
ISSN 1995-0802, Lobachevskii Journal of Mathematics, 2021, Vol. 42, No. 13, pp. 3141–3149. c© Pleiades Publishing, Ltd., 2021.

On the Partial-Geometric Distribution:
Properties and Applications

Krisada Khruachalee1*, Winai Bodhisuwan#1**, and Andrei Volodin2***

(Submitted by A. M. Elizarov)
1Department of Statistics, Kasetsart University, Bangkok, 10903 Thailand

2Department of Mathematics and Statistics, University of Regina, Regina, SK, S4S0A2 Canada
Received August 17, 2021; revised August 31, 2021; accepted September 5, 2021

Abstract—In this article we introduce the new, two-parameter partial-geometric distribution (PG)
that contains both geometric and first success distributions as a particular case. Some probability
and statistical properties of the proposed distribution are discussed, including probability mass
function, mean, variance, moment generating function, and probability generating function. We
propose the method of maximum likelihood for estimating the model’s parameters, and apply the PG
distribution to two real datasets to illustrate the flexibility of the proposed distribution. We found the
PG distribution is more dynamic than the geometric distribution in the sense that it can be applied
to the under-dispersed data. The PG distribution also performs well with a goodness of fit test and
some other model selection characteristics for model fitting of these two datasets. Thus, the PG
distribution can be applied as an alternative model for the analysis of discrete data.
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1. INTRODUCTION

There is much interest in developing the most flexible probability distributions; many generalized
classes of distributions have been developed and applied to describe various natural phenomena [1].
To provide an explanation of a natural phenomenon, researchers consider a construction of the new
generalized class of distributions, and decide whether the underlying distribution should be regarded as
discrete, continuous, or of a mixed type. The discrete distributions are very useful in many applications
especially when the count phenomenon consists of non-negative integers. This happens when the
number of times a discrete event occurrences are observed and examined in a specific area or period
of time [2]. Examples include the number of trips per month that a person takes, the number of children
a couple has, the number of Prussian soldier deaths during the Crimean war resulting from being kicked
by a horse (a famous classical example related to the Poisson distribution); see [3–5], etc. In these
situations, the continuous model is inappropriate to describe the count phenomenon. Accordingly, the
discrete models are as significant as the continuous models.

Situations where a number of trials or experiments must occur before a predetermined number of
successes, such as the number of bills that must be proposed to a legislature before 10 bills are passed,
and recently the number of Thai citizens that must be tested for COVID-19 before 100 Thai citizens
are confirmed to be infectious, are of the interest to many researchers keen to find suitable probability
distributions that explain these natural phenomena.
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In addition, the complications of comparing the probabilities of success for the Bernoulli trials
that mostly arise in medical and biological investigations, acceptance sampling in quality control, and
modeling demand for a product are considered. These real-life phenomena can be described by the
geometric distribution. However, there are criticisms that the geometric and first success distributions
are sometimes considered to be the same, when they are actually different.

Because the confusion between the geometric and first success distributions plays a very important
role in this study, we would like to introduce a new family of distributions called the partial-geometric
(PG) distribution that contains both the geometric and first success distributions as a particular case.
The idea to combine and consider the geometric and first success distributions as a member of one
distribution family seems to be very natural, but we did not see it in literature. The number of the studies
that propose modifications of the geometric distribution for various purposes is so large that we decided
not to discuss them. The major advantage of the newly proposed PG distribution over the previously
modified geometric distributions is the flexibility in applications to real-life data.

The remainder of the paper is organized as follows. In Section 2, we discuss the difference between
geometric and first success distributions. The PG distribution and some of its mathematical properties
are defined in Section 3. Then, the maximum likelihood estimates of the PG distribution parameters are
discussed in Section 3.3. Finally, some practical applications of the proposed distribution are illustrated
by a goodness of fit with two real datasets in Section 4.

2. MATERIALS AND METHODS
Based on the theoretical interpretation of the Bernoulli experiment, we note a confusion between

two very simple and basic geometric and first success distributions. In some literature, these two
distributions are considered the same. But, as mentioned in Gut (2009) [6], they are different and defined
in the following way.

Let 0 < p < 1 and q = 1− p. A random variable X has a Geometric distribution with parameter p,
denoted by X ∼ G(p), if its probability mass function (pmf) is

P (X = k) = pqk, k = 0, 1, 2, . . . .

A random variable Y has a First Success distribution with parameter p, denoted by Y ∼ FS(p), if its
pmf is

P (Y = k) = pqk−1, k = 1, 2, . . . .

We can interpret the geometric distribution as the number of failures in Bernoulli experiments
until we reach first successes, while the first success distribution is the number of trials in Bernoulli
experiments need to reach the first success.

