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Abstract—The paper is devoted to the new approach to systems of quasilinear conservation laws
which leads to the alternative view of weak solution and to the possibility of developing a new
type calculation algorithms for such systems on the basis of neural networks technology. The
approach under consideration is the further development of variational point of view to systems of
conservation laws that was earlier described by the author. In this paper the multi-dimensional
setting is considered but main results are shown in one- and two-dimensional cases.
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1. INTRODUCTION

The paper discusses some aspects of alternative approach to systems of conservation laws, the
variational approach, that lead to the possibility of developing the appropriate theory and numerical
methods in non-standard directions. Namely, the variational approach makes an accent to the notion
of critical points of functionals and to the transformation of existence and uniqueness problems to the
problems of functionals minimization. From the numerical point of view the minimization setting allows
applying neural networks approach and constructing non-standard algorithms. These points will be
discussed further in more details. The subject of hyperbolic conservation laws is a vast area where huge
progress has been made in theory and numerics, and the relevant literature is also vast. Nevertheless,
it occurs, first, that the general theory is still far incomplete. So, it seems desirable to widen the set
of approaches that previously was used in order to build the general theory. The second point of the
paper is connected with the recent explosion of artificial intelligence usage, in particular for the solution
of PDEs. As it were in numerical methods, it is more efficient to use specific properties of the PDEs
under consideration when constructing a numerical algorithm. So, we propose the way to develop
neural networks algorithms for the systems of conservation laws that differ from usual application of
this technology for PDEs. Our approach takes into account the properties of generalized solutions
to quasilinear conservation laws systems and introduces non-standard form of objective function. In
the present paper we only touch two points mentioned above, so we do not intend to provide any
review of the literature in the area of hyperbolic conservation laws and in the theory of neural networks
as well. Interested reader can have an impression on the subject by, for example, [1] for theoretical
questions and [2] regarding the numerical methods; the references therein add to the picture. The modern
application of neural network modeling connected with PDEs is presented, for example, in [3].

Let us take the general system of multidimensional conservation laws and consider the Cauchy prob-
lem for such system. Namely, let (t,x) ∈

∏
T ≡ {(t,x) : (t,x) ∈ [0, T ]×R

m}, U(t,x) = (u1(t,x), . . . ,
un(t,x)), (t,x) ≡ (t, x1, . . . , xm), and Fj = (f1j . . . , fnj), j = 1, . . . ,m are sufficiently smooth (at least
Fj ∈ C1(Rn)) vector functions of the variables (u1, . . . , un). Here and further on, vector values will be

*E-mail: yu-rykov@yandex.ru

2645



2646 RYKOV

indicated in bold in formulas. Then the Cauchy problem for the system of conservation laws reads as
follows

D(U) ≡ ∂

∂t
U(t,x) +

m∑

j=1

∂

∂xj
Fj (U(t,x)) = 0, U(0,x) = U0(x). (1)

The solutions to system (1) that take given initial values are understood in the generalized sense with
respect to the following conventional definition.

Definition 1. Let U0(x) ∈ R
n be a bounded measurable function in R

m. A bounded and measurable
function U(t,x) in

∏
T is called a generalized solution to the problem (1) if, for every test function

ϕ ∈ C∞([0, T )×R
m) such that ϕ(t, ·) ∈ C∞

0 (Rm) for fixed t ∈ [0, T ] and ϕ ≡ 0 for T1 � t � T, T1 < T ,
the following integral identity holds

∫∫

∏
T

⎡

⎣U
∂ϕ

∂t
+

m∑

j=1

Fj(U)
∂ϕ

∂xj

⎤

⎦ dxdt+

∫

Rm

U0ϕ(0,x)dx = 0. (2)

In case U(t,x) is continuously differentiable function the equivalence of formulations (1) and
(2) is straightforward. Suppose U(t,x) is continuously differentiable function except along certain
hypersurface of codimension one Ω ⊂ [0, T ]× R

m, which has continuous outward normal vector
(n0, n1, . . . , nm). Let U(t,x) has the discontinuity of the first kind along Ω and the values U± =
U(t,x ± 0) exist. Then the relation (2) is true if the equation (1) is valid in the domain of smoothness of
U(t,x) but along Ω the Rankine–Hugoniot conditions are fulfilled

(
U− −U+

)
n0 +

m∑

j=1

(
Fj(U

−)−Fj(U
+)

)
nj = 0. (3)

This fact is the classical one and can be checked easily. But it is also well-known that the Definition 1
does not guarantee the uniqueness of a solution to the problem (1). Thus some additional condition is
required for the function U(t,x). In the modern literature it is believed that such condition should have
the form of entropy inequality.

