
ISSN 1995-0802, Lobachevskii Journal of Mathematics, 2021, Vol. 42, No. 10, pp. 2358–2363. c© Pleiades Publishing, Ltd., 2021.

Is Genome Written in Haskell?

S. V. Kozyrev*

(Submitted by G. G. Amosov)

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, 119991 Russia
Received April 5, 2021; revised April 13, 2021; accepted April 22, 2021

Abstract—This paper continues the discussion of genome as a functional program and biological
evolution as learning for functional programs. Here we discuss gene regulation as monadic
computation, in particular we consider Lac operon as an analogue of IO monad. This supports
the idea of genome as a program written in Haskell-like programming language where recursive
applications of lists of functions (genes) express parallel processes in a cell and gene regulation can
be described by monadic computations.

DOI: 10.1134/S1995080221100127

Keywords and phrases: learning theory, statistical mechanics, evolution theory, functional
programming.

1. INTRODUCTION

In this paper we continue the discussion started in [1–3] of the approach “genome as a program”
using functional programming. We consider a genome as a functional program, say a lambda term or
a program written in Haskell-like language. Functional programming is characterized by high degree
of parallelism, simple system of states allows error control and easy modification of programs [4, 5].
In biology we observe high parallelism of processes in cells and in evolution, random modifications of
genetic program in evolution usually do not break the program immediately. In the approach under
consideration this parallelism is discussed as a manifestation of the functional style in which genomes
as programs are written and genes are considered as functions in functional programming. The
problem of biological Darwinian evolution in our approach is described by learning theory for functional
programming.

Our aim is to investigate the syntax of the language in which genomes as programs are written. An
important question in this approach is the description of gene regulation. Lac operon gives an example
of gene regulation. Operon is a group of simultaneously transcribed genes with the same promoter and
terminator of transcription. Lac operon contains CAP binding site, promoter, operator, three structural
genes and termination of transcription (as situated in the DNA). Structural genes encode two enzymes
and transport protein for lactose. Transcription is initiated depending on concentrations of lactose and
glucose. For this aim two proteins binding to regulatory segments of the operon are used: lac repressor
(sensor of lactose) and Catabolite activator protein (CAP), sensor of glucose. Presence of two sensors
allows to start expression of structural genes in the case of simultaneous presence of lactose and absence
of glucose.

We propose to describe gene regulation using the notion of monad of functional programming.
Monadic values express the idea of “value in context” and application of a monadic function put values in
context (some “monadic laws” should be satisfied). The context in genomics can be described by a set of
regulatory molecules for operon, i.e. for the lac operon the context describes which regulatory molecules
(CAP and lac repressor) are bound to binding sites of the operon. In general, this gives a clue to the
problem of description of syntax of the programming language of life (in which genomes are written).

*E-mail: kozyrev@mi-ras.ru

2358

IS GENOME WRITTEN IN HASKELL? 2359

Exposition of this paper is as follows. In Section 2 we describe genomes as functional programs,
defined by recursive parallel application of genes. In Section 3 we discuss lac operon as analogue of the
IO monad in Haskell and gene regulation as monadic computation. In Section 4 we discuss Darwinian
evolution as machine learning problem for functional programming with regularization by estimate for
Kolmogorov complexity.

2. GENOME AS A PROGRAM

Let us describe our approach to biology. Biological molecules are linear polymers (proteins and
nucleic acids) described by strings of symbols, state of a biological system is described by a set
of strings with multiplicity (multistring). Multistrings (sets of molecules in a cell) are subject to
transformations corresponding to genes. We consider the following transformations. Chemical reactions
used in biological processes are transformations (operations of editing) of multistrings local in substrings
(gluing, cuttings, substitutions of substrings, duplications of substrings, other editing operations for
multistrings). Physical transformations (transfer of molecules to cells) are described by changes of
multiplicities of strings in a multistring. Formation of complexes of molecules (used in particular for
gene regulation) will be discussed in the next section as monadic operations. Genome is considered as
a list of genes, each gene defines a transformation of multistrings performed by the protein (or RNA)
encoded by the gene—editing operations and operations of transfer of molecules (actually some of
transfer operations are performed by corresponding transport molecules encoded by some genes). Genes
are also strings (of nucleotides) and genomes are multistrings.