Referring to the properties of the probability generating function (pgf), the pgf of the geometric
distribution G(p) can be calculated in the following way:

gG(p)(t) = EtX =
∞∑
k=0

tkpqk = p
∞∑
k=0

(tq)k =
p

1− qt
,

where |t| < 1/q. In the same manner, the pgf of the first success distribution FS(p) can be also
calculated in accordance with the following procedure:

gFS(p)(t) = EtY =
∞∑
k=1

tkpqk−1 =
pt

1− qt
,

where again |t| < 1/q. According to the pgf of the geometric and first success distributions, we present
Proposition 1 that can be used to illustrate the connection of these two distributions as follows.

Proposition 1. If a random variable X ∼ G(p), then the random variable Y = X + 1 follows
FS(p) distribution. Similarly, if a random variable Y ∼ FS(p), then the random variable X =
Y − 1 follows G(p) distribution.

Proof. If a random variable X ∼ G(p), then the pgf of the random variable Y = X +1 can be written

gY (t) = EtY = EtX+1 = tEtX = tgG(p)(t) =
pt

1− qt
= gFS(p)(t).

The second part of the Proposition can be shown in the similar way. �
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Fig. 1. The pmf plots of the partial-geometric distribution in various combinations of p (0.25 and 0.50) and α (p/3q,
p/2q, 2p/3q, and 9p/10q).

3. PARTIAL-GEOMETRIC DISTRIBUTION AND ITS MATHEMATICAL PROPERTIES

3.1. Partial-Geometric (PG) Distribution

Changing the momentum by adding an extra parameter α, leads us to propose the PG distribution. A

random variable X has a Partial-Geometric distribution with parameters 0 < p < 1 and 0 ≤ α ≤ p

1− p
,

denoted by PG(p, α), if its pmf is

P (X = k) =

{
α(1− p)k if k = 1, 2, . . .

β if k = 0,

where β = 1− α(1 − p)/p.
In order to illustrate the appearance of the PG distribution, Figs. 1 and 2 show some pmf plots of

the PG distribution with various values of the parameters p (0.25, 0.50 and 0.75) and α (p/3q, p/2q,
2p/3q and 9p/10q) where q = 1− p. We found that the scale of the PG distribution change due to the
parameter p. On the other hand, the shape parameter of the PG distribution can be varied because of
the parameter α. It is seen that the pmf rapidly decreases as parameter p increases. In addition, the PG
distribution is clearly a unimodal curve when the α conversely increases to p/q. According to Figs. 1
and 2, we conclude that the PG distribution is right skewed and unimodal.

Measuring the dispersion of the partial-geometric (PG) distribution, the ID, the ratio between
variance to mean, is applied under some specified values of parameters p and α from Figs. 1 and 2.
The values of ID will indicate whether the distribution is over-dispersed (ID > 1) or under-dispersed
(ID < 1) [7]. Table 1 illustrates that the partial-geometric (PG) distribution is more dynamic than the
geometric distribution in the sense that it can be applied to the under-dispersed data as well where the
geometric distribution is only suitable for over-dispersed data.

3.2. Probability Properties

Some probability properties of the PG distributions, especially the mean, variance, moment generat-
ing function (mgf), and pgf are provided in this section.

Theorem 1. Let X ∼ PG(p, α), then the mean of X is E(X) = α(1−p)
p2

.
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Fig. 2. The pmf plots of the partial-geometric distribution in various combinations of p (0.5 and 0.75) and α (p/3q,
p/2q, 2p/3q, and 9p/10q).

Proof. The expectation of the PG distribution can be obtained from

E(X) =
∞∑
k=0

kP (X = k) =
∞∑
k=1

kα(1 − p)k = α(1− p)
∞∑
k=1

k(1− p)k−1.

Since
∞∑
k=1

k(1− p)k−1 =
1

p2
is the geometric series, the expectation will be E(X) = α(1−p)

p2 . �

Table 1. The mean, variance and index of dispersion (ID) values of the partial-geometric (PG) distribution for
different value of p and α

Figure p α E(X) V (X) ID

1(a) 0.25 0.1111 1.3333 7.5556 5.6667

1(b) 0.25 0.1667 2.0000 10.0000 5.0000

1(c) 0.25 0.2222 2.6667 11.5556 4.3333

1(d) 0.25 0.3000 3.6000 12.2400 3.4000

1(e) 0.50 0.3333 0.6667 1.5556 2.3333

1(f) 0.50 0.5000 1.0000 2.0000 2.0000

2(a) 0.50 0.6667 1.3333 2.2222 1.6667

2(b) 0.50 0.9000 1.8000 2.1600 1.2000

2(c) 0.75 1.0000 0.4444 0.5432 1.2222

2(d) 0.75 1.5000 0.6667 0.6667 1.0000

2(e) 0.75 2.0000 0.8889 0.6914 0.7778

2(f) 0.75 2.7000 1.2000 0.5600 0.4667
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Theorem 2. Let X ∼ PG(p, α), then the variance of X is

Var(X) =
α(1 − p) (p(2− p)− α(1 − p))

p4
.

