
ISSN 1995-0802, Lobachevskii Journal of Mathematics, 2021, Vol. 42, No. 13, pp. 3098–3104. c© Pleiades Publishing, Ltd., 2021.

The λ-Statistical Convergence in Riesz Spaces

Abdullah Aydın1*, Muhammed Çınar1**, and Mikail Et2***
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Abstract—We introduce the λ-statistical monotone and the λ-statistical order convergent se-
quences in Riesz spaces. We also give some relations between the lattice operations and the λ-
statistical convergence in Riesz spaces, and also, some relations between the order convergence
and λ-statistical order convergence.
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1. INTRODUCTION AND PRELIMINARIES

Statistical convergence is a generalization of the ordinary convergence of a real sequence. The idea
of statistical convergence was firstly introduced by Zygmund [24] in the first edition of his monograph
in 1935. Fast [10] and Steinhaus [20] independently improved this idea in the same year 1951. Several
generalizations and applications of this concept have been investigated by several authors in series of
papers (c.f. [3, 7, 9, 12, 13, 15]). But, statistical convergence on Riesz spaces has not been studied
extensively. A few studies have been conducted on this recently; see for example [4, 5, 8, 21]. They show
some relations between the order convergence and the statistical convergence on Riesz spaces. We aim
to introduce a concept of the statistical convergence on Riesz spaces by using the λ-density property
which is a useful and classical tool of statistical convergence (cf. [16]).

Natural density plays an important role in statistical convergence. Recall that if the limit
limn→+∞

1
n |{k ≤ n : k ∈ A}| exists then this unique limit is called the natural density of subset A of

N, and it is mostly abbreviated by δ(A), where |{k ≤ n : k ∈ A}| is the number of members of A. Also,
a sequence (xk) statistically converges to L provided that

lim
n→+∞

1

n

∣∣{k ≤ n : |xk − L| ≥ ε}
∣∣ = 0

for each ε > 0. Then it is written by S − limxk = L. If L = 0 then (xk) is said to be a statistically null
sequence. Throughout this paper, the vertical bar of sets will stand for the cardinality of sets.

Let consider a non-decreasing sequence (λn) of positive scalars such that λ1 = 1 and λn+1 ≤ λn +1.
Then we can construct a new sequence of intervals In := [n− λn + 1, n]. A sequence (xn) is said to be
λ-statistically convergent to L if, for every ε > 0, we have

lim
n→+∞

1

λn

∣∣{k ∈ In : |xk − L| ≥ ε}
∣∣ = 0.
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Thus, we abbreviate the limit as Sλ − limxn = L. Moreover, the λ-density of a subsetM ofN is denoted
by δλ(M) := lim

n→+∞
1
λn

∣∣{k ∈ In : k ∈ M}
∣∣ (cf. [16]).

Now, we turn our attention to Riesz space another concept of functional analysis introduced by
F. Riesz in [18]. It has many applications in measure theory, operator theory, and optimization (cf. [1, 2,
14, 17, 22, 23]). A real-valued vector space E with an order relation “≤” is called ordered vector space
whenever

(1) x+ z ≤ y + z for all z ∈ E,

(2) λx ≤ λy for every 0 ≤ λ ∈ R

for every x, y ∈ E with x ≤ y. An ordered vector space E is called Riesz space or vector lattice if the
infimum and the supremum

x ∧ y = inf{x, y} and x ∨ y = sup{x, y}
exist in E for every vectors x, y ∈ E, respectively. For an element x in a Riesz space E, the positive
part, the negative part, and the module of x are

x+ := x ∨ 0, x− := (−x) ∨ 0 and |x| := x ∨ (−x),

respectively. In the present paper, the vertical bar | · | of elements in Riesz spaces will stand for the
module of elements. It is clear that the positive and negative parts of vectors are positive. On the other
hand, order convergence is crucial for the concept of Riesz spaces. Thus, we continue with its definition.

Definition 1. A sequence (xn) in a Riesz space E is called order convergent to x ∈ E whenever
there exists another sequence (yn) ↓ 0, i.e., inf yn = 0 and yn ↓, such that |xn − x| ≤ yn holds for all
n ∈ N.