Let us denote S the set of multistrings. Genome is a list G = [g1, . . . , gn] of genes. Gene gk defines
a function—a transformation of multistrings S → S (we use the same notation for a gene as a string of
nucleotides and as a function). The map gk is multivalued in S (application of function gk to object v ∈ S
is represented by a lambda–term where reduction can be made in multiple ways). In particular the map
gk may cut a string at the position of substring uv

u′uvv′ �→ u′u+ vv′,

string may contain several such substrings and gk can act on different strings in a multistring.
Genes as transformations operate in parallel thus genome as a program is highly parallel. We

describe genome as a functional program ˜G by recursive application of the genome as a list of functions
G = [g1, . . . , gn], each of functions gk is a transformation of multistrings S → S

˜G = ˜G ◦G = [˜G ◦ g1, . . . , ˜G ◦ gn]. (1)

Here the space of objects (where the functions are applied) is the space S of multistrings, gk are genes,
G is a genome as a list of genes, and ˜G is a genome as a program. List G = [g1, . . . , gn] of genes is a
multivalued function S → S: any function gk in the list (which itself is multivalued) can be applied to an
object v ∈ S.

Metabolic network as a reduction graph. Graphs are often used to describe functioning of
genomes, in particular metabolic networks describe pathways of chemical reactions in cells, also gene
co-expression networks are considered. For discussion of retinal evolution evolutionary networks are
investigated (where cycles in networks describe effects of hybridization and horizontal gene transfer) [6,
7]. From the point of view of functional programming these networks can be naturally discussed as
reduction graphs for lambda calculus. Let us put in correspondence to program (1) a graph constructed
in the following way.

Let v0 ∈ S be a multistring (this multistring should be “reasonable” from biological point of view,
it should contain molecules needed for operation of the genome and the cell and do not contain
unreasonable molecules). Let us define a graph Γ

˜G
for the program ˜G as follows:

Step 0) We start construction of the graph from vertex v0.
Step 1) Let us apply G to v0, any gk ∈ G can be applied to v0 (gk itself is multivalued). Let us include

to the graph all vertices obtained from v0 by multivalued map G (we identify vertices which coincide as
multistrings), the obtained vertices are connected to v0 by edges.

Step 2 etc.) By recursion let us apply multivalued map G to obtained at the previous step vertices.
Let us include to the graph Γ

˜G
all vertices and edges obtained in this way (again, we identify vertices

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 42 No. 10 2021

2360 KOZYREV

which coincide as multistrings and connect the obtained vertices to predecessors by edges). Iteration of
the process gives graph Γ

˜G
.

Some genes gk in G correspond to “physical” transfer operations which change multiplicities of some
strings in a multistring. These operations allow to close metabolic cycles in the graph Γ

˜G.

To a gene g in the genome G we put in correspondence the pair of non-negative numbers r+(g),
r−(g)—transition rates of corresponding direct and reverse reactions. These rates define a system of
kinetic equations for distribution functions on vertices of the graph Γ

˜G
—equations describe transitions

with rates r+(g), r−(g) along and against edges corresponding to genes. Let us assume that for this
system of kinetic equations there exists a unique stationary state f

˜G, moreover the solution of the system
tends to f

˜G
. The state f

˜G
describes metabolism in the cell, this state is non-equilibrium, in particular

currents in this state are metabolic currents in the cell.

Let us consider some linear functional A(f) of distribution f(v) on vertices of the graph. In particular:
the functional of current along the edge v1v2 with rates r+ and r− along and against the edge (from v1
to v2 and against) which equals to r+f(v1)− r−f(v2). Different edges v1v2 corresponding to the same
gene may be related to the same reaction (in particular with different values of reagents). In this case to
obtain the complete current one has to sum up values r+f(v1)− r−f(v2) over all such edges. We will
discuss functionals (in particular currents) A(f

˜G
) in the mentioned above stationary state.

