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Abstract—This paper presents a systematical study of the effect of porosity, pore-level heterogeneity
and anisotropy on the absolute permeability of digital images of porous media. The main goal is to
develop an analytical formula that estimates permeability as a function of these three parameters
at once. Permeability is assessed based on numerical simulations using the lattice Boltzmann
equations. Digital models of porous media are generated by a combined method consisting of
Monte-Carlo and quartet structure generation set (QSGS) algorithms. Increase in heterogeneity
negatively affects permeability. With an increase in porosity, the effect of heterogeneity on flow
properties decreases. There was a linear decrease in permeability during the transition between
favorable and unfavorable anisotropy. The influence of anisotropy is most pronounced in samples
with high porosity and monotonically reduces with decreasing porosity. Heterogeneity negatively
influences on the sensitivity of flow properties to changes in anisotropy and independent on porosity.
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1. INTRODUCTION

Single-phase flows in porous media occur in many scientific and engineering disciplines, such
as underground hydromechanics, oil and gas engineering, hydrology and hydrogeology, medicine,
and chemical engineering. One technology for measuring transport properties, such as absolute
permeability, involves performing laboratory flow experiments, which are laborious, time consuming
and expensive. For this reason, an alternative method for assessing flow characteristics is to use
analytical dependences that relate permeability to other characteristics of a porous medium (porosity,
specific surface area of pore channels). The development of a universal formula that makes it possible to
predict the transport properties of porous materials with high quality and accuracy is a matter of great
fundamental and practical importance and an urgent research area.

One of the main and widely used formulas is the Kozeny–Carman equation, which connects porosity
m and absolute permeability k as follows [1, 2]:

k =
1

CKCτ2
m3

S2
V

, (1)
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where SV is the specific surface area, τ is the tortuosity, and CKC is the Kozeny–Carman constant. This
formula was developed on the basis of the simplest capillary bundle model and also does not explicitly
take into account heterogeneity and anisotropy of the pore structure. Its applicability is limited and
the accuracy is insufficient [3]. These disadvantages stimulate the improvement of this formula and the
derivation of new equations.

In recent decades, this problem has been intensively studied, resulting in the development of various
relationships. A group of articles has been published in which the flow properties of ordered and arbitrary
structures were studied. Gebart [4] developed an analytical equation for homogeneous media with

quadratic and hexagonal arrangements of circular fibers: k = R2
fCG(

√
1−mc
1−m − 1)5/2, where Rf is the

fiber radius, mc is the threshold porosity, and CG is the fitting parameter. Eshghinejadfard et al. [5]
and Ebrahimi Khabbazi et al. [6] investigated the flow properties of body- and face-centered cubes and
have developed the relationship for the Kozeny–Carman constant. Koponen et al. [7] studied flows in
media with square obstacles and offered using the effective porosity meff instead of the full porosity in
the Kozeny–Carman equation. Rumpf and Gupte [8] obtained an empirical relationship for the sphere
packing models: k = 0.178d2m5.5 (d is the grain diameter). This formula shows high deviations for
structures with low and high porosity.

The above ratios for arbitrary structures can be useful for a rough assessment of their flow properties.
The main disadvantage of these relationships is that they do not take into account the heterogeneity
and, moreover, the anisotropy of the pore space. So far, there are several studies in which the influence of
anisotropy and heterogeneity on the flow properties is investigated mainly qualitatively, but a numerical
description of the revealed effects is not performed. To the best of our knowledge, no such systematic
quantitative researches have been conducted.

A group of papers reported a significant effect of heterogeneity on tortuosity and permeability. It was
found in [9, 10] that “permeability of a random medium is lower than the permeability of a regularly
ordered medium with the same porosity“. In [11], in the study of samples with different structures and
the same porosity, large deviations of tortuosity from the average value were found, which decreased
with increasing porosity. The effect of square particles locations in soils was considered in [12], but the
arrangement of particles and their possible movements were limited and not arbitrary in this study.