To introduce the statistical convergence in Riesz spaces, the notion of statistical monotonic se-
quences was introduced and studied (cf. [4, 6, 8, 19]. We take the following notion from [21].

Definition 2. A sequence (xn) in a Riesz space E is called statistically monotone decreasing if there
exists a set K = {n1 < n2 < · · · } in N such that δ(K) = 1 and (xnk

) is decreasing. In this case, we
write xn ↓st. Moreover, if inf(xnk

) = x for some x ∈ E then (xn) is said to be statistically monotone
convergent to x, and abbreviated as xn ↓st x.

2. λ-STATISTICAL MONOTONE SEQUENCES

We begin the section with the notion of λ-statistical monotone sequence in Riesz spaces with respect
to the order convergence and the λ-density.

Definition 3. A sequence (xn) in a Riesz space E is said to be λ-statistically decreasing if there
exists a subset M = {n1 < n2, · · · } of the natural numbers N with δλ(M) = 1 such that the sequence
(xnm)n∈M is monotone decreasing. Moreover, if inf(xn) = x on M for some x ∈ E then (xn) ↓λst x.

One can define the notion of λ-statistically increasing sequence. Therefore, if (xnm) ↓ x or
(xnm) ↑ x in E then (xn) is called λ-statistically monotone convergent to x.

Proposition 1. Every monotone sequence is λ-statistical monotone in Riesz spaces.
Proof. Suppose that (xn) is a monotone decreasing sequence in a Riesz space E. Then take the

subset M = {n1 < nn, · · · } in Definition 3 as N. So, we obtain that δλ(M) = 1 and (xn) is decreasing
on M , and so, (xn) is λ-statistically decreasing. �

The converse of Proposition 1 does not hold in general. To see this, we consider the following example.
Example 1. Consider the Riesz space E := N. Assume that (xk) is a sequence in E defined by

xk :=

{
1, n− [

√
λn] + 1 ≤ k ≤ n,

k, otherwise.

So, (xk) is a λ-statistical increasing sequence, but it is not monotone increasing.
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It is clear that the order convergence does not imply λ-statistically monotone convergence because
the order convergent sequence does not need to be monotone. But, we have an observation of the
following result.

Proposition 2. Every order convergent decreasing sequence is λst-convergent to its order limit
in Riesz spaces.

Proof. Assume that xnx in a Riesz space E. Thus, there exists another sequence (yn) ↓ 0 such
that |xn − x| ≤ yn for all n ∈ N. Since (yn) is decreasing, it follows from Proposition 1 that (yn) is λ-
statistical monotone sequence. So, we have (yn) ↓λst 0. Hence, there exists a subset M of the natural
numbers with δλ(M) = 1 and (ynm) ↓ 0. Therefore, we have (xnm) ↓ x. �

Proposition 3. If (xn) is a λ-statistically increasing sequence in a Riesz space then the λ-
density of the set {n ∈ N : xn � xn+1} is equal to zero.

Proof. Suppose that (xn) is a λ-statistically increasing sequence in a Riesz space E. Then there
is a subset M = {n1 < n2, · · · } of N such that δλ(M) = 1 and (xn) is monotone increasing on M , i.e.,
xn ≤ xn + 1 for all n ∈ M . Thus, we have

{n ∈ N : xn � xn+1} ⊆ N−M.

Therefore, δλ
(
{n ∈ N : xn � xn+1}

)
= 0 because of δλ(N −M) = 0. �

Corollary 1. If (xn) is a λ-statistically decreasing sequence then δλ
(
{n ∈ N : xn+1 � xn}

)
= 0.

