in [20,

21], but in different form.
Next result is an analogue of Theorem 1.1 for averages.

Theorem 3.4. Let T : L1(Ω,F , μ) → L1(Ω,F , μ) be a positive contraction. Assume that there is
f ∈ L1(Ω,F , μ), f ≥ 0, f �= 0 such that T is mean smoothing with respect to f . Then lim

n→∞
||T nf || =

0 or T has a non-zero positive invariant element.

Proof. Due to the positivity of f , we have ||An(T )f || = 1
n

∑n
k=1 ||T kf ||. The contractivity of T

implies that limn→∞ ||An(T )f || = α, α ≥ 0. Let α = 0, then due to the positivity of T and f ≥ 0, one
gets lim

n→∞
||T nf || = 0, which means the statement.

Now, we suppose that α > 0. Let L be a Banach limit [9, p. 73], then define ν : L∞(Ω,Fμ) → R by

ν(x) = L
(
{〈An(T )f, x〉}n≥1

)
, x ∈ L∞(Ω,Fμ).

One can see that

ν(1l) = L
(
{〈An(T )f, 1l〉}n≥1

)
= L

(
{||An(T )f ||}n≥1

)
= lim

n→∞
||An(T )f || �= 0.

Therefore, ν is non-zero. Let us establish that ν is T ′′-invariant. Indeed, one gets

〈x, T ′′ν〉 = 〈T ′x, ν〉 = L
(
{〈An(T )f, T

′x〉}n≥1

)
= L

(
{〈TAn(T )f, x〉}n≥1

)
. (3.4)

On the other hand, we have

TAn(T ) =
1

n

n∑
k=1

T k+1 =

(
1 +

1

n

)
An+1(T )−

1

n
T

and

∣∣∣∣| 1nAn+1(T )

∣∣∣∣| ≤ 1
n . So, limn→∞

∣∣∣∣| 1nAn+1(T )

∣∣∣∣| = 0. Hence, the properties of the Banach limit imply

that

L
(
{〈TAn(T )f, x〉}n≥1

)
= L

(
{〈
(
1 +

1

n

)
An+1(T )f, x〉}n≥1

)
− lim

n→∞
1

n
〈Tf, x〉

= L
(
{〈An+1(T )f, x〉}n≥1

)
= L

(
{〈An(T )f, x〉}n≥1

)
.

Therefore, the last equality together with (3.4) yields

〈x, T ′′ν〉 = L
(
{〈An(T )f, x〉}n≥1

)
= 〈x, ν〉

for every x ∈ L∞(Ω,F , μ). This means that ν is T ′′-invariant.
By means of ν, we define a set function by ν(A) = ν(χA), A ∈ F , here χA stands for the indicator

function of a set A. It is clear that ν is a finitely additive. Now, let us establish its σ-additivity. It is
enough to prove that lim

n→∞
ν(Ak) = 0, whenever {Ak} ⊂ F such that

Ak+1 ⊂ Ak,
∞⋂
k=1

Ak = ∅.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 42 No. 13 2021



A FEW REMARKS ON ASYMPTOTIC STABILITIES 3179

Let ε > 0, then due to T is mean smoothing w.r.t. f and μ(Ak) → 0, there exists n0 ∈ N such that∫
Ak

An(T )fdμ < ε, ∀k ≥ n0, ∀n ≥ 1.

By means of the definition of the Banach limit, one gets

ν(Ak) = L
(
{〈An(T )f, χA〉}n≥1

)
= L

⎛
⎜⎝
⎧⎪⎨
⎪⎩
∫
Ak

An(T )f

⎫⎪⎬
⎪⎭

n≥1

⎞
⎟⎠ ≤ ε, ∀k ≥ n0.

Hence, lim
n→∞

ν(Ak) = 0. This means that ν is a measure on F . Moreover, ν is absolutely continuous

with respect to μ. By the Radon–Nykodym Theorem there exists u ∈ L1(Ω,F , μ), u ≥ 0, u �= 0 such
that

〈x, ν〉 =
∫

xudμ, ∀x ∈ L∞(Ω,F , μ).

From ∫
xudμ = 〈x, T ′′ν〉 = 〈T ′x, ν〉 =

∫
(T ′x)udμ =

∫
xTudμ, x ∈ L∞(Ω,F , μ)

we obtain Tu = u. This completes the proof. �

Remark 3.5. We stress that a similar kind of result has been obtained in [19, Theorem 4] (see
also [36]) for the existence of a positive invariant element in L1.

Remark 3.6. Let Ω,F , μ) be a probability space and T : L1(Ω,F , μ) → L1(Ω,F , μ) be a positive
contraction. Assume that {T nf} converges weakly for some f ∈ L1(Ω,F , μ), f ≥ 0, f �= 0. Then by
[38, Observation 1] T is smoothing w.r.t. f .