Remarks. The program ˜G is highly parallel. Correctness of operation of metabolic networks is related
to Church–Rosser property for lambda-calculus (in different order of application of genes one can obtain
the desired result).

The program ˜G for a genome loops—this describes cycles in the metabolic network Γ
˜G

.

The stationary state f
˜G

corresponds to a state (in the sense of functional programming) for a genome

as a program ˜G. In particular it changes in the process of gene regulation.

Composition of multivalued maps G in recursive definition (1) coincides with composition of lists of
functions in Haskell according to the definition of list as applicative functor. Action of multivalued map
G on multistrings is more complicated (in particular genes gk in G can be multivalued).

3. GENE REGULATION: LAC OPERON

Gene regulation in our picture acts as follows: changing values r+(g), r−(g) we will change the
stationary state f

˜G
and contributions to the functional A(f

˜G
) from different metabolic pathways. Phys-

ically (or chemically) gene regulation works by regulatory molecules (in particular for lac operon) which
regulate expression of genes. Analogy in functional programming can be described by computations
in a context and computations with effects. In functional programming this situation is described by
introduction of monads, in genomics the context of computations is given by complexes of genomes
with regulatory molecules.

Lac operon is an analogue of the IO monad in Haskell (input–output). In the genome as a program
approach lac operon can be considered as one of genes gn in (1). We propose for lac operon the following
Haskell-like syntax

main = do
glucose <- sensorofglucose
lactose <- sensoroflactose
if not glucose && lactose

then return (structuralgene1
structuralgene2
structuralgene3)

else return()

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 42 No. 10 2021

IS GENOME WRITTEN IN HASKELL? 2361

Here functions glucose and lactose return boolean values for operations of input–output (which
check presence of glucose and lactose correspondingly) and structural genes 1, 2, 3 perform operations
of expression of corresponding genes. Therefore this function in absence of glucose and presence of
lactose expresses structural genes and for the case else performs return() i.e. returns empty tuple. Empty
tuple acts as identity transformation in the space S of objects. Expression of structural genes can be
understood as action of transformations performed by structural genes (by proteins encoded by these
genes). Activation of the lac operon changes the graph Γ

˜G of the program and stationary distribution f
˜G

(i.e. the distribution f
˜G and the graph Γ

˜G itself are context-dependent, the context at molecular level is
given by binding of regulatory molecules to binding sites in corresponding operons in the DNA.

4. DARWINIAN EVOLUTION AS LEARNING

Following Alan Turing [8] we will consider Darwinian evolution by selection as machine learning,
or generation of programs by data. This leads to formulation of learning problems for functional
programming. We will use temperature learning (i.e. instead of risk minimization problem we will
consider the corresponding statistical sum for Gibbs distribution where the Hamiltonian equals the risk
functional of the learning problem plus regularization).

Temperature learning. Problem of machine learning is the problem of minimization over the space
of parameters s of the sum of the loss (or risk) functional and the regularization functional

H(s) = R(s) +Reg(s) → min .

We omit in the above formula dependence of the functional on the training sample. Regularization is
important to control overfitting. Overfitting means that the solution of the learning problem shows
considerable dependence on the choice of a training sample, in this case one could obtain low value
of the risk functional at a training sample and high value of risk at a control sample. The main approach
to control overfitting is regularization to effectively reduce entropy of the space of parameters s, see in
particular VC-theory [9].

Temperature learning is defined as follows: instead of minimization we compute the statistical sum
(β > 0 is the inverse temperature)

Z =
∑

s

e−βH(s).

In the zero temperature limit β → ∞ problem of computation of Z becomes the problem of minimiza-
tion of H (temperature learning becomes standard learning).