Definition 2. Let us call convex positive function η(U) ∈ C1 (Rn) an entropy for the system (1) if
for the classical solutions an additional conservation law holds

∂

∂t
η(U(t,x)) +

m∑

j=1

∂

∂xj
qj (U(t,x)) = 0 (4)

with some sufficiently smooth flow functions qj (u1, . . . , un).

Definition 3. The function U(t,x) which is a generalized solution to (1) in the sense of Definition 1,
is called an entropy solution to the problem (1) if for every entropy η(U) from the Definition 2 and any
test function ϕ(t,x) ≥ 0 from the Definition 1 the following inequality holds

∫∫

∏
T

⎡

⎣η(U)
∂ϕ

∂t
+

m∑

j=1

qj(U)
∂ϕ

∂xj

⎤

⎦ dxdt+

∫

Rm

η(U0)ϕ(0,x)dx ≥ 0. (5)

Again in case of piecewise continuously differentiable function U(t,x), which is an entropy solution
to (1), the inequality

(
η(U−)− η(U+)

)
n0 +

m∑

j=1

(
qj(U

−)− qj(U
+)

)
nj ≥ 0 (6)

along a discontinuity hypersurface Ω will be true in addition to Rankine–Hugoniot relations (3).
As it is said above, the general theory in the field of quasilinear hyperbolic conservation laws systems

is still far incomplete. A sufficiently complete theory has been constructed only for a single conservation
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ON THE SYSTEMS OF CONSERVATION LAWS 2647

law more than fifty years ago by S.N. Kruzhkov in [4]. In the case of systems, fairly general results—
A. Bressan, [5]—have been obtained only for one spatial variable and, as a rule, under the assumption
that the variation range of the unknown functions is small. In multidimensional case, with some degree
of conditionality, we can state that there are a plenty of partial results and no more or less general theory,
consult, for example, with [6]. Thus the intention of the present paper is to widen the scope of approaches
in conservation laws theory and investigate the line of thought which in a sense is alternative to the
current main stream.

The paper we present is structured as follows. Section 2 highlights the main concepts of variational
approach to systems of conservation laws and formulates useful properties of generalized solutions that
follow from it. Section 3 describes conventional neural networks machinery and introduces new form of
objective function in case of conservation laws in one-dimensional case. Finally, the possible extension
to two-dimensional case is provided in Section 4.

2. VARIATIONAL POINT OF VIEW TO ONE-DIMENSIONAL SYSTEMS
OF CONSERVATION LAWS

Let us first consider the one-dimensional variant of (1). Namely,
∂

∂t
U+

∂

∂x
F(U) = 0, U(0, x) = U0(x), (7)

here x ∈ R. The main idea of variational approach that was introduced in [7] and also in earlier
publications mentioned therein, reads as follows. Consider instead of function U(t, x) the functional
J : χ(τ) ∈ C1 ([0, T ] ,R) → R

n,

J ≡
T∫

0

L(χ̇,U)dτ ; L(χ̇,U) ≡ U (τ, χ(τ)) χ̇(τ)− F ◦U (τ, χ(τ)) . (8)

Assume that U(t, x) belongs to the Oleinik’s class K of piecewise continuously differentiable functions
with finite number of piecewise continuously differentiable lines of discontinuity. The following theorem
was proved in [7].

Theorem 1. Let U(t, x) ∈ K, and suppose that there exists a trajectory χextr(t) ∈ C1 ([0, T ] ,R)
such that δJ = 0 for this trajectory. Then, at the points x = χextr(t) where U(t, x) ∈ K is smooth,
equations (7) hold in the classical sense, and at the points of intersection of χextr(t) with the
discontinuity lines of the function U(t, x) the Rankine–Hugoniot relations

ds

dt
· (U+ −U−) = F(U+)− F(U−) (9)

are satisfied; here x = s(t) is the discontinuity curve and U± ≡ U(t, s(t)± 0). Moreover, the
expression for δ2J on the trajectory x = χextr(t) contains only terms depending on (δχ)2 (i.e.
the quadratic form does not contain terms with δχ̇).

