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1. INTRODUCTION. PRELIMINARY INFORMATION

The studies by Kolmogorov, Dmitriev, Sevastyanov (see [1, 2]) gave the definition and the first
results of the theory of branching random processes. Discrete-time branching processes (Galton–
Watson processes) were introduced in monographs [3, Chapter I, Sec. 1–8, pp. 11–14], [4, Chapter I,
Part A, Sec. 1–5] as a homogeneous Markov chain with phase set of states and transition probabilities
determined by the branching condition. In [3, 5–7], transient phenomena for Galton–Watson processes
were studied. In [8], the efficient and stiffly accurate inequalities were proved for the distributions of the
number of particles of the nth generation. The asymptotic property of the Rotar generalized numerical
characteristic investigated in [9, 10] the results of which can be used in prove of the central limit theorem
for non-degenerate Galton–Watson processes. In [7, 11–15], various models of Galton–Watson
processes with possible immigration were studied. In [16–28], an asymptotic analysis of complex
Galton–Watson processes with decomposable components was conducted. In [28], in particular, an
estimate for the rate of convergence in the main lemma of the Galton–Watson critical process was
presented for the first time.

In this paper a Galton–Watson branching random process defined by the recurrence formulas is
considered

Z0 = 1, Zn =

Zn−1∑
j=1

Xj , n ≥ 1, (1)

where X1,X2, ...,Xn, ... is the sequence of independent random variables (r. v.) with non-negative
integer values and with general distribution

P (X1 = k) = P (Z1 = k) = pk, k = 0, 1, ...
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(see [3, Ch. 1, § 1, pp. 11–13; 4, Ch. 1, part A, § 1, pp. 1–4]). From the equation (1), it follows that
Galton–Watson branching random process is a homogeneous Markov chain with a phase set of states
{0, 1, 2, ..., n, ...} and with transient probabilities

pij(n) = P (Zn+1 = j/Zn = i) = p∗i1j =
∑

j1+...+ji=j

p1j1 (n) p1j2(n)...p1ji(n), (2)

where i, j = 0, 1, 2, ...,

p1j(n) = P (Zn = j/Z0 = 1) = P (Zn = j) ,

p0j (n) = p∗01j (n) = δij =

{
1 for i = j,

0 for i �= j.

Equation (2) is called a branching condition. Let F (x) be a generating function of r. v. in X1:

F (x) = ExX1 =

∞∑
k=0

P (X1 = k) xk, |x| ≤ 1,

and let ν be an arbitrary non-negative integer of r. v. with generating function

G(x) = Exν =

∞∑
k=0

P (ν = k)xk, |x| ≤ 1.

The following assertion holds.
Assertion. Let the sequence of r. v. ν,X1,X2, ...,Xn, ... be collectively independent. Then the

generating function of random sum Sν =
ν∑

j=1
Xj satisfies the equation

ExSν =
∞∑
k=0

P (Sν = k) xk = G (F (x)) , |x| ≤ 1,

where G(x) is the generating function of r. v. ν:

G(x) = Exν =

∞∑
j=1

P (ν = j)xj , |x| ≤ 1.

Proof. By virtue of the condition of this assertion, we obtain

ExSν =

∞∑
k=0

P (Sν = k) xk =

∞∑
k=0

⎛
⎝ ∞∑

j=1

P (Sν = k, ν = j)

⎞
⎠xk

=

∞∑
j=1

P (ν = j)

[ ∞∑
k=0

P (Sj = k)xk

]
=

∞∑
j=1

P (ν = j)

( ∞∑
k=0

P (X1 = k) xk

)j

=

∞∑
j=1

P (ν = j) [F (x)]j = G (F (x)) .

This assertion is proved. �

Using this assertion, we can determine recurrent relations for the generating functions

Fn(x) =
∞∑
k=0

P (Zn = k) xk =
∞∑
k=0

Pn(k)x
k, n = 1, 2, ...,

i.e. the following relations hold

Fn (x) = Fn−1 (F (x)) = F (Fn−1(x)) , n ≥ 1. (3)
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Taking into account the above assertion and equation (1), validity of the formulas in (3) can be easily
proved by the method of mathematical induction.

