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Abstract—The efficiency of modeling of the axisymmetric dynamics of a gas bubble near a curved
rigid wall by the boundary element method using the fundamental solution of the Laplace equation
for an unbounded domain is numerically studied. For this purpose, the problems of the collapse of a
bubble near a flat wall and the expansion and subsequent collapse of a bubble near the concave and
convex walls are considered. To assess the effectiveness, the results of calculations of these problems
are compared with the known results of their calculations using their fundamental solutions for the
areas bounded by those walls. The results show the dependence of the numerical solution on the
radius of the computational domain on the wall, the number of cells when the domain is uniformly
partitioned, and the number of cells when it is non-uniformly partitioned with condensation toward
the axis of symmetry along a geometric progression.
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1. INTRODUCTION

Knowledge of the features of the dynamics of bubbles near the surfaces of rigid bodies is of great
importance in such applications as underwater explosions [1, 2], cavitation erosion [3, 4], ultrasonic
cleaning of rigid surfaces [5], various methods of treatment in medicine [6], etc. Numerous theo-
retical [7–11] and experimental [12–14] studies show that the geometry and law of motion of bodies
significantly affect the features of the interaction of bubbles with the surfaces of the bodies. The most
common algorithms used for the numerical simulation of the bubble dynamics in the cases with small
influence of the liquid viscosity and compressibility are based on the boundary element method. For a
bubble near a flat rigid surface (wall), such an algorithm was first proposed in [15] and then developed
in a number of later works [16–18]. Its efficiency is due to the use of a fundamental solution for a half-
space in which the no-penetration condition are satisfied automatically, which eliminates the need to
introduce unknowns at the nodes on the wall surface. A similar approach was also applied to curved
rigid walls [19, 20], where the corresponding fundamental solutions obtained by the image method was
utilized. However, in many practical situations, the geometry of the wall (body surface) because of its
micro-roughness can be very complex, so that finding a fundamental solution that satisfies the condition
of no-penetration on the body surface is a very difficult and perhaps even impossible task. In such cases,
one can use the fundamental solution for an unbounded domain, and the no-penetration condition on a
wall can be satisfied numerically at a number of grid nodes on the wall. The main problem in this case is
the non-closed surface of the wall. In the numerical algorithm, the infinite liquid domain of the problem
is replaced by a finite computational one with an artificial boundary, and the validity of the numerical
solution is estimated by increasing the size of the domain [21–23]. In this paper, the efficiency of one of
the algorithms that implements this approach is investigated.
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2. PROBLEM STATEMENT

The modeling of the axisymmetric dynamics of a gas bubble near a curved rigid wall by the boundary
element method using the fundamental solution for an unbounded region is considered. In such a case,
the no-penetration condition on the wall is satisfied numerically. To this end, the contour of the wall in
its axial section, like the contour of the bubble surface, is divided into cells. In doing so, the unbounded
area of the wall is replaced by a finite area with an artificial boundary of the radius r = Rw, where r is
the distance to the axis of symmetry. Main attention of the study is directed to the dependence of the
numerical solution on the radius of the computational domain on the wall Rw, the number of cells Nun

when the domain is partitioned uniformly, and the number of cells N when it is partitioned non-uniformly
with condensation toward the axis of symmetry according to geometric progression. The study is carried
out for problems of the collapse of a bubble near a flat wall and of the expansion and subsequent collapse
of a bubble near the concave and convex walls. The surface of the curved walls is determined by the
equation [19, 20]

f(r, z) = d2[ξ
2(z + ξh) + (1− ξ2)d1]− (h− z)d1 = 0, (1)