Proof. The variance of the PG distribution can be obtained from

Var(X = k) = E(X − E(X))2 = E(X(X − 1)) + E(X) − (E(X))2.

With the expectation definition,

E(X(X − 1)) =

∞∑
k=0

k(k − 1)P (X = k) =

∞∑
k=2

k(k − 1)α(1 − p)k

= α(1− p)2
∞∑
k=2

k(k − 1)(1 − p)k−2.

Since
∞∑
k=2

k(k − 1)(1 − p)k−2 =
2

p3
is the geometric power series, then the E(X(X − 1)) will be equal

to 2α(1 − p)2/p3. Therefore,

Var(X) =
2α(1 − p)2

p3
+

α(1− p)

p2
−

(
α(1 − p)

p2

)2

=
α(1 − p) (p(2− p)− α(1 − p))

p4
.

�

Theorem 3. Let X ∼ PG(p, α), then the mgf ofX is MX(t) = β+ α(1−p)et

1−(1−p)et , where |et| < 1/1− p.

Proof. The mgf of the PG distribution can be achieved from

MX(t) =

∞∑
k=0

etkP (X = k) = et×0P (X = 0) +

∞∑
k=1

etkP (X = k)

= β +

∞∑
k=1

etkα(1 − p)k = β + α

∞∑
k=1

(et(1− p))k.

Since
∞∑
k=1

(et(1− p))k =
(1− p)et

1− (1− p)et
is the geometric series, then the mgf will be equals β + α(1−p)et

1−(1−p)et ,

where |et| < 1/1− p. �

Theorem 4. Let X ∼ PG(p, α), then the pgf of X is gX(t) = β + α(1−p)t
1−(1−p)t , where |t| < 1/(1 − p).

Proof. The pgf of the PG distribution can be acquired from

gX(t) =

∞∑
k=0

tkP (X = k) = t0P (X = 0) +

∞∑
k=1

tkP (X = k) = β + α

∞∑
k=1

(t(1 − p))k.

Since
∞∑
k=1

(t(1− p))k =
(1− p)t

1− (1− p)t
is the geometric series, then the pgf will be equals β + α(1−p)t

1−(1−p)t ,

where |t| < 1/(1 − p). �

3.3. Parameter Estimation

We consider the maximum likelihood estimation (MLE) that is the most commonly used method for
parameter estimation. Let X1,X2, . . . ,Xn be an independent and identically distributed random sample
of size n from the partial-geometric distribution, PG(p, α), and x1, x2, . . . , xn be the observed sample
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values. For k ≥ 0 denote the frequencies fk = #{i : xi = k}, that is, fk is the count of observations that
are equal to k. Note that

∞∑
k=0

fk = n and
∞∑
k=0

kfk =

∞∑
k=1

kfk = nX.

The likelihood function can be written as

L(p, α|x1, x2, . . . , xn) =
n∏

i=1

P (Xi = xi) =

∞∏
k=0

[P (X = k)]fk

= [P (X = 0)]f0
∞∏
k=1

[P (X = k)]fk =

(
1− α(1− p)

p

)f0 ∞∏
k=1

(
α(1 − p)k

)fk

=

(
1− α(1 − p)

p

)f0

α

∞∑
k=1

fk

(1− p)

∞∑
k=1

kfk

=

(
1− α(1 − p)

p

)f0

αn−f0(1− p)nX

=

(
1 +

1

α
− 1

p

)f0

αn(1− p)nX .

The log-likelihood function can be written as

�(p, α|x1, x2, . . . , xn) = logL(p, α|x1, x2, . . . , xn)

= f0 log

(
1 +

1

α
− 1

p

)
+ n log(α) + nX log(1− p).

By taking partial derivatives by the parameters, we obtain

∂�

∂p
=

f0

1 +
1

α
− 1

p

1

p2
− nX

1− p
,

∂�

∂α
= − f0

1 +
1

α
− 1

p

1

α2
+

n

α
.

The method of maximum likelihood estimators are found by equating the partial derivatives to zero;
that is

f0

1 +
1

α
− 1

p

1

p2
=

nX

1− p
,

f0

1 +
1

α
− 1

p

1

α2
=

n

α
.

By rewriting the second equation and substituting to the first equation, we obtain the estimated
maximum likelihood parameters α̂ and p̂ of the PG distribution as

α̂ =

(
1− f0

n

)2

X +
f0
n

− 1

and p̂ =

√
α̂2 + 4Xα̂− α̂

2X
.