An attempt to numerically describe the effect of heterogeneity and anisotropy on permeability and
tortuosity was made in [13]. According to the published results, no clear correlation was found between
the flow properties and porous media characteristics. Moreover, the influence of anisotropy has not
been studied for structures with various porosity and heterogeneity. The permeability of heterogeneous
and anisotropic shales was assessed in [14]. On the graphs presented in this work, one can note the
correlation, but, unfortunately, it is not evaluated numerically and the results are not systematized to the
end. There are other high-quality studies on this issue [15–17], but they are also obviously not enough.

Today, numerical experiments performed on digital models of porous media have become a widely
used method for studying their properties or pore-scale processes. Digital models can be represented
by X-ray computed tomography (CT) images of natural samples [18] as well as artificially generated
structures [13–16, 19]. There are various algorithms for generating porous media. The most commonly
used methods are quartet structure generation set (QSGS) [13–15, 20], random distribution of
obstacles [19, 20], and Monte-Carlo [21, 22]. Unlike X-ray CT models, artificial structures are more
suitable for studying flow properties, since the methods mentioned above can control the characteristics
of a porous medium (porosity, specific surface area, heterogeneity, anisotropy). Digital models also allow
one to quantify their heterogeneity and anisotropy through image processing [14], which is extremely
difficult to do on real samples.

The findings of this paper are based on the numerical simulations of single-phase flows in porous
structures using the lattice Boltzmann equations (abbreviated as LBEs) [23]. LBEs have become a
powerful tool for pore-scale simulations and, as far as we know, used most often in comparison with the
Navier-Stokes equations [24] and the pore network model [25]. The attractiveness of the LBEs involves
simple boundary conditions on obstacles (the “bounce back“ rule) and an easy numerical scheme, a
short duration of one iterative time step, and good adaptation to GPGPU and OpenMP technologies.
The accuracy of Single-relaxation time (SRT) and Multi-relaxation time (MRT) collision models within
LBEs was investigated in [26, 27]. Unlike the SRT model, the results obtained with the MRT model are
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independent of viscosity. In addition, when testing these models on a planar Poiseuille flow, the accuracy
of the MRT model is much higher.

In our previous paper [21], we found the numerical effect of heterogeneity on the absolute permeability
and tortuosity of isotropic structures. An analytical formula was obtained that predicts permeability and
tortuosity in the dependence of porosity and heterogeneity. Unfortunately, the results of this paper are
limited since they are valid only for isotropic porous media.

To overcome this disadvantage, the scope of the present paper is to systematically study the effect of
porosity, pore-level heterogeneity and anisotropy on absolute permeability. The value of the results lies in
the identified effect of anisotropy on permeability in media with different heterogeneity and porosity. The
target of our investigation is an analytical formula that estimates permeability as a function of porosity,
heterogeneity, and anisotropy and determines the advantage of the results.

2. METHODS

2.1. Mathematical Model

This article uses LBEs with an MRT collision model to simulate pore-scale single phase flows.
In the LBEs, the fluid flow is regarded as the dynamics of an ensemble of particles with a given

finite number of possible velocities. The flow domain in the standard case is a grid with square or
cubic cells forming a lattice. During a time step Δt, particles, without interacting with each other,
can make one act of displacement between adjacent nodes. Possible directions for particle movements
are described using two-dimensional D2Q9 model [23]: e1 = c · (0, 0), e2 = c · (1, 0), e3 = c · (0, 1),
e4 = c · (−1, 0), e5 = c · (0,−1), e6 = c · (1, 1), e7 = c · (−1, 1), e8 = c · (−1,−1), and e9 = c · (1,−1),
where c = Δl/Δt is the lattice speed.

The state of the system at each grid node is described using one-particle distribution functions
f(r,u, t). The functions f(r,u, t) are presented as a set of distribution functions fi, where i = 1, . . . , 9
indicates the direction of particle movement in the D2Q9 model. The function fi characterizes a part of
the particles moving in the i-th direction.