In the next result, we prove that the lattice operators are λ-statistically continuous.
Theorem 1. (xn) ↓λst x and (yn) ↓λst y implies (xn ∨ yn) ↓λst x ∨ y in Riesz spaces.
Proof. Assume that (xn) ↓λst x and (yn) ↓λst y in a Riesz space E. Then there exist subsets M1

and M2 of N such that δλ(M1) = δλ(M2) = 1, and also, (xni)i∈M1 ↓ x and (ynj )j∈M2 ↓ x for some
x, y ∈ E. Let consider the set M = M1 ∩M2. Then following from the inequality δλ(M1) + δλ(M2) ≤
1 + δλ(M1 ∩M2), we have δλ(M1 ∩M2) = 1. On the other hand, (xn ∨ yn) is monotone decreasing on
M because both (xn) and (yn) are monotone decreasing on M . Now, by applying [14, Thm.12.4], we
can obtain

|xn ∨ yn − x ∨ y| ≤ |xn ∨ yn − yn ∨ x|+ |x ∨ yn − x ∨ y|
≤ |xn − x|+ |yn − y|.

Thus, inf(xn ∨ yn) = x∨ y on M because of inf(xn − x) = 0 and inf(yn − y) = 0 on M . Hence, we get
the desired result, (xn ∨ yn) ↓λst x ∨ y. �

Corollary 2. If (xn) ↓λst x hold then we have the following facts:

(i) (xn)
+ ↓λst x+;

(ii) (xn)
− ↓λst x−;

(iii) |xn| ↓λst |x|.

Theorem 2. Let (xn) ↑λst x and (yn) ↑λst y. Then (xn ∨ yn) ↑λst x ∨ y.
Proof. Modify Theorem 1. �

From now on, we only focus on λ-statistically decreasing sequences. Similarly, one can prove the
other case. We continue with several basic and useful results that are motivated by their analogies from
the Riesz space theory.

Proposition 4. Let (xn) and (yn) be two sequences in a Riesz space E. Then, for any x, y ∈ E,
the following statements hold:

(i) xn ↓λst x if and only if (xn − x) ↓λst 0;

(ii) (xn) ↓λst x and (yn) ↓λst y implies (xn ∧ yn) ↓λst x ∧ y;

(iii) (xn) ↓λst x implies (αxn) ↓λst αx for every α ∈ R;
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(iv) (xn) ↓λst x and (yn) ↓λst y implies (xn + yn) ↓λst (x+ y);

(v) (xnk
) ↓λst x is hold for any subsequence (xnk

) of (xn) ↓λst x whenever (xnk
) is decreasing

and δλ
(
{n1, n2, n3, · · · }

)
= 1;

(vi) (xn) ↓λst x and (xn) ↓λst y implies x = y;

(vii) 0 ≤ (xn) ↓λst x implies x ∈ E+;

(viii) if 0 ≤ yn ≤ xn for all n ∈ N, (xn) ↓λst 0, and (yn) is decreasing then (yn) ↓λst 0;

(ix) if (xn) ↓λst x, (yn) ↓λst y, and xn ≥ yn for all n ∈ N then x ≥ y.

Proof. The axioms (i) and (iii) follow immediately from Definition 3. Also, by using [2, Thm.1.3(1)],
we obtain (ii).

(iv) Suppose that (xn) ↓λst x and (yn) ↓λst y in E. Then there exist subsets M1 and M2 of N such
that δλ(M1) = δλ(M2) = 1 and the sequences (xn) and (yn) are monotone decreasing to x and y on
M1 and M2, respectively. Take a new subset M = M1 ∩M2 of N. Then it is clear that δλ(M) = 1
and (xn + yn) is a decreasing sequence on M . It follows from the inequality |(xn + yn)− (x+ y)| ≤
|xn − x|+ |yn − y| that (xn + yn) ↓ (x+ y) on M . Therefore, (xn + yn) ↓λst (x+ y).

(v) Assume that (xn) ↓λst x in E. Then there exists a subset M of N with δλ(M) = 1 such that the
sequence (xnm) is monotone decreasing to x. Thus, it follows from Proposition 2 that (xnm) ↓λst x.
However, we should show the argument for arbitrary subsequences. By the way, consider a decreasing
subsequence (xnk

) of (xn) such that δλ(K) = 1 for K = {n1, n2, n3, · · · }. Assume K �= M . Otherwise,
the proof is obvious. Also, if K does not exist then there is nothing to prove. Now, we prove (xnk