Remark 3.7. We stress that Theorem 3.4 is not true, if the measure μ is σ-finite. The corresponding
example can be found in [38, Observation 2].

Now, by using of Theorem 3.4, we are ready to prove an analogue of [38, Theorem 8] for averages of
positive contractions.

Theorem 3.8. Let T : L1(Ω,F , μ) → L1(Ω,F , μ) be a positive contraction. Then the following
statements are equivalent:

(i) T is mean ergodic to rank one operator, i.e. there is h ∈ L1(Ω,F , μ), h ≥ 0 such that for
every x ∈ L1(Ω,F , μ)

lim
n→∞

||An(T )x− l[h]x|| = 0; (3.5)

(ii) T is mean completely mixing and means smoothing with respect to some f ∈ L1(Ω,F , μ),
f ≥ 0, f �= 0.

Proof. (i)⇒(ii). Assume that u ∈ L1(Ω,F , μ) such that
∫
udμ = 0. It then follows from (3.5) that

An(T )u → h

∫
udμ = 0.

Hence, T is mean completely mixing.
Now, let us take f ∈ L1(Ω,F , μ), f ≥ 0 with ||f || = 1. Then An(T )f → h; and An(T )f converges

weakly to h. By Remark 3.6, we infer that T is mean smoothing w.r.t. f .
(ii)⇒(i). Assume that T is mean smoothing w.r.t. f , here f ∈ L1(Ω,F , μ), f ≥ 0, f �= 0. Then,

according to Theorem 3.4 there are two possibilities:

(a) ||An(T )f || → 0;
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(b) there is h ∈ L1(Ω,F , μ), h ≥ 0, h �= 0 such that Th = h.

If, we are in the situation (a), then the mean completely mixing of T yields that An(T )x → 0 for any
x ∈ L1(Ω,F , μ).

Now, if (b) holds, then we may assume that ||h|| = 1. Again, due to the mean completely mixing, one
has

An(T )(g − h) = An(T )g − h → 0

for every g ∈ L1(Ω,F , μ), g ≥ 0, ||g|| = 1. This implies An(T )x → l[h]x for all x ∈ L1(Ω,F , μ). The
proof is completed. �

We remark that some sufficient conditions for the mean ergodicity (to rank one operator) of Markov
operators have studied in [12, 13, 29].

4. P-COMPLETE MIXING AND P-COMPLETE MEAN MIXING

In this section, we are going to introduce generalizations of complete mixing and complete mean
mixing, respectively. The new ones will depend on some Markov projection P . Let, as before,
P : L1(Ω,F , μ) → L1(Ω,F , μ) be a nontrivial (i.e. P �= Id) Markov projection.

Definition 4.1. A positive contraction T : L1(Ω,F , μ) → L1(Ω,F , μ) is called:

(i) P -completely mixing if

lim
n→∞

||T n(u− v)|| = 0 for all u, v ∈ D, u ∧ v = 0, u− v ∈ kerP ; (4.1)

(ii) mean P -completely mixing if

lim
n→∞

||An(T )(u− v)|| = 0 for all u, v ∈ D, u ∧ v = 0, u− v ∈ kerP. (4.2)

We notice that if f ∈ D and P = l[f ], then one can see P-completely mixing (resp. mean P-
completely mixing) coincides with completely mixing (resp. mean completely mixing).

Given a projection P we denote

Fix(P ) = {x ∈ L1(Ω,F , μ) : Px = x},
F ix(P )+ = {x ∈ L1(Ω,F , μ) : Px = x, x ≥ 0}.

We emphasize if P is a Markov projection, then we always have Fix(P )+ �= ∅.

Now, we introduce a notion of P-mean smoothing. Namely, a positive contraction T : L1(Ω,F , μ) →
L1(Ω,F , μ) is called P-smoothing (resp. P-mean smoothing) with respect to Fix(P )+, if for every
f ∈ Fix(P )+ if for every ε > 0 there exists τ > 0 such that

∫
E

T nfdμ < ε

⎛
⎝resp.

∫
E

An(T )fdμ < ε

⎞
⎠ (4.3)

for every E ∈ F with μ(E) < τ and for all n ∈ N.
Then using the same argument of the proof of Theorem 3.4 we can establish the following result.