It is natural to expect critical behavior in a temperature learning problem which (taking in account
the discussion after formula (4) below) we formulate as follows. Let us consider the functional H(α, s) =

R(s) + αReg(s), α > 0 and the corresponding statistical sum Zα =
∑

s e
−βH(α,s). Then for sufficiently

large α the statistical sum should converge (with a suitable regularization functional) and for small α
it diverges. We propose to consider the divergence of this statistical sum as a criterion of overfitting
using the physical intuition—in the high temperature (small α) regime the statistical sum Zα “melts”
and becomes divergent—values of parameter s which contribute to Zα are not restricted to a space of
limited entropy (as in the regime with overfitting in the learning problem).

Application of ideas of machine learning to biological evolution takes the form of regularization of
the corresponding learning problem by estimate of Kolmogorov complexity to control overfitting (i.e.
the risk functional in the learning problem for evolution describes selection pressure and regularization
allows to avoid overfitting). Statistical mechanical models and Gibbs distributions were discussed in
relation to scaling in genomics and linguistics (the Zipf’s law). In genomics, Koonin [6] discussed
genome as a “gas of interacting genes”, the corresponding Gibbs distribution should explain scaling
in sizes of families of paralogous genes, scaling in metabolic networks and networks of interacting
genes (which look like scale free graphs). Manin [10] investigated a model of statistical mechanics
with Hamiltonian equal to Kolmogorov complexity (“Complexity as Energy” approach) and claimed
that Gibbs distribution of this model should give the Zipf’s scaling law for distribution of words in
texts (moreover the Zipf’s law is obtained at the temperature of phase transition). In [1–3] it was
discussed that these two approaches can be unified if one will consider biological evolution as a model
of temperature learning with regularization equal to estimate for Kolmogorov complexity. In particular

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 42 No. 10 2021

2362 KOZYREV

the universality of scaling in genomics can be explained by universal regularization by complexity in
corresponding learning problems. Minimization of Kolmogorov complexity in application to neural
networks was discussed in [11].

Temperature learning for functional programs. We will consider biological evolution as action
of “evolution program” ˜E defined recursively by the list of “evolution genes” E = [e1, . . . , em] (list of
operations of editing of genomes) in a way analogous to (1)

˜E = ˜E ◦ E = [˜E ◦ e1, . . . , ˜E ◦ em]. (2)

Evolution transforms genomes to genomes (as multistrings), transforms rates r+(g), r−(g) for genes
in genomes, the stationary state f

˜G
and the functional A(f

˜G
) corresponding to the genome G. Difference

between programs (1), (2) for a genome and evolution is the following: for a genome (1) the genes are
subject to regulation (monadic computation) while for evolution (2) possibility of application of monads
is not clear (the evolution is blind).

Let us consider the evolution program ˜E of the form (2) with reduction graph Γ
˜E
(G0) (constructed

as in Section 2) where G0 is the ancestor genome and vertices of the graph are descendant genomes (i.e.
we generate this graph starting from the ancestor G0).

Let us put in correspondence to action of evolution operation ek a weight (positive number) K(ek)
and to oriented path p between vertices u and v in the graph Γ

˜E(G0) (path from ancestor to descendant)
we put in correspondence the action functional given by the sum of weights of edges in the path

K
˜E(p) =

∑

k∈p:u→v

K(eik). (3)

This functional can be considered as the cost of computation along the path p or weighted estimate for
Kolmogorov complexity of generation of v from u.

Let us define Darwinian evolution as the temperature learning problem with inverse “evolution
temperature” β′ with statistical sum

Z[˜E,G0] =
∑

G∈Γ
˜E
(G0)

A(f
˜G)

∑

p∈Path(Γ
˜E
(G0)):G0→G

e−β′K
˜E
(p). (4)

The summation runs over paths p between the ancestor genome G0 and the descendant genome G, then
we sum over descendants G.