If there exist plenty enough of such extremal trajectories x = χextr(t) for given U(t, x) in order to
cover the whole

∏
T then it is easy to check that this U(t, x) is weak solution to (7) in the sense of

Definition 1. Thus it is possible to interpret the weak solutions to (7) as such functions U(t, x) for which
δJ = 0 for any trajectory x = χextr(t). This means that such J is in a sense “constant”.

The paper [8] put this observation in more explicit form. Introduce the primitive function for
U(t, x) with respect to variable x, i.e. V(t, x) ≡

∫ x
U(t, p)dp, and consider the functional I : χ(τ) ∈

C ([0, T ] ,R) → R
n instead of J

I ≡
T∫

0

M (U) (τ, χ(τ)) dτ ≡
T∫

0

[
∂V

∂τ
(τ, χ(τ)) + F ◦U (τ, χ(τ))

]

dτ. (10)

The following theorem was stated and proved in [8].
Theorem 2. Let U(t, x) ∈ K, and suppose that there exists a trajectoryχextr(t) ∈ C1 ([0, T ] ,R)

such that δI = 0 for this trajectory. Then, at the points x = χextr(t) where U(t, x) ∈ K is
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smooth, equations (7) hold in the classical sense, and at the points of intersection of χextr(t)
with the discontinuity lines of the function U(t, x) the Rankine–Hugoniot relations (9) are
satisfied. Moreover, the property δI = 0 means that the function M (U) is continuous across the
discontinuities of U(t, x) and value of δ2I changes by the jump of ∂M (U) /∂x.

Let us now put Theorem 2 in the form that reflects the “constancy” of J mentioned above.
Theorem 3. Suppose U(t, x) ∈ K is the generalized solution to the problem (7). Then the

function M (U) (t, x), defined in (10), is continuous and does not depend on x.
Proof. Theorem 1 demonstrates that for the functions U(t, x) ∈ K the condition δJ = 0 is equivalent

to the fact that U(t, x) is the generalized solution to (7). The value of δJ can be evaluated as Gateau
derivative. Let fix two arbitrary trajectories χ0(τ) and χ1(τ), Δχ ≡ χ1 − χ0, and introduce Jα as follows

Jα ≡
T∫

0

[U (τ, χ0 + αΔχ) (χ̇0 + αΔχ̇)− F ◦U (τ, χ0 + αΔχ)] dτ.

Since U(t, x) ∈ K it is enough to suppose that the function has only one continuously differentiable
discontinuity line x = s(t). Let χ̄ ≡ χ0(τ) + αΔχ(τ) and assume also that there exists one point τ0,
χ0(τ0) = s(τ0) and one point τ∗(α), χ̄(τ∗) = s(τ∗). Then

d

dα
Jα =

d

dα

τ∗(α)∫

0

L
(
˙̄χ,U−) dτ +

d

dα

T∫

τ∗(α)

L
(
˙̄χ,U+

)
dτ

=
dτ∗

dα

[
L
(
˙̄χ,U−)− L

(
˙̄χ,U+

)]
+

τ∗(α)∫

0

d

dα
L
(
˙̄χ,U−) dτ +

T∫

τ∗(α)

d

dα
L
(
˙̄χ,U+

)
dτ.

Further,

d

dα
L
(
˙̄χ,U±) =

∂U

∂χ
˙̄χΔχ+UΔ̇χ− ∂F ◦U

∂χ
Δχ,

dτ∗

dα
=

Δχ

ṡ− ˙̄χ
,

and, integrating by parts and taking into account that U± satisfy (7) in classical sense, we obtain

d

dα
Jα =

dτ∗

dα

[
L
(
˙̄χ,U−)− L

(
˙̄χ,U+

)]
+

(
U− −U+

)
Δχ+ UΔχ|T0

=
Δχ

ṡ− ˙̄χ

[(
U− −U+

)
ṡ−

(
F ◦U− − F ◦U+

)]
+

d

dα

T∫

0

d

dτ

χ̄∫

U(τ, p)dpdτ.