4. APPLICATIONS TO REAL LIFE DATA

In order to evaluate the performance of the PG distribution, we consider two real datasets to fit with
the two competing geometric and Poisson distributions. We do not consider the first success distribution
as a competing because the data contain zeros.

The first dataset is accident data that provides the total number of the claims for 9,461 automobile
insurance policies [10]. The second dataset is the number of hospitals stays of persons age 66 and
over, for which there are 4,406 observations. These data were acquired from the national medical
expenditure survey of how Americans use and pay for health services conducted in 1987 and 1988 to
reveal a comprehensive picture of medical expenditure [11].
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Table 2. Estimated parameters for the number of cliams of the automobile insurance policies

Number of Observed Expected value by fitting distribution

claims frequency Geometric Partial-Geometric Poisson

0 7840 7790.542 7840.123 7636.354

1 1317 1375.518 1295.538 1636.148

2 239 242.865 260.038 175.279

3 42 42.881 52.194 12.518

4 14 7.571 10.476 0.671

5 4 1.337 2.103 0.029

6 4 0.236 0.422 0.001

7 1 0.042 0.085 0.000

Estimates p̂ = 0.823 p̂ = 0.823, α̂ = 0.682 λ̂ = 0.214

LL −5354.681 −5349.860 −5490.781

AIC 10711.36 10703.72 10983.56

BIC 10718.52 10718.03 10990.72

AD test 1.013 0.160 23.362

p-value 0.177 0.706 < 0.001

The appropriate distribution for fitting these datasets is evaluated with the Anderson-Darling (AD)
goodness of fit test for discrete data [12]. In addition, the discrete AD test is obtained by applying the
dgof package [13] in the R language. Moreover, there are also other model selection criteria used to
determine the best fit model: the minus log-likelihood (-LL), the Akaike information criterion (AIC), and
the Bayesian information criterion (BIC). The results of fitting different distributions to these datasets
are recorded in Tables 2 and 3.

The fitted distributions for the number of claims and the number of hospital stays presented in Tables
2 and 3 illustrate that the p-value based on the discrete AD test statistic of the PG distribution provides
a good fit to the data where it provides the largest p-value among others. Moreover, the PG distribution
provides the lowest values of -LL, AIC and BIC. Obviously, the PG distribution provides the nearest
expected value to the observed frequency. Therefore, the most appropriate fit distribution among these
three distributions for the number of claims and the number of hospital stays is the PG distribution
followed by the geometric and Poisson distributions respectively.

Figure 3 illustrates the plots of fitted frequency of the geometric, partial-geometric, and Poisson
distributions with the observed datasets for the total number of claims of the automobile insurance
policies and the number of hospital stays. It firmly shows that the partial-geometric (PG) distribution
provides the most fitted performance to these two datasets among the three distributions. Thus,
we consistently conclude that the PG distribution is more flexible than the geometric and Poisson
distributions.

5. DISCUSSION AND CONCLUSION

Confusion between geometric and first success distributions led to the idea of developing a new
family of distributions. By adding an extra parameter to an existing distribution for capturing more
variation of the natural phenomena, the partial-geometric distribution that contains both geometric and
first success distributions as a particular case is proposed. We found that the PG distribution is right
skewed and unimodal. Moreover, it can also be applied to model under-dispersed data. We also derived
some essential probability properties, for instance, probability mass function, mean, variance, moment
generating function, and probability generating function. The maximum likelihood estimation method is
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Table 3. Estimated parameters for the number of hospital stays

Number of Observed Expected value by fitting distribution

hospital stays frequency Geometric Partial-Geometric Poisson

0 3541 3399.590 3541.091 3277.140

1 599 776.528 573.702 970.021

2 176 177.373 193.160 143.561

3 48 40.515 65.035 14.165

4 20 9.254 21.897 1.048

5 12 2.114 7.372 0.062

6 5 0.483 2.482 0.003

7 1 0.110 0.836 0.000

8 4 0.025 0.281 0.000

Estimates p̂ = 0.772 p̂ = 0.772, α̂ = 0.387 λ̂ = 0.296

LL −3067.988 −3015.114 −3304.509

AIC 6137.976 6034.228 6611.019

BIC 6144.366 6047.009 6617.409

AD test 14.182 0.303 59.875

p-value < 0.001 0.540 < 0.001
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Fig. 3. The fitted frequency of the geometric, partial-geometric and Poisson distributions to real datasets.

employed to estimate the parameters of the PG distribution. Due to the practical applications with two
real datasets, the PG distribution provides the highest p-value for the discrete AD test and also provides
the lowest values of -LL, AIC and BIC as well. Therefore, the PG distribution is useful as an alternative
to other distribution for the analysis of discrete data.
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