In branching random processes with discrete time, the critical value of the mean is A = EZ1 =
F ′(1) = 1. Indeed, the limit theorems for the number of particles Zn for the cases A �= 1, A = 1
have completely different forms. For the critical case A = 1 the limit distribution for Zn is a specific
exponential distribution, and for noncritical cases A �= 1 these limit distributions are determined by
complex functional equations that do not have explicit solutions. Phenomena, arising as n → ∞, A → 1,
is called transient phenomena. The study of transient phenomena is based on the asymptotic formula
for 1− Fn(x) as n → ∞, A → 1. The form of this formula could be defined on a specific example of
the Galton–Watson branching processes generated by linear fractional generating functions of the form
F (x) = ax+b

cx+d . Since F (1) = a+b
d+c = 1, then without loss of generality, we can assume that F (x) = ax+b

x+d ,
i.e. c = 1.

In the general theory of limit theorems for branching processes, a particularly important role are
played the first three factorial moments of r. v. in Z1:

A = EZ1 = F ′ (1) , B = EZ1 (Z1 − 1) = F ′′(1), C = EZ1 (Z1 − 1) (Z1 − 2) = F ′′′(1).

Expressing the coefficients a, b, d by the linear fractional function F (x) in terms of factorial moments
A and B, we can obtain the following representation

1− F (x) =
A(1 − x)

1 + B
2A(1− x)

.

As noted in [3, Chapter III, § 4, p. 10], for the generating function F (x) from formula (3) the iterations
Fn(x) = F (Fn−1(x)) are found in the form of an explicit expression

Rn(x) = 1− Fn(x) =
An(1− x)

1 + B
2A

An−1
A−1 (1− x)

, (4)

which for A = 1 is determined by continuity in the form

Rn(x) =
(1− x)

1 + Bn
2 (1− x)

.

The expression on the right-hand side of the formula (4) as n → ∞, A → 1 is equivalent to

rn(x) =

⎧⎪⎨
⎪⎩

An(1−x)

1+B
2

An−1
A−1 (1− x), for A �= 1,

1−x
1+Bn

2
(1−x)

, for A = 1.

Following Sevastyanov [3], we define the class of probabilistic generating functions

K (B0, C0) =
{
F (·), F ′′(1) = B ≥ B0 > 0, F ′′′(1) = C ≤ C0 < ∞

}
.

The first result on transient phenomena for Galton–Watson processes is the following theorem
proved by Sevastyanov (see [3, Chapter III, Sec. 4, p. 106]).

Theorem 1. The following equation holds Rn (x) = rn(x) (1 + ηn(x)) , where rn(x) is deter-
mined by formula (4), and as n → ∞, A → 1 the limit ηn(x) → 0 is uniformly far all F (x) ∈
K (B0, C0) and |x| ≤ 1.
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2. ESTIMATE OF THE REMAINDER TERM IN THEOREM 1

In this section, we obtain an estimate for the remainder term in the Theorem 1. We will investigate the
rate of uniformly convergence in the class of generating functions K (B0, C0) to zero of an infinitesimal
quantity sup

|x|≤1
|ηn(x)| = o(1), n → ∞.

Theorem 2. Let be A �= 1. Then the following limit relationship holds

Rn(x) = rn(x)

(
1 +O

(
Qn(A)

g(n,A)

))

uniformly in the class of generating functions F (x) ∈ K (B0, C0) as n → ∞, A → 1. Here

gn(A) =
An − 1

A− 1
= 1 +A+ ...+An, Qn(A) =

n∑
k=0

AkQk, Qk = 1− Fk(0), Q0 = 1.

Remark 1. In the course of the proof of the Theorem 2, it will be shown that

Qn (A) =
n∑

k=0

AkQk = o (g(n,A)) , n → ∞, A → 1.

We consider the following auxiliary assertions.

Lemma 1. The function g(n,A) increases with respect to first argument at a fixed second
argument. For all n and A the following inequality holds

g(n,A) ≥ 1

2
min

{
n, |1−A|−1

}
. (5)

This Lemma 1 was given in [3, Chapter III, § 4, p. 104]. But, the proof was incomplete and contains
errors. So, here we give a simple proof of this lemma.

Proof. An increase of function g (·, ·) is

g(n + 1, ·)− g(n, ·) = An+1 −An

1−A
= An ≥ 0,

g(·, A +Δ)− g(·, A) = (A+Δ)n − 1

[1− (A+Δ)]
− An − 1

1−A
=

n−1∑
k=0

(A+Δ)k −
n−1∑
k=0

Ak

=

n−1∑
k=0

[
(A+Δ)k −Ak

]
=

n−1∑
k=0

k∑
j=0

Cj
kA

k−jΔj ≥ 0.

These relations show that the function g(·, ·) increases with respect to each argument. Now we will
prove the validity of the inequality (5). Indeed, for A ≥ 1 the following relation always holds

g(n,A) =

n−1∑
k=0

Ak ≥ n.