Thus

0 =
d

dα

T∫

0

⎡

⎣U(τ, χ̄) ˙̄χ− F ◦U(τ, χ̄)− d

dτ

χ̄∫

U(τ, p)dp

⎤

⎦ dτ

= − d

dα

T∫

0

⎡

⎣F ◦U(τ, χ̄) +
∂

∂τ

χ̄∫

U(τ, p)dp

⎤

⎦ dτ = − d

dα

T∫

0

M ◦U(τ, χ̄)dτ

for any Δχ. The continuity of M ◦U is due to Theorem 2, hence from the last equality it follows that the
function M ◦U does not depend on χ̄. �

The property of independency of M ◦U(t, x) on x can be considered as a characterization of weak
solutions. From the other side, this property could be laid down in the basis of alternative notion of
generalized solution for one-dimensional systems of conservation laws. Providing this property we here
only discuss the possibility to construct new types of algorithms for the generalized solutions. Namely,
we need to select from some functional space/class the function U(t, x) with U(0, x) = U0(x) in any

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 42 No. 11 2021



ON THE SYSTEMS OF CONSERVATION LAWS 2649

chosen sense such that the function M ◦U(t, x) does not depend on x for all (may be a.e.) t. To put this
description in more rigorous way let us formulate important particular case for the problem (7).

Lemma 1. Assume the values of U0(x) are constants for sufficiently large |x| and U(t, x) ∈ K.
Then the function M ◦U(t, x) is constant for all (t, x) ∈

∏
T .

Proof. Because of finite speed of propagation for the generalized solutions to quasilinear conservation
laws system, the function U(t, x) is constant in

∏
T for x < 0, |x| is sufficiently large. This means that

M ◦U(t, x) is also constant in
∏

T providing the same x. For generalized solutions to (7) M ◦U(t, x)
is constant in x at least for a.e. t. But because for x < 0, |x| is sufficiently large this constant is the same
for a.e. t it will be same in the whole

∏
T . �

Now, take U0(x) as in Lemma 1. Then in order to find the generalized solution to system (7) we need
to find such U(t, x) that supt

{
V b
a (M ◦U(t, x))

}
takes its minimum value. Here V b

a (W) denotes the
variation of some function W(t, x) with respect to x, x ∈ [a, b]. This formulation is convenient in order
to apply the calculational method with the usage of neural networks.

3. ON THE NEURAL NETWORKS ALGORITHM FOR ONE-DIMENSIONAL SYSTEMS
OF CONSERVATION LAWS

As it is well known there exist plenty of numerical methods for solving the systems of quasilinear
conservation laws that are based on traditional finite difference, finite volume or finite element methods,
see, for example, [2]. But in the recent years a new wave of interest arises for solving such systems
by artificial neural networks method (NNM), including also the calculation of irregular (for example,
shocks) solutions, see [9] for further information. The main reasons for such an interest could be put,
as it is mentioned in, for example, [9], as follows. First, NNM is highly compatible with the modern
architecture of supercomputers and in future perspective the optimization form of the problems to
systems of conservation laws is also suitable for quantum calculations. Second, NNM can naturally
incorporate the big data concept which seems necessary because the amount of available experimental
data and the complexity of the models increase. Third, NNM can handle the simultaneous solution over
an entire parameter space; this property is very useful for calibration and validation processes.

In NNM the unknown function U(t, x) is represented using deep neural network. Here we only
mentioned the straightforward architecture of the network for the illustration purposes. Let ω ≡
(t, x, λ1, . . . λp), where λ1, . . . λp are some number of parameters that are included in the mathematical
model. Then ω is the input for the feed-forward network and U will be the output. Suppose the network
contains L hidden layers and the relations between the input and output for each component of U read

ulj(ω) = blj +

Nl∑

k=1

wl
jkω

l
k(ω), ωl

k = σ
(
ul−1
k (ω)

)
, j = 1, . . . , Nl, l = 1, . . . , L+ 1, (11)

where Nl is the number of neurons in the hidden layer l, NL+1 = 1, wl
jk and blj are the weight and

bias parameters of the layer l, σ : R → R is the activation function that can be chosen according to the
type of the problem under investigation. The weight and bias are the parameters that are found by the
learning process, the aim of which is the minimization of objective function. The choice of objective
function depends on the goal of problem solving. Usually for PDEs, in particular, the conservation laws
system, the equation itself, system (7) for conservation laws, is taken as the basis expression of objective
function. In contrast to this the formulation presented in Section 2 allows taking the functional

sup
t

{
V b
a (M ◦U(t, x))

}
(12)

for appropriate a, b as the objective function. The expression (12) contains one nonstandard for
neural networks element—the calculation of primitive function. But this problem is already intensively
addressed, see, for example, [10, 11]. The expression (12) tends to be smooth for irregular solutions
as it is shown in Section 2 while the equation (7) when calculated via neural network tends to exhibit
δ-shocks in the case of discontinuities. Thus objective function (12) looks preferable comparing to the
usage of system (7) itself as an objective function.