where z is the axial coordinate of the cylindrical coordinate system r, z with the origin at the point of the
wall located on the symmetry axis of the problem, d1 = {r2 + (z + ξh)2}1/2, d2 = {r2 + (h− z)2}1/2,
h is the distance from the wall to the center of the bubble along the axis of symmetry z, ξ is a parameter
defining the curvature of the wall (the wall is convex for 0 <ξ<1, concave for ξ > 1 and flat for
ξ = 1). The curvature of the wall at the origin is 3(ξ − 1)/(4ξ). The dependence z = z(r) for the wall
points is determined from the ODE dz/dr = −fr/fz with z(0) = 0, where fr, fz are the corresponding
partial derivatives. To evaluate the efficiency of the algorithm based on the fundamental solution for an
unbounded domain, its results are compared with those calculated using the fundamental solution for
the corresponding half-spaces. The numerical solution to the problem of the dynamics of a bubble near
a flat wall using a fundamental solution for a half-space is found by a well-known method presented
in [15–17], and the solutions to the problems of the dynamics of a bubble near the concave and convex
walls are taken from [19].

3. FEATURES OF THE NUMERICAL TECHNIQUE
BASED ON THE FUNDAMENTAL SOLUTION FOR UNBOUNDED DOMAIN

Fig. 1 shows the computational domain Ω, bounded by the wall Σ and some spherical surface SR

with the radidial co-ordinate Rw of the point of its intersection with the wall. It is assumed that with
an increase in the size of the computational domain (the value of Rw), the values of the potential in the
considered part of the computational domain Ω will tend to their limiting values [21–23]. Thus, a series
of calculations is needed to determine the value of Rw, at which its further increase has little effect on
the problem solution. The integral over the sphere SR tends to zero at Rw → ∞ [24] and therefore it is
not included in the integral equation. In this case, the integral equation for the velocity potential can be
written as [24] ∫

S
⋃

Σ

(
G
∂φ

∂n
(x′)− φ(x′)

∂G

∂n′

)
ds′ = c(x)φ(x), (2)

where G(x, x′) = 1/(4π|x − x′|) is the fundamental solution (Green’s function) for the unbounded
domain, c(x)=1 for x ∈ Ω, c(x)=0.5 x ∈ S ∪ Σ.

In the numerical solution of (2) by BEM, a grid of nodes is introduced on the surfaces of the bubble
and the wall (0 ≤ r ≤ Rw), while the values to be determined at the nodes on the bubble surface are those
of the normal velocity under given values of the velocity potential. Similar values to be determined at the
nodes on the wall are the values of the potential under the zero normal speed (i.e., the no-penetration
condition ). The diagonal elements of the system of linear equations written for the nodes on the wall are
set equal to 0.5, while for the nodes on the bubble surface they are determined by the formula [25]

c(x) = 1 +

∫

S

(
∂G(x, x′)

∂n

)
ds

which is sometimes called as 4π rule [26].
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Fig. 1. Computational domain Ω : S is the bubble surface, Σ is the curved wall with the center at r = 0, z = 0, SR is
the sphere with the center at r = 0, z = 0, Rw is the radius of the wall section by the sphere SR.

(a) (b)

Fig. 2. Collapse of a bubble near a flat wall: evolution of the bubble surface derived by BEM using fundamental solutions
for (a) the unlimited domain and (b) the half-space.

4. RESULTS

In all the problems considered below, the liquid pressure is p∞ = 1 bar, the bubble is filled with gas
with the adiabatic exponent γ = 1.4, the initial distance from the bubble center to the wall along the
symmetry axis is 1.2R0, the bubble contour in its axial section is covered by a uniform mesh with the
cell number Nb = 200. In the case of non-uniform partition of the wall contour in its axial section, a
mesh is used with condensation to the axis of symmetry, the arc coordinates of which form a geometric
progression with the denominator of the progression equal to q = (sw/s)

1/(N−1) , where s = πR0/Nb is
the size of the element near the axis of symmetry, sw is the length of the arc of the wall from the axis of
symmetry to the point with the radial coordinate Rw.

4.1. Collapse of a Bubble Near a Flat Wall

In a liquid at rest, bounded by a motionless flat wall, there is a stationary gas spherical bubble with a
radius of R0 = 1 mm. At the initial moment of time t = 0, the pressure in the bubble instantly decreases
to pb0 = 0.238p∞. As a result of the difference between the pressures in the liquid and the bubble, the
latter begins to collapse.