) ↓λst x.
Since (xnm) is monotone decreasing to x, we have (xnm) ≥ x for all m ∈ M . Also, we can see that M
and L are almost equal because the λ-density of the set J = M ∩K is equal to one. Hence, we can
find a subsequence (xnkj

) of (xnk
) such that x is the lower bound of it. Also, it is clear that (xnkj

) is

monotone decreasing and the λ-density of its index set is equal to one. Take another lower bound w ∈ E
of (xnkj

), i.e. xnkj
≥ w for all j ∈ N. Fix an index j. Then since M and L are almost equal, one can find

an index mj ∈ M so that xmj = xnkj
≥ w. Thus, we get f ≥ w because x is the infimum of (xnm). As

a result, we see that x is the infimum of (xnkj
), i.e., (xnk

) ↓λst x.

(vi) Suppose that (xn) ↓λst x and (xn) ↓λst y in E. Then there exist subsets M and K of N with
δλ(M) = δλ(K) = 1 such that the subsequences (xnm) and (xnk

) are monotone decreasing to x and
y, respectively. Now, if we choose J = M ∩K then we have δλ(J) = 1. Thus, we can consider a
subsequence (xnj ). So, (xnj ) is monotone decreasing to both x and y because (xnj ) is a subsequence
of both (xnm) and (xnk

). Therefore, we obtain x = y because the order limits are uniquely determined.

(vii) Assume 0 ≤ (xn) ↓λst x. Then, by using Corollary 2, we have (xn) = (xn)
+ ↓λst= x+. So, it

follows from (vi) that x = x+ ∈ E+.

(viii) Suppose 0 ≤ yn ↓≤ xn for all n ∈ N and (xn) ↓λst 0 in E. Then there is a subset M of N
with δλ(M) = 1 such that the subsequence (xnm) is monotone decreasing to x. Now, consider the
subsequence (ynm) of (yn). Then we have 0 ≤ (ynm) ≤ (xnm) for all nm ∈ M . Hence, we get (ynm) ↓ 0
because of (xn) ↓ 0 on M .
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(ix) By applying (iii) and (iv), we can obtain (xn − yn) ↓λst (x− y). Next, by using (vii), one can
see that x− y ∈ E+, i.e., x ≥ y because of 0 ≤ (xn − yn) = (xn − yn)

+. �

3. THE λ-STATISTICAL ORDER CONVERGENCE

We begin with the following definition which is crucial for the present paper.

Definition 4. Let E be a Riesz space and (xn) be a sequence in E. Then (xn) is called λ-statistical
order convergent to x ∈ E if there exist another sequence (yn) ↓λst 0 in E and a subset M of N with

δλ(M) = 1 such that |xnm − x| ≤ ynm holds for each nm ∈ M . We abbreviate it as xn
λsto−−→ x.

For a given sequence (xn) in a Riesz space, one can observe that if there exists another sequence

(yn) ↓λst 0 such that the δλ-density of the set {n ∈ N : |xn − x| � yn} is equal to zero then xn
λsto−−→ x.

Remark 1. It is clear that the λ-statistically monotone convergence implies the λ-statistical order
convergence. Indeed, suppose that a sequence (xn) is λ-statistically decreasing to x in a Riesz space
E. Hence, there exists a subset M of N with δλ(M) = 1 such that the sequence (xnm) is monotone
decreasing to x. Thus, we have (wnm) := (xnm − x) ↓ 0. Now, by applying Proposition 2, we obtain

(wnm) ↓λst 0. Therefore, we get xn
λsto−−→ x because of |xnm − x| ≤ wnm .

Proposition 5. The order convergence implies the λ-statistical order convergence in Riesz
spaces.

Proof. Suppose xnx in a Riesz space E. Then there exists another sequence (yn) ↓ 0 in E such
that |xn − x| ≤ yn holds for all n ∈ N. Now, by using Proposition 2, we can get (yn) ↓λst 0. So, there
is a subset M such that δλ(M) = 1 and (ynm) ↓ 0. Moreover, we have |xnm − x| ≤ ynm , and so, we get

xn
λsto−−→ x. �

Now, we give several basic and useful results.