The dynamics of the particle ensemble is described in several stages. The first stage is a streaming
step. At this stage, during Δt, the particles move to neighboring nodes in possible directions for D2Q9.
The second stage deals with the collision process of particles, as a result of which the distribution
function tends to an equilibrium state. The evolution of fi in time and space is described by Eq. (2):

fi(r+ eiΔt, t+Δt) = fi(r, t) + Ωi(r, t) (2)

where Ωi(r, t) is a collision operator. The macroscopic fluid variables, namely the density and velocity,
are obtained by Eqs. (3) and (4):

ρi(r, t) =

9∑
i=1

fi(r, t), (3)

u(r, t) =
1

ρ

9∑
i=1

eifi(r, t). (4)

The pressure p is associated with the fluid density according to the following relationship: p = ρc2/3.

The relaxation parameter T controls the kinematic viscosity μ as follows: μ = (2T−1
6 )Δl2

Δt . T cannot
take values less than 0.5, because negative values of fluid viscosity are not physical. As T increases, the
viscous properties of the fluid also grow. Based on the reported ranges of the relaxation parameter [4,
26], the simulations are performed at T = 1.

The MRT collision operator [28] is described by

Ωi = −M−1S(mi −meq
i ). (5)

In Eq. (5), mi =
∑9

i=1 Mikfk .The view of matrix M and the formulas for the calculation of in the D2Q9
model are given in [26]. The components of the diagonal matrix S in Eq. (5) are described in [27].
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Kinematic viscosity μ = 10−6 m2/s and density ρ = 1000 kg/m3. At the initial time, the pore space
is completely filled with fluid. A fluid with the same properties is injected through one of the sides and
is selected through the opposite side. The flow occurs at a constant pressure drop ΔP =50 Pa between
the input and output boundaries. The boundary conditions on the input and output sections are realized
by Zou and He relationships [29]. The external borders of the sample are impermeable. On the internal
and external impermeable boundaries, the “bounce-back“ conditions are applied [24].

2.2. Porous Media Properties
In this paper, the numerical simulations are carried out in artificially generated two-dimensional

models of granular porous media. To create digital images, a specially developed combined method
was applied, consisting of QSGS and Monte-Carlo algorithms. In contrast to the random location
algorithm used in [19, 21], QSGS enables us to generate porous morphological features very similar to
the real pore structure [20]. QSGS is also suitable for controlling pore space anisotropy, which is difficult
when using obstacles of a given shape.

Most porous materials have a unique structure at the pore level. In our study, the characteristics
of the pore space are described numerically using two parameters: disorder, which is used to assess
heterogeneity, and anisotropy. These values are calculated by processing digital images of the porous
medium.

The disorder parameter H is a corrected standard deviation of local porosity:

H =

N∑
i=1

√
(ϕα

i − ϕ)2

N − 1

[22], where ϕ is the average sample porosity, ϕα
i is the local porosity calculated in the ith unit cell, and

N is the number of cells.
Depending on the meshing, uniform square or cubic lattices [22] and Voronoi diagram [21] are

distinguished. Fig. 1 shows the isotropic porous structures different heterogeneities.
When reviewing the literature [13, 14], we have identified a general approach to the numerical

estimation of anisotropy. The parameter describing anisotropy will be called “anisotropy“ and denoted
by A. This characteristic is defined as the ratio of the sum of the pore height ny to the sum of the pore
width nx: A = ny/nx. To calculate ny and nx, all pore sizes hi and wi are measured in each cross
section perpendicular to the OX and OY axes, respectively: ny =

∑P
i=1 hi, nx =

∑P
i=1 wi, where P is

the number of pores. Without losing the generality of this approach, ny and nx can be swapped when
evaluating A. Anisotropic porous media with different m and H are shown in Fig. 2.

3. RESULTS AND DISCUSSION
3.1. Evaluation of Permeability and Tortuosity

In this section, we aim to identify and numerically evaluate the effect of anisotropy and heterogeneity
on the transport properties of porous media with different porosities. The study will be carried out in
two stages. At the first stage, we investigate how heterogeneity affects permeability and tortuosity in
isotropic porous media with different porosities. Then, by adding an anisotropy factor, we study the
effect of anisotropy in samples having different heterogeneity and porosity.