One of the most popular methods of solving optimization problem in the framework of neural
networks is the gradient descent often coupled with various stochastic procedures. Actually neural
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network operates with the smooth functions that approximate the functions from suitable Banach space.
Further in this section we consider the special class of initial data and consequently the simplification of
functional (12)

sup
t,x

M ◦U(t, x) (13)

in order to demonstrate other possible strategy of finding the minimum.
Theorem 4. Assume that system (7) is strictly hyperbolic, i.e. F′ has n real and distinct

eigenvalues κi, i = 1, . . . , n, and full set of left eigenvectors. Let Λ is the matrix consisted of the
left eigenvectors, and F ≥ 0 with respect to each coordinate. We also suppose that if some vector
a < 0 (with respect to each coordinate) then Λ−1a < 0. Let U0(x) ≥ 0 satisfies the conditions of
Lemma 1 and in addition it has the finite support. Let U(t, x) ∈ C1(

∏
T ) and consider the set U

of functions U(t, x) such that U(0, x) = U0(x) and M ◦U(t, x) ≥ 0. Suppose that (13) attains
its minimums (with respect to each coordinate) on the set U at function Ū(t, x). Than these
minimums equal zero and Ū(t, x) is the solution to (7).

Proof. Let first note that U is not empty because U0(x) belongs to this set. Assume that (13) attains
its minimums m at function Ū(t, x). We show that if some mk > 0 then there exists another function
Ū∗(t, x) ∈ U with the property

sup
t,x

M ◦ Ū∗(t, x) < sup
t,x

M ◦ Ū(t, x). (14)

Consider some increment δU(t, x), δU(0, x) = 0, of function Ū(t, x) and evaluate the difference ΔM ≡
M

(
Ū+ δU

)
−M

(
Ū
)

. Denote V ≡
∫ x

U(t, p)dp and ΔV ≡
∫ x

δU(t, p)dp, then we have

ΔM =
∂

∂t

x∫

δU(t, p)dp + F
(
Ū+ δU

)
− F

(
Ū
)
=

∂

∂t

x∫

δU(t, p)dp

+

1∫

0

F′ (Ū+ λδU
)
dλ · δU =

∂

∂t
ΔV+A(t, x)

∂

∂x
ΔV, (15)

where F′ is the matrix of the derivative of vector function F and A(t, x) ≡
∫ 1
0 F′ (Ū+ λδU

)
dλ.

Let us take the point (t̄, x̄) where the kth component of M
(
Ū
)

attains its supremum and consider
such δU that |δU| ≤ ε, diam supp δU ≤ ε, ε is sufficiently small, and (t̄, x̄) ∈ supp δU. Hence from (15)

ΔM =
∂

∂t
ΔV+ F′ (Ū(t̄, x̄)

) ∂

∂x
ΔV +O(ε). (16)

Multiplying (16) by Λ from the left we obtain for i = 1, . . . , n

liΔM = li
dΔV

dκi
+O(ε),

d

dκi
≡ ∂

∂t
+ κi

∂

∂x
. (17)

Now in (17) it is possible to chose the rate of change of ΔV in such a way that −LM
(
Ū
)
< LΔM < 0

and therefore, according to our assumptions,

−M
(
Ū
)
< ΔM < 0. (18)

First inequality in (18) tells that M
(
Ū+ δU

)
∈ U and the second inequality shows that ΔM decreases

when introducing the increment δU. This contradicts the fact that the minimum with respect to the
kth coordinate of (13) is attained with the function Ū. Performing the same action with respect to
other coordinates of (13), if necessary, we take Ū∗(t, x) = Ū(t, x) + δU(t, x) and come to the same
contradiction. Thus m = 0. �

Theorem 4 shows in simplified case that there exists direct strategy to decrease the variation of
components of vector function M(U) and consequently get the generalized solution to the problem
(7). This way lies in good coordination with the optimization method used by general neural networks
algorithms.
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4. THE APPROACH IN TWO-DIMENSIONAL CASE

A multidimensional system (1) usually is much more difficult to consider. Because of this reason, here
we limit ourselves by only two-dimensional system. In order to formulate the principles of construction of
neural networks algorithm similar to one presented in Section 2, we also use the variational approach as
in [7]. Before the consideration of two-dimensional case in more details let us note that such variational
approach can be formulated in multidimensional case as well, see [12].