Theorem 3. Let E be Riesz spaces. Then the following conditions hold:

(i) xn
λsto−−→ x if and only if (xn − x)

λsto−−→ 0 if and only if |xn − x| λsto−−→ 0;

(ii) the lattice operations are λ-statistically order continuous;

(iii) the λsto-limit is linear;

(iv) the λsto-convergence has an unique limit;

(v) the positive cone E+ is closed under the λsto-convergence in E.

Proof. (i) It can be observed from Definition 4.

(ii) Assume that (xn)
λsto−−→ x and (yn)

λsto−−→ y hold in E. Then there exist some sequences (un) ↓λst

0 and (vn) ↓λst 0, and subsets M an K of N such that δλ(M) = δλ(K) = 1, and |xnm − x| ≤ unm and

|ynk
− x| ≤ vnk

for all nm ∈ M and nk ∈ K. It is enough to show that xn ∨ yn
λsto−−→ x ∨ y. Now, by

applying [2, Thm.1.9(2)], we obtain the inequality

|xn ∨ yn − x ∨ y| ≤ |xn − x|+ |yn − y|.

Thus, one can get the assertion from the following fact {n ∈ N : |xn ∨ yn − x ∨ y| � vn + un} ⊆ {n ∈
N : |xn ∨ yn − x ∨ y| � vn} ∪ {n ∈ N : |xn ∨ yn − x ∨ y| � un}. The other cases of lattice operations
are analogous.
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(iii) The part of the scalar multiplication is clear. Thus, we show the additive part. Consider

two sequences (xn)
λsto−−→ x and (yn)

λsto−−→ y in E. Then there exist some sequences (un) ↓λst 0 and
(vn) ↓λst 0 such that δλ

(
{n ∈ N : |xn − x| � un}

)
= 0 and δλ

(
{n ∈ N : |yn − y| � vn}

)
= 0. Also, one

can obtain

{n ∈ N : |(xn + yn)− (x+ y)| � vn + un} ⊆ {n ∈ N : |xn − x| � un}
∪ {n ∈ N : |yn − y| � vn}.

Following from Proposition 4(iv) and δλ
(
{n ∈ N : |(xn + yn)− (x+ y)| � vn + un}

)
= 0, we get the

desired result.

(iv) Suppose that xn
λsto−−→ x and xn

λsto−−→ y hold in E. Then we have sequences (un) ↓λst 0 and
(vn) ↓λst 0 and a subset M of N such that δλ(M) = 0, |xnm − x| ≤ unm and |xnm − y| ≤ vnm . Following
from the inequality

0 ≤ |x− y| ≤ |x− xnm|+ |xnm − y| ≤ unm + vnm,

we obtain x = y because of unm ↓ 0 and vnm ↓ 0.
(v) Suppose that (xn) is a non-negative sequence, and it is λsto-convergent to x ∈ E. It follows from

(ii) and (iv) that xn = x+n
λsto−−→ x+ = x. So, we get the desired result, x ∈ E+. �

Proposition 6. Let (xn), (yn) and (zn) be sequences in a Riesz space E such that zn ≤ yn ≤ xn

holds for all n ∈ M ⊆ N with δλ(M) = 1. If zn
λsto−−→ 0 and xn

λsto−−→ 0 in E then yn
λsto−−→ 0.

Proof. Modify [21, Thm.7.]. �

For the converse of Proposition 5, we give the next result.
Proposition 7. Every monotone λ-statistical order convergent sequence is order convergent to

its λsto-limit in Riesz spaces.

Proof. It is enough to show that if E � xn ↑ and xn
λsto−−→ x then xn ↑ x. Take an arbitrary index n0.

Then xn − xn0 ∈ X+ for n ≥ n0. By using (iii) and (v) of Theorem 3, we have xn − xn0

λsto−−→ x− xn0 ∈
E+. Thus, we get x ≥ xn0 for any n. Since n0 is arbitrary, x is an upper bound of xn0 . Now, assume

that y ≥ xn for all n. Then, by using Theorem 3, we have y − xn
λsto−−→ y − x ∈ E+, or y ≥ x. Thus,

xn ↑ x. �
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