The components of absolute permeability tensor are measured using Darcy’s law: kii =
QiηLi
SΔP , where

i indicates flow direction (x or y), Qi is the flow rate through the outlet section perpendicular to the ith
direction, S is the length of the outlet boundary, ΔP is the pressure drop between the inlet and outlet
boundaries, Li is the length of the sample in the ith direction, and η is the dynamic viscosity. When
calculating the absolute permeability at constant ΔP , Qi corresponds to the steady state flow rate.

For isotropic structures, the results will be presented only for the kxx component. Subscript xx will
be omitted. Macroscopic tortuosity is determined as the ratio of the average of the actual path lengths to
the system length in the direction of the macroscopic flow [5, 10, 11] and is estimated using the following
relationship:

τ =

∑
i,j

√
u2x(i, j) + u2y(i, j)∑
i,j ux(i, j)

, (6)

where ux and uy are the velocity components of the flow field, and (i, j) indicates the node number.
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(a) (b)

(c) (d)

Fig. 1. Porous structures with different disorders generated by combined QSGS and Monte-Carlo algorithms:
(a) H = 0.055; (b) H = 0.105; (c) H = 0.179; (d) H = 0.246.

3.2. Isotropic Heterogeneous Porous Media

Before we begin to study anisotropic porous media, it is necessary to define the heterogeneity effect
and develop the relationship between disorder and transport properties for isotropic media. To determine
only the effect of disorder, a series of numerical simulations was carried out on a group of samples
with the same porosity and close values of the specific surface length, but with various pore structures.
Specific surface length SV is calculated as the ratio of the solid phase perimeter to the sample area. The
study was performed for 8 values of porosity in the range from 0.435 to 0.741. The number of porous
structures generated for one porosity value is about 75–100. The limitation of the minimum porosity is
associated with a large number of impermeable porous structures at H > 0.15 with a further decrease in
porosity.

The results for tortuosity and permeability are shown in Fig. 3. To avoid effects not related to porosity
and specific surface length, all further results for absolute permeability are shown in dimensionless form:

k∗ = 1012k
S2
V

m3 , where k is a result of the numerical simulations. According to shown data, an increase
in porosity causes a decrease in the average tortuosity for a group of samples with the same porosity
(Fig. 3a).

A clear influence of disorder on tortuosity and permeability was found. The revealed effect is stronger
in media with low porosity and decreases monotonically with an increase in porosity. At m = 0.436, the
drop in permeability with increasing heterogeneity reaches 3 times, while at m = 0.635 it is only 25%.

The numerical results obtained for a group of samples with the same porosity were fitted using linear
dependences (solid lines in Fig. 3):

τ(m,H) = α(m) + β(m)(H −H0), (7)
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Fig. 2. Porous media with different porosity (m), disorder (H), and anisotropy (A).

k∗(m,H) = γ(m) + δ(m)(H −H0). (8)

Coefficients α and γ in the Eqs. (7) and (8) depend on porosity and determine the permeability and
tortuosity for H = H0. Coefficients β and δ in the Eqs. (7) and (8) define the slopes of the curves
and indicate the sensitivity of permeability and tortuosity to change in disorder at different porosities,
respectively. H0 = 0.04 is the minimum disorder. This initial value corresponds to samples with an
ordered arrangement of cores of the growing solid phase. Index 1 in Eq. (8) indicates the first approach
for assessing permeability.

For m ≤ 0.585, the offered dependences approximate the results of numerical simulations with an
R-squared exceeding 0.64 for tortuosity (Fig. 3a) and 0.83 for permeability (Fig. 3b). A decrease in
the R-squared for m > 0.585 is associated with a weakened of the effect of disorder on tortuosity and
disorder.

The dependences of the fitting parameters α and β (Eq. (7) for tortuosity) as well as γ and δ (Eq. (8)
for permeability) on porosity are illustrated in Figs. 4a and 4b, respectively. As shown, each of the four
parameters obeys a linear law with high R2 > 0.93. When approximating, the following relationships
were derived: α(m) = 1.558 − 0.553m; β(m) = 1.402 − 1.683m; γ(m) = −0.763 + 0.814m; δ(m) =
−0.062 + 0.372m. After substituting these formulas into Eqs. (7) and (8), we propose new dependences
for tortuosity and permeability:

τ(m,H) = 1.558 − 0.533m + (1.402 − 1.683m)(H − 0.04), (9)

k∗(m,H) = −0.062 + 0.372m + (0.814m − 0.763)(H − 0.04). (10)

In contrast to the previously developed relationships [4–8], Eqs. (9) and (10) have the advantage of
numerically predicting tortuosity and permeability in porous structures with different heterogeneities.
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Fig. 3. Effect of disorder on tortuosity (a) and dimensionless permeability (b) for samples with different porosities. The
solid curves are the result of fitting using Eq. (7) for tortuosity and Eq. (8) for permeability.