Following [7] consider the functional J : S(τ, s) ∈ C1
(
[0, T ]× [0, 1],R2

)
→ R

n instead of system (1)
written for two-dimensional case:

J ≡
∫∫

S

Udx ∧ dy + F(U)dy ∧ dt+G(U)dt ∧ dx. (19)

Suppose that function U(t, x, y) ∈ K and have only one C1 surface of discontinuity Ω. Let the surface S
to be parameterized by time τ and internal parameter s, i.e. S(τ, s) ≡ (χ(τ, s), γ(τ, s)), and the surface
Ω is determined by the formulas t = τ, x = ϕ(τ, s), y = ψ(τ, s). At this the orientation of Ω is induced
by the orientation of the plane (t, x) and the positive and negative sides of Ω are determined accordingly.
The corresponding values of the function U(τ, ϕ(τ, s), ψ(τ, s)) with respect to two sides of Ω will be
denoted as U±. The next theorem was stated and proved in [7].

Theorem 5. Let U(t, x, y) ∈ K, and suppose that there exists a continuously differentiable
surface S(τ, s) such that δJ = 0 for this surface. Then, at the points S(τ, s) where U(t, x, y) is
smooth, equations (1) hold in the classical sense, and at the points of intersection of S(τ, s)
with the discontinuity surfaces of the function U(t, x, y) the Rankine–Hugoniot relations (3) are
satisfied.

In order to be able discussing the algorithms of neural network type let us formulate the analog of
Theorem 3 in two-dimensional case.

Theorem 6. Suppose U(t, x, y) ∈ K is the generalized solution to the problem (1) in two-
dimensional case. Let us take some C1 functions κ(τ, s), ν(τ, s) and denote U1 ≡ U(τ, ω, ν), U2 ≡
U(τ,κ, ω), where ω is free variable over which integration will be performed further. Introduce
two functions Φ(τ, s, z) and Ψ(τ, s, z)

Φ ≡ νsF(U
1) + νs

∂

∂τ

z∫

U1dω − ντ
∂

∂s

z∫

U1dω +
∂

∂s

z∫

G(U1)dω,

Ψ ≡ κsG(U2) + κs
∂

∂τ

z∫

U2dω − κτ
∂

∂s

z∫

U2dω +
∂

∂s

z∫

F(U2)dω. (20)

Then for any κ, ν functions Φ, Ψ do not depend on z.
Proof. Taking into account the parametrization of the surface S(τ, s) put the functional (19) as

follows

J =

T∫

0

1∫

0

[
L(∇χ,∇γ,U)

]
dsdτ ;

L(∇χ,∇γ,U) ≡ L ≡ U · (χsγτ − γsχτ ) + F(U)γs −G(U)χs. (21)

Let fix two surfaces S0 ≡ (τ, χ0(τ, s), γ0(τ, s)) and S1 ≡ (τ, χ1(τ, s), γ1(τ, s)), Δχ ≡ χ0 − χ1, Δγ ≡
γ0 − γ1, and denote χ̄ ≡ χ0(τ, s) +αΔχ(τ, s), γ̄ ≡ γ0(τ, s) +αΔγ(τ, s). Also denote U ≡ U(τ, χ(τ, s),

γ(τ, s)), U ≡ U (τ, χ̄(τ, s), γ̄(τ, s)). The notaitions U± or U
±

refer to sides of discontinuity surface and
have the same meaning as U, U. In addition we need the following notations L± ≡ L(∇χ,∇γ,U±),
L
± ≡ L(∇χ̄,∇γ̄,U

±
). Further introduce the functional Jα

Jα ≡
T∫

0

1∫

0

[
U · (χ̄sγ̄τ − γ̄sχ̄τ ) + F(U)γ̄s −G(U)χ̄s

]
dsdτ (22)
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and by analogy to Section 3 calculate d
dαJα. In order to do this we need some additional geometric

considerations. Let the surfaces S ≡ S0 + α(S1 − S0) and Ω have the single intersection line lα, see
Fig. 1. This line can be found via the relations

lα = (θ, ϕ(θ, s2(θ, α)), ψ(θ, s2(θ, α))) , (23)

where the function s2(θ, α) is determined together with another function s1(θ, α) through the relations
χ̄(θ, s1(θ, α)) = ϕ(θ, s2(θ, α)) and γ̄(θ, s1(θ, α)) = ψ(θ, s2(θ, α)) with θ ∈ [τ1(α), τ2(α)] ⊂ [0, T ]. It is
easy to see that the function τ∗(s, α), which is inverse to the function s = s1(τ