Let us assume that A < 1. Then it follows from the formula

g(n,A) =
An − 1

A− 1
=

1−An

1−A
=

n−1∑
k=0

Ak,

that for An ≤ 1
2 is true

g(n,A) ≥ 1

2(1−A)
, (6)
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and for An > 1
2 is true

g(n,A) ≥ n

2
. (7)

Relations (6) and (7) prove validity of the inequality (5). The proof of Lemma 1 is complete. �

Note that the expression

Qn = Rn(0) = 1− Fn(0) = 1− P (Zn = 0) = P (Zn > 0)

means the probability of continuation (not degeneration) of the process.
Lemma 2. As n → ∞, A → 1 the limit Qn → 0 is uniformly relative to F (x) ∈ K (B0, C0).
The proof of this essential Lemma 2 is given in [3, Chapter III, § 4, pp. 104–106]. But, the proof of

this lemma can be simplified, if we use the relationship

Qn ≤
[
b0
An

+ b1

n∑
k=1

1

Ak

]−1

=

[
b0
An

+ b1g

(
n,

1

A

)]−1

. (8)

The validity of this formula (8) follows from assertions (3.4.8) and (3.4.11) given in [3, pp. 105–106].
Here b0 = b0 (B0) and b1 = b1 (C0) are the positive constants.

Since
n∑

k=1

1
Ak → ∞ as n → ∞, A → 1, then the proof of Lemma 2 follows from estimate (8) and

Lemma 1.
Lemma 3. For any |x| ≤ 1 as n → ∞, A → 1 the limit Rn(x) → 0 is uniformly relative to

F (x) ∈ K (B0, C0).
Proof. It’s obvious that

|Rn(x)| = |1− Fn(x)| ≤ |1− Fn(0)| + |Fn(x)− Fn(0)|
and

|Fn(0) − Fn(x)| =
∣∣∣p1(n)x+ p2(n)x

2 + ...+ pk(n)x
k + ...

∣∣∣ ≤ ∞∑
k=1

Pk(n) = P (Zn > 0) = Qn,

where Pk(n) = P (Zn = k), k = 0, 1, ..., n, ... Thus, |1− Fn(x)| ≤ 2Qn. Now to complete the proof of
Lemma 3, it suffices to apply Lemma 2. �

Using the Taylor expansion, from equation (1) we obtain

Rn+1(x) = ARn(x)−
B

2
R2

n(x) + C(x)R3
n(x), (9)

where
∣∣C(x)

∣∣ ≤ C
6 . Dividing both sides of equation (9) by Rn(x)Rn+1(x) and denoting 1

Rn(x)
by bn(x),

we have

bn+1(x) =
1

A
bn(x) +

B

2A

bn+1(x)

bn(x)
− C(x)

A

bn+1(x)

b2n(x)
. (10)

Hence, we obtain

bn+1(x)

bn(x)
=

1

A
+

B

2A

bn+1(x)

b2n(x)
− C(x)

A

bn+1(x)

b3n(x)
. (11)

Substituting expression (11) into (10) instead of bn+1(x)
bn(x)

, we obtain

bn(x) =
1

An−1 (1− F (x))
+

B

2

n∑
k=2

1

Ak
+ θ(x)

n∑
k=2

bk(x)

b2k−1(x)A
n−k+1

+
C(x)B

2

n∑
k=2

bk(x)

b2k−1(x)A
n−k+2

, (12)
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where θ(x) = B2

4A + C(x). It is easy to see that∣∣∣∣ 1

An−1[1− F (x)]
− 1

A(1− x)

∣∣∣∣ ≤ B(1− x)

An(1− F (x))
≤ B

An(1− F (x))
≤ 8C2

0

AnB0

(
C0

B0
+ 2

)2

(13)

and

Re
1

1− x
= Re

1− x

1− |x|2 ≥ 0.

Hence, for any |x| ≤ 1 we obtain∣∣∣∣ 1

An(1− x)
+

B

2

n∑
k=2

1

Ak

∣∣∣∣ ≥
∣∣∣∣Re

[
1

An(1− x)
+

B

2

n∑
k=2

1

Ak

]∣∣∣∣ ≥ B

2

n∑
k=2

1

Ak
. (14)

In what follows, we will need the following lemma.
Lemma 4. For any |x| ≤ 1 as n → ∞, A → 1 the sum

n∑
k=1

Rk(x)

An−k
= O

( n∑
k=1

1

Ak

)
= O

(
g

(
n,

1

A

))

converges uniformly for all F (x) ∈ K (B0, C0).
Proof. Let L = L(A) be a sequence of indices such that AL → 1, L → ∞, n