The evolution of the surface of the bubble during its collapse is illustrated in Fig. 2a, which shows
the results of calculations using the method [17] based on the fundamental solution for the half-space. It
can be seen that during the collapse, a cumulative liquid jet directed to the wall is formed on the bubble
surface part more distant from the wall. At some instant tc, the jet hits the bubble surface part closest
to the wall. As a result, an intense pressure pulse (or even a shock wave) can form in the liquid, which
in practice determines one of the mechanisms of cavitation damage. The numerical solution obtained
using the fundamental solution for the half-space by the method of [17] plays the role of a reference
solution in the present work. Fig. 2b shows the results of calculations by the method of this work for
the boundary of the computational domain on the wall with Rw = 10R0 with its uniform partition into
Nun = 200 cells (note that a subsequent increase in Rw and Nun does not lead to noticeable changes in
the contours shown in Fig. 2b). It can be seen that the contours of the bubble in Fig. 2b are in excellent
agreement with the corresponding contours in Fig. 2a.

Figure 3 shows the features of the convergence of the numerical solution according to the method
of the present work with growing the radius Rw of the computational domain on the wall (at Nun =
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Fig. 3. Collapse of a bubble near a flat wall, calculated by the method of the present work: the numerical convergence
(a, c, e) of the bubble profile at the time tc and (b, d, f) of the velocity of the upper pole of the bubble in the final stage
of collapse (a, b) with increasing the radius of the computational domain on the wall, (c, d) with refining the uniform
partition of the computational domain on the wall and (e, f) with refining the non-uniform partition of the computational
domain on the wall. In (b, d, f), dots indicate the moment instant tc at which the jet hits the bubble surface part closest
to the wall, t and vz0 are in m/s and μs, respectively.
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Fig. 4. Expansion and collapse of a bubble near a concave wall: evolution of the bubble surface in the phase of its
collapse according to the results of (a) [19] and (b) the present work.

20Rw/R0), the number of the grid cells Nun in the uniform partition of this area (at Rw = 20R0), and the
number of the grid cells N in its non-uniform partition (at Rw = 20R0). The convergence of the bubble
shape at the time tc and the velocity of the upper pole of the bubble in the final stage of the collapse is
quite clear. In particular, graphical convergence is achieved for Rw ≈20 R0, Nun ≈ 100, and N ≈ 25,
respectively. It should be noted that the characteristics presented in Fig. 3, calculated for these values
of Rw , Nun or N , and the corresponding characteristics of the reference numerical solution graphically
coincide.

4.2. Expansion and Collapse of a Bubble Near a Concave Wall
In liquid at rest, bounded by a motionless concave wall defined by (1) with ξ = 3, there is a motionless

spherical gas bubble with a radius of R0 = 0.157 mm. At t = 0, the pressure in the bubble instantly
increases to pb0 = 100p∞. As a result, the bubble first expands and then collapses. With these
parameters, the maximum bubble radius in the absence of a wall is Rmax ≈ 1 mm.

The evolution of the bubble surface at the phase of collapse is presented in Fig. 4a, which shows the
results taken from [19]. They were obtained using the fundamental solution for the corresponding half-
space. It can be seen that here, as in the case of bubble collapse near a flat wall, a cumulative jet is also
formed on the bubble surface part more distant from the wall. At some moment tc this jet hits the bubble
surface part closest to the wall. At the same time, the jet characteristics (e.g., the shape and the velocity
that are important for applications) are here appreciably different from those in the case of a flat wall.
Figure 4b shows the results of calculations by the method of the present work for the computational
domain on the wall with Rw = 10R0 and its uniform partition (Nun = 200). It can be seen that the
bubble contours in Fig. 4b are in excellent agreement with those in Fig. 4a.