3.3. Anisotropic Heterogeneous Porous Media

In this section, we complicate our research by adding an anisotropy factor. Unlike papers [13, 14],
where the influence of anisotropy was investigated for porous structures with random heterogeneity, we
present a systematic study of the effect of anisotropy on transport properties of porous media having
various and known porosity and heterogeneity. In other words, we want to find out how porosity and
disorder affect the sensitivity of permeability to changes in anisotropy. Thus, if the effect will be clearly
identified, the goal is to derive a dependency of permeability on three parameters at once.

If the parameter A is used in the form described in Section 2.3.2, the anisotropy can be considered
favorable for the flow driven along the OX axis if A < 1, and unfavorable for A > 1 (see Fig. 2). In
our study, the upper limit of anisotropy is 1.6–1.7. This value is justified by the appearance of very
low-permeable and impermeable structures with a further increase in anisotropy (especially for models
with low porosity). The same maximum was also used in [14] when studying shales. The lower limit of
anisotropy is 0.4–0.5. Based on Fig. 2a, which illustrates a structure with a pronounced anisotropy, we
believe that the introduced lower limit is sufficient.

To study the effect of anisotropy, only the kxx component of the absolute permeability tensor is
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Fig. 5. Effect of anisotropy on dimensionless permeability k∗ for samples with different porosities and disorders: m =
(a) 0.395, (b) 0.485, (c) 0.585, (d) 0.635. The solid curves are the result of approximation using Eq. (11).

evaluated. If we obtain the analytical dependency of kxx on the characteristics of the pore space, then
the kyy component can be estimated using the same relationship, but, obviously, for the inverse A.

To study the influence of porosity, disorder and anisotropy, a series of numerical simulations was
carried out for samples with 8 porosity values ranging from 0.395 to 0.74. For each porosity, 5–6 groups
of samples were generated. Each group has the same disorder and different anisotropy.

The results for m = 0.395, 0.485, 0.585, and 0.635 are shown in Fig. 5. For each porosity, data for
3 different disorders are presented. We also examined porous media with low m = 0.395 for H < 0.16,
which were not considered in the previous section, in order to specifically demonstrate low permeability
at A ≈ 1.
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In Fig. 5, we found the expected monotonic decrease in transport properties when transition from
favorable (A < 1) to unfavorable (A > 1) anisotropy. As shown, as the disorder increases, the k∗ values
shift towards lower values. The negative effect of disorder on permeability was clearly identified in the
previous section when studying isotopic structures (Fig. 3b). Continuing the analysis of the obtained
numerical data, it can be found that the sensitivity to changes in anisotropy is strongest in media with
low heterogeneity (H ≈ 0.05). The effect of anisotropy decreases with increasing disorder.

To describe this effect numerically and to identify such a possible impact of porosity, the data were
fitted using a linear dependency:

k∗(m,H,A) = α1(m,H) + α2(m,H)(A−A0). (11)

Fit lines are shown by solid curves in Fig. 5. A0 = 1 in the Eq. (11) indicates isotropic porous
structures. The first term α1(m,H) characterizes the permeability in isotropic porous media. We will
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not evaluate this fitting parameter and can set that α1(m,H) = k(m,H), where k is calculated using
Eq. (10). The second term in the Eq. (11) describes the effect of anisotropy. The coefficient α2 indicates
the slope of the fitting lines in Fig. 5, which, in fact, determines the impact of porosity and heterogeneity.
Thus, in order to obtain the final formula, the goal now is to develop a relationship for α2.