∗, α), determines the
parameter τ∗ of the intersection time of the line lα and of the surface S by the plane s = const. Now let
us calculate d

dαJα denoting I− ≡ [0, τ∗(s, α)], I+ ≡ [τ∗(s, α), T ],

d

dα
Jα =

d

dα

⎡

⎢
⎣

1∫

0

ds

τ∗(s,α)∫

0

L
−
dτ +

1∫

0

ds

T∫

τ∗(s,α)

L
+
dτ

⎤

⎥
⎦

=

1∫

0

(τ∗)α(L
− − L

+
)
∣
∣
τ=τ∗(s,α)

ds+

1∫

0

ds

∫

I−

L
−
αdτ +

1∫

0

ds

∫

I+

L
+
αdτ

=
∑

i=±
(−i)

1∫

0

(τ∗)α
[
U

i
(χ̄sγ̄τ − γ̄sχ̄τ ) + F(U

i
)γ̄s −G(U

i
)χ̄s

]∣
∣
τ=τ∗

ds

+
∑

i=±
(−i)

1∫

0

[
U

i
(χ̄sΔγ − γ̄sΔχ)− (τ∗)s(U

i
(γ̄τΔχ− χ̄τΔγ) +F(U

i
)Δγ −G(U

i
)Δχ)

]∣
∣
τ=τ∗

ds

−
∑

i=±

1∫

0

ds

∫

Ii

D(U
i
)(χ̄sΔγ − γ̄sΔχ)dτds

+
∑

i=±
(−i)

∫

Ii

[
U

i
(γ̄τΔχ− χ̄τΔγ) + F(U

i
)Δγ −G(U

i
)Δχ

]∣
∣s=1

s=0
dτ +

1∫

0

U
±
(χ̄sΔγ − γ̄sΔχ)

∣
∣τ=T

τ=0
ds

=
∑

i=±
(−i)

1∫

0

[
U

i
(ψsϕτ − ϕsψτ )− F(U

i
)ψs +G(U

i
)ϕs

]
(χ̄sΔγ − γ̄sΔχ)

∣
∣
τ=τ∗

ds

−
∑

i=±

1∫

0

ds

∫

Ii

D(U
i
)(χ̄sΔγ − γ̄sΔχ)dτds

+
∑

i=±
(−i)

∫

Ii

[
U

i
(γ̄τΔχ− χ̄τΔγ) + F(U

i
)Δγ −G(U

i
)Δχ

]∣
∣s=1

s=0
dτ +

1∫

0

U
±
(χ̄sΔγ − γ̄sΔχ)

∣
∣τ=T

τ=0
ds

=
d

dα

T∫

0

1∫

0

{
d

dτ

∫
[
U(χ̄sγ̄α − γ̄sχ̄α)

]
dα

+
d

ds

∫
[
U(γ̄τ χ̄α − χ̄τ γ̄α) + F(U)γ̄α −G(U)χ̄α

]
dα

}

dsdτ

because U is the generalized solution to (1) and the Rankine–Hugoniot conditions (3) are fulfilled.

Let first Δγ = 0, then from the last obtained equality it follows that d
dαΦ = 0, i.e. function Φ does
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Fig. 1. Mutual disposition of the surfaces S and Ω.

not depend on α for any Δχ and hence on χ̄. The analogous statement is true concerning the function
Ψ providing Δχ = 0. Thus the assertion of the Theorem 6 is proved taking κ = χ0, ν = γ0. �

The expressions (20) are the analogy of the function M(U) in one-dimensional case. The functional
(21) is the analogy of (8), expression (22) is the form of one-dimensional Jα in two-dimensional
case and the appearance of variety (line in considered case) (23) is the feature that distinguishes the
multidimensional case from one-dimensional setting. Now we can introduce the equivalent of norm (12)
for both functions Φ and Ψ and apply the neural networks technique described in Section 3. The new
element here is the necessity to consider the representative set of functions κ(τ, s), ν(τ, s)—actually
coordinate lines. Then the optimized functional should contain the norms of expressions (20) for all
chosen set of coordinates. This is rather hard optimization problem, and additional research is necessary
to find the way to reduce the volume of calculations.
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