In this formula G0 is the ancestor genome; G ∈ Γ
˜E(G0) are descendant genomes; A(f

˜G) is the func-
tional subject to selection (selection pressure functional); K

˜E
(p) is the evolutionary effort to generate a

descendant from the ancestor along evolution path p; summation
∑

p runs over paths of evolution with
the same ancestor and descendant (which describes the phenomenon of retinal evolution [7]). This is a
Darwinian model of evolution by selection—the statistical sum is concentrated at genomes with large
functional A(f

˜G
) (for example one could consider selection for large current functional).

Summation over paths describes parallelism in evolution (computation of typical functional A(f
˜G
)

includes summation over paths which describes parallelism in metabolism). Gibbs factor e−β′K
˜E
(p) of

the action functional reduces the complexity of evolution operations which contribute to the statistical
sum of evolutionary program. This corresponds to regularization by complexity as energy and makes
Darwinian evolution possible (without this regularization term we will get divergence in expression (4)
for the statistical sum which corresponds to overfitting in the learning problem).

The problem of teleology (“evolution has the aim”) often discussed in relation to biological evolution
in this approach reduces to solvabiltity of the above learning problem. Solvability means that the aim of
evolution is achieveable (i.e. the functional A(f

˜G) can reach sufficiently large values for some G and the
evolutionary effort to generate G is not very large, equivalently contribution in the summation over G in
(4) is sufficiently large for some G) and there is no overfitting (i.e. the statistical sum converges).

Nondeterministic algorithm is described by a Nondeterministic Turing Machine (NTM) which at
some steps of computation can duplicate and perform several branches of computation (this allows to
organize brute-force search). Programs (1), (2) which describe operation and evolution of genomes are

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 42 No. 10 2021

IS GENOME WRITTEN IN HASKELL? 2363

programs for NTM since G and E are multivalued functions and recursive application of multivalued
functions generate many branches of computation. This kind of parallelism is described by the syntax
of applicative list functor in Haskell. We propose to consider parallelism in biology (parallelism of
processes in cells and in evolution) as a manifestation of nondeterministic algorithms. Biological
processes correspond to nondeterministic computations and Darwinian evolution is a temperature
learning problem for a functional nondeterministic algorithm.

FUNDING

This work is supported by the Russian Science Foundation under grant 19-11-00320.

REFERENCES
1. S. V. Kozyrev, “Genome as a functional program,” Lobachevskii J. Math. 41 (12), 2326–2331 (2020). arXiv:

2006.09980
2. S. V. Kozyrev, “Biology as a constructive physics,” p-Adic Numbers, Ultrametr. Anal. Appl. 10, 305–311

(2018); arXiv: 1804.10518.
3. S. V. Kozyrev, “Learning problem for functional programming and model of biological evolution,” p-Adic

Numbers, Ultrametr. Anal. Appl. 12, 112–122 (2020).
4. J. Backus, “Can programming be liberated from the von Neumann style? A functional style and its algebra

of programs,” Comm. ACM 21, 613–641 (1978).
5. M. Lipovaca, Learn You a Haskell for Great Good!: A Beginner’s Guide (No Starch Press, 2011).
6. E. V. Koonin, The Logic of Chance: The Nature and Origin of Biological Evolution (FT Press, 2012).
7. D. H. Huson, R. Rupp, and C. Scornavacca, Phylogenetic Networks (Cambridge Univ. Press, Cambridge,

2010).
8. A. M. Turing, “Can machines think? Computing machinery and intelligence,” Mind 49, 433–460 (1950).
9. V. N. Vapnik, The Nature of Statistical Learning Theory (Springer, Berlin, 1995).

10. Y. I. Manin, “Complexity vs energy: Theory of computation and theoretical physics,” J. Phys.: Conf. Ser.
532, 012018 (2014); arXiv: 1302.6695.

11. J. Schmidhuber, “Discovering neural nets with low Kolmogorov complexity and high generalization capabil-
ity,” Neural Netw. 10, 857–873 (1997).

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 42 No. 10 2021

		2021-10-08T14:16:56+0300
	Preflight Ticket Signature