The calculated slope coefficients α2 are shown in Fig. 6. Each set of points plotted for samples with
the same porosity was approximated using the following linear equation:

α2(m,H) = λ1(m) + λ2(m)(H − 0.04). (12)

The R-squared for each curve is greater than 0.90. Several effects have been identified. First, the
influence of anisotropy is most pronounced in samples with high porosity and monotonically reduces
with decreasing porosity. This effect is reflected in Fig. 6. Coefficient λ1 in the Eq. (12) determines
α2 at the initial H = 0.04 and, in fact, determines the average effect of anisotropy for samples with the
same porosity. The dependency of λ1 on porosity is shown in Fig. 7a. We have selected the linear fitting
function that most accurately describes coefficients λ1 with R2 = 0.99: λ1(m) = 0.05 − 0.352m.

Secondly, the slopes of the curves, which are numerically described by the coefficients λ2 in the
Eq. (12), as seen in Fig. 6, are practically identical for groups of samples with different porosities. This
feature means that the disorder effect can be considered as independent on porosity. The estimated λ2

for different m are shown in Fig. 7b. The absence of a pronounced effect of porosity allows us to use
the average value λ2 = 0.41, shown by black solid line in Fig. 7b. According to the obtained data, the
maximum deviations of λ2 from the mean value do not exceed 12%. As a result, Eq. (12) has the form

α2(m,H) = 0.05 − 0.352m + 0.41(H − 0.04). (13)

Substituting Eqs. (10) and (13) into Eq. (11), we can present an analytical formula that predicts the
absolute permeability in porous media with different porosity, heterogeneity and anisotropy:

k∗(m,H,A) = −0.062 + 0.372m + (0.814m − 0.763)(H − 0.04)

+ [0.05 − 0.352m + 0.41(H − 0.04)](A − 1). (14)

The resulting relationship Eq. (14) is a complex nonlinear function that depends on three variables
at once. This equation was developed on the basis of stepwise approximations of numerical data. To be
confident in the accuracy and reliability of the results obtained by the Eq. (14), the developed formula
should be validated by performing numerical simulations on a huge number of porous structures with
various combinations of porosity, disorder, and anisotropy.

For validation, 8 groups of samples were generated with the same porosity ranging from 0.45 to 0.71.
For each porosity, about 200 pore structures were generated with various combinations of heterogeneity
and anisotropy. Thus, about 1600 samples were tested.

The discrepancy between the numerical and analytical data is estimated using the error Δ (in
percents), which is calculated using following equation: Δ = 100(k∗num − k∗analyt)/k

∗
analyt. In this

formula, k∗analyt are analytical data evaluated by Eq. (14), and k∗num are numerical results. The results

show that almost all error values are within 30%. For over than 77% of samples, Δ is in the range
[–15% ÷ 15%], which can be considered a satisfactory deviation. Errors modules above 30 percent
were extremely rare. The Eq. (14) predicts slightly underestimated data when compared with numerical
results. Δ > 0 was obtained for 61% of the samples.

4. CONCLUSIONS

This paper presents a systematic study of the effect of heterogeneity, anisotropy and porosity on the
transport properties of porous media. The main findings of this paper are formulated below.

1. For isotropic structures, a significant effect of heterogeneity and porosity on the absolute perme-
ability and tortuosity was obtained. An increase in disorder negatively affects transport properties.
With an increase in porosity, the effect of disorder on the transport properties decreases.
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2. For anisotropic structures, a linear decrease in permeability was found during the transition
between favorable (A < 1) and unfavorable (A > 1) anisotropy. The influence of anisotropy
is most pronounced in samples with high porosity and monotonically reduces with decreasing
porosity. Heterogeneity negatively affects the sensitivity of the flow properties to changes in
anisotropy and can be considered independent on porosity.

3. Based on the stepwise approximations of numerical results, an analytical equation was developed
that predicts permeability depending on porosity, disorder and anisotropy. The derived relationship
was successfully validated on a huge number of porous structures (about 1600 samples). It
was found that the discrepancy between the analytical and numerical data for 77% of the tested
samples is in the range [−15% ÷ 15%]. The maximum error is within 30%.
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