Figure 5, like Fig. 3, demonstrates the features of the convergence of the numerical solution in terms
of the bubble shape at the moment tc and the velocity of the upper pole of the bubble in the final stage
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Fig. 5. Same as in Fig. 3, but for expansion and subsequent collapse of a bubble near a concave wall with ξ = 3.
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Fig. 6. Same as in Fig. 4, but for a convex wall.

0 0.2 190 192 194
t

190 192 194
t

192 196
t

(a) (b) (c) (d) (e) (f)

r/R0

0 0.2
r/R0

0 0.2
r/R0

Rw/R0 = 5

Rw/R0 = 10

2.5

2.5

50
50

100
100

200
2001.25

1.25

5

−50

−100

−150

−200

−250

νz0
−50

−100

−150

−200

−250

νz0

−50

−100

−150

−200

−250

νz0

0.8

1.0

0.6

z/R0

0.8

1.0

0.6

z/R0

0.8

1.0

0.6

z/R0Nun = 25

Nun = 25

N = 10

N = 10

12
12

25

25

Fig. 7. Same as in Fig. 3, 5, but for a convex wall.

of collapse with an increase in the radius Rw (at Nun = 20Rw/R0) and the cell numbers Nun and N (at
Rw = 20R0). The results show that the graphical convergence of the characteristics shown in Fig. 5 is
achieved at Rw ≈ 20R0, Nun ≈ 200 and N ≈ 100, respectively.

4.3. Expansion and Collapse of a Bubble Near a Convex Wall

The problem considered in this section differs from that in the previous one only in that here the wall
is convex with ξ = 0.3.

The evolution of the bubble surface in the phase of collapse is illustrated in Fig. 6a, which shows the
results from [19], obtained using the fundamental solution for the corresponding half-space. As in the
cases of bubble collapse near the flat and concave walls, one can see here the formation and development
of a cumulative jet directed toward the wall. At the same time, this case of a convex wall differs from the
cases of flat and concave walls not only by the characteristics of the jet (shape, velocity), but also by
the geometry of the bubble surface part closest to the wall. In particular, here, by the time tc, it bends
toward the jet. Figure 6b shows the results of calculations by the method of the present work for the
computational domain boundary with Rw = 10R0 and its uniform partition (Nun = 200). It can be seen
that the contours of the bubble in Fig. 6b are in excellent agreement with those in Fig. 6a.
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Figure 7, like Fig. 5, illustrates the features of the convergence of the numerical solution with
an increase in the radial co-ordinate of the computational domain Rw (at Nun = 20Rw/R0), the cell
numbers Nun and N (at Rw = 20R0). Calculations show that the graphical convergence of the
characteristics presented in Fig. 7 is nearly achieved at Rw ≈ 20 R0, Nun ≈ 200, and N ≈ 100,
respectively. It is interesting to note that, as in the case of the concave wall, with increasing the number
N of non-uniform partition of the wall, the bubble profile shifts up to its limiting position, while with
rising the number Nun of its uniform partition, the bubble profile shifts down to its limiting position.

5. CONCLUSIONS

The study of the efficiency of modeling of the axisymmetric dynamics of a gas bubble near a curved
wall by the boundary element method using the fundamental solution of the Laplace equation for an
unbounded domain was carried out. For this purpose, the problems of bubble collapse near a flat wall
and the expansion and subsequent collapse of a bubble near concave and convex walls were considered.
The results obtained were compared with those derived using fundamental solutions for the regions
bounded by the considered walls. Good agreement was obtained. The presented results demonstrate
the convergence of the numerical solution with an increase in the size of the computational domain
on the wall, the cell number in uniform partition of the wall contour and in its non-uniform partition
with condensation to the axis of symmetry according to geometric progression. It is shown that the
non-uniform partition of the flat wall contour requires a significantly smaller number of nodes than its
uniform partition does. For the curved walls, this effect is less appreciable. It should be noted that the
choice of a special form of the fundamental solution, which satisfies the no-penetration condition, allows
one to reduce the computation time by about a factor of (Nb +N)2/N2

b . Unfortunately, such solutions
cannot always be constructed for complex wall geometry of the wall.
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