L → ∞ as n → ∞,
A → 1. It is evident that

n−L−1∑
k=1

Rn−k

An−k
≤ max

L≤k≤n
Rk(x)

n∑
k=1

1

Ak
, (15)

∣∣∣∣∣
∞∑

k=n−L

Rn−k

An

∣∣∣∣∣ ≤
n∑

k=n−L

1

Ak
. (16)

Hence, we have
n∑

k=1

A−k

L∑
k=n−L

A−k

=
Ak − 1

AL − 1
=

n∑
k=1

(
AL

)k
(17)

and as A → 1 it is true

lim
n→∞

n∑
k=1

(
AL

)k
= ∞. (18)

The assertion of Lemma 4 follows from relationships (15)–(18) and Lemma 3. �

Let us now return to equation (12). Due to (11) as n → ∞, A → 1 the limit bn+1(x)/bn(x) → 1 is
uniformly relative to F (x) ∈ K(B0, C0). Hence, by virtue of inequalities (13), (14) and Lemma 4 from
(12) it follows as n → ∞, A → 1 that

bn(x) =

[
1

An(1− x)
+

B

2

n∑
k=0

1

Ak

](
1 +O

(
Qn(A)

g(n,A)

))
(19)

is uniformly for all F (x) ∈ K (B0, C0), and this completes the proof of Theorem 2.
This Theorem 2 refines the B. A. Sevastyanov theorems on transient phenomena for Galton–Watson

branching random processes. A corollary of Theorem 2 is the following assertion.
Theorem 3. Let Qn = 1−Fn(0) = P (Zn > 0) be the probability of continuation of the Galton–

Watson process. Then as n → ∞, A → 1 the following quantity

Qn =
An

1 + B
2
1−An

1−A

[
1 +O

(
Qn(A)

g(n,A)

)]
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converges uniformly for all generating functions F (·) ∈ K (B0, C0).
Now let us in detail prove the validity of the relationship (19). Expanding F (x) in equation Fn+1(x) =

F (Fn(x)) by the Taylor formula

F (x) = 1 +A(x− 1) +
B

2
(x− 1)2 +

C(x)

6
(x− 1)3,

for Rn(x) = 1− Fn(x) we obtain the following recurrent formula

Rn+1(x) = ARn(x)−
B

2
R2

n(x) +
C(x)

6
R3

n(x), (20)

where
∣∣C(x)

∣∣ ≤ C. Using the Lemma 4 and (20), we can establish the following inequalities∣∣∣∣Rn+1(x)

Rn(xt)
−A

∣∣∣∣ ≤ C1Qn,

∣∣∣∣ Rn(x)

Rn+1(x)
− 1

A

∣∣∣∣ ≤ C2Qn, (21)

where C1 and C2 are some constants. We divide (20) by ARn(x)Rn+1(x), then we obtain

bn+1(x) =
1

Rn+1(x)
=

1

A
bn(x) +

B

2A

Rn(x)

Rn+1(x)
− C

6A

R2
n(x)

Rn+1(x)
. (22)

Using (16), we could rewrite (22) in the following form

An+1bn+1(x) = Anbn(x) +
B

2A
An + λn(x), (23)

where

|λn(x)| ≤ C3A
nQn, C3 = const. (24)

From (18) we obtain

Anbn(x) =
1

1− x
+

B

2A
g(n,A) + Λn(x), (25)

where

|Λn(x)| =
∣∣∣∣∣
n−1∑
k=0

λk(x)

∣∣∣∣∣ ≤ C4

n−1∑
k=0

AnQn, C4 = const. (26)

Now relationship (19) follows from the chain of inequalities (20)–(26). In conclusion, we note that
n−1∑
k=0

AkQk = o(g(n,A)), n → ∞, A → 1. (27)

Indeed, by Lemma 2 for any ε > 0 there are such n0 and δ > 0, that for all n > n0, |A− 1| ≤ δ and
F (x) ∈ K (B0, C0) we have Qn ≤ ε. Using the estimate (24), we obtain

Λn(x) =

n0−1∑
k=0

|λk(x)|+
n−1∑
k=n0

C3εA
k ≤ C4 + εC3A

n0g (n− n0, A) .

Therefore, as n → ∞, A → 1 the estimate (27) holds.
Remark 2. Let be A = 1. Then we can verify the validity of the expansion

Qn =
2

Bn
+

(
4C

3B2
− 2

B

)
lnn

n2
+ o

(
lnn

n2

)
,

according to which from Theorem 3 we have

Qn =
2

Bn

(
1 +O

(
lnn

n

))
.
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