Theorem 4.2. Let T : L1(Ω,F , μ) → L1(Ω,F , μ) be a positive contraction andP : L1(Ω,F , μ) →
L1(Ω,F , μ) be a Markov projection such that TP = PT . Then the following statements hold true:

(i) Assume that T is P -smoothing with respect to Fix(P )+. Then either lim
n→∞

||T nf || = 0 for all

f ∈ Fix(P )+ or there is f ∈ Fix(P )+ with lim
n→∞

||T nf || �= 0 and hf ∈ Fix(T )+ ∩ Fix(P )+,

hf �= 0.
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(ii) Assume thatT isP -mean smoothing with respect toFix(P )+. Then either lim
n→∞

||An(T )f || =
0 for all f ∈ Fix(P )+ or there is f ∈ Fix(P )+ with lim

n→∞
||An(T )f || �= 0 and hf ∈ Fix(T )+ ∩

Fix(P )+, hf �= 0.

Proof. Since P is a Markov projection, its range P (X) = Fix(P ) is a (closed) sublattice of L1, and
hence, it is isometrically lattice isomorphic to another L1-space (and the underlying measure can be
chosen to be finite, too). Moreover, since P and T commute, T leaves Fix(P ) invariant. Hence, by
applying Theorem 3.4 to the restriction T �F ix(P ) we get the desired assertion. �

Let P : L1(Ω,F , μ) → L1(Ω,F , μ) be a positive projection. Then Fix(P )+ = P (L1
+), therefore,

Fix(P ) = P (L1) = P (L1
+)− P (L1

+) = Fix(P )+ − Fix(P )+. (4.4)

Now, using P-complete mixing, we obtain the asymptotic stability of positive contractions of L1-
spaces.

Theorem 4.3. Let T : L1(Ω,F , μ) → L1(Ω,F , μ) be a positive contraction andP : L1(Ω,F , μ) →
L1(Ω,F , μ) be a Markov projection such that TP = PT . Then the following statements are
equivalent:

(i) T is asymptotical stable to some projection Q with Q ≤ P (i.e. Q = QP = PQ), i.e. for
every x ∈ L1(Ω,F , μ) one has

lim
n→∞

||T nx−Qx|| = 0; (4.5)

(ii) T is P -complete mixing and P -smoothing with respect to Fix(P )+.

Proof. (i)⇒(ii). Assume that u ∈ kerP . Then by Q ≤ P , we infer Qx = 0. Therefore, from (4.5) it
follows that lim

n→∞
T nu = 0. Hence, T is P-completely mixing.

Now, let us take f ∈ Fix(P )+ with ||f || = 1. Then T nf → Qf , and hence, T nf convergence weakly
to Qf . By Remark 3.6, we infer that T is smoothing with respect to f . The arbitrariness of f yields that
T is P-smoothing with respect to Fix(P )+.

(ii)⇒(i). Assume that T is P-smoothing with respect to Fix(P )+. Then, according to (i) of
Theorem 4.2 there are two possibilities:

(a) lim
n→∞

||T nf || = 0 for all f ∈ Fix(P )+;

(b) there is f ∈ Fix(P )+ with lim
n→∞

||T nf || �= 0 and there exists hf ∈ Fix(T )+ ∩ Fix(P )+, hf �= 0.

If, we are in the situation (a), then due to (4.4), we have

lim
n→∞

||T nf || = 0, for all f ∈ Fix(P ). (4.6)

Since, P is a projection, then L1(Ω,F , μ) is decomposed as follows: L1(Ω,F , μ) = X1 ⊕X2, where
X1 = Fix(P ) and X2 = (I − P )(L1(Ω,F , μ)). Therefore, (4.6) with P-completely mixing of T yields
that T nx → 0 for any x ∈ L1(Ω,F , μ).

Now, if (b) holds, then denote

B =

{
hf ∈ Fix(T )+ ∩ Fix(P )+ : lim

n→∞
||T nf || �= 0, f ∈ Fix(P )+

}
.

Let B be the closure of the span of B. It is clear that B ⊂ Fix(P ). By B we denote a σ-subalgebra of
F generated by B. Let Q be the conditional expectation with respect to B, i.e. Q(·) = E(·|B). One can
see that Q = QP = PQ. From the construction of B, we infer that T nx → Qx for all x ∈ B. Since
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P (x−Qx) = 0 and P-complete mixing yields ||T n(x−Qx)|| → 0, which means T nx → Qx for all
x ∈ L1(Ω,F , μ). This completes the proof. �

Then using the same argument of the proof of Theorem 3.8 and Theorem 4.4 we may establish the
following result.

Theorem 4.4. Let T : L1(Ω,F , μ) → L1(Ω,F , μ) be a positive contraction andP : L1(Ω,F , μ) →
L1(Ω,F , μ) be a Markov projection such that TP = PT . Then the following statements are
equivalent:

(i) T is mean ergodic to some projection Q with Q ≤ P (i.e. Q = QP = PQ), i.e. for every
x ∈ L1(Ω,F , μ) one has lim

n→∞
||An(T )x−Qx|| = 0;

(ii) T is mean P -complete mixing and P -mean smoothing with respect to Fix(P )+.
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