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Experimental and Analytical Study of Gas Resonance Oscillations
in the Closed Tube with the Cross-Section Jump
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Abstract—The results of study of gas resonance oscillations in the closed tube with the cross-
section jump are presented. The dependence of oscillation amplitude of gas pressure on the
resonance frequency at different amplitude of piston displacement is plotted. The good agreement
between the theoretical calculation of environmental pressure and the obtained experimental data is
shown.
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1. INTRODUCTION

The numerous technological processes from the most diverse areas are associated with the nonlinear
environmental oscillations [1, 2]. The theoretical and experimental study of gas resonance oscillations
in the tubes are particularly considered in the review [3]. It is necessary to admit that in works [4–
6] devoted to the gas oscillations in the closed tube, which were studied by means of different modes
and at close range of the first natural frequency, the theoretical calculations are performed by means
of different methods though using solutions and transformations taken from [7, 8]. The resonance
oscillations of gas in tube with the conic and suddenly reducing socket are analyzed in works [9, 10]. It
is shown that geometrical features of resonators influence the oscillations intensifying them and causing
the strong nonlinearity. Moreover, they may result in the waveform distortion and resonance frequency
displacement [11]. The analytical and experimental study of nonlinear oscillations of gas in the closed
tube with the step-like cross-section on the resonance frequency and at different amplitudes of piston
displacement is presented in this work.

2. EXPERIMENTAL UNIT AND METHOD

The experimental unit is shown in Fig. 1. ES-1-150-type electrodynamic vibration generator 1 that
is produced by Dongling Vibration Company [12] represents the main element of unit. The vibration
generator operates at frequencies ν ranging from 120 to 135 Hz with a maximum amplitude movement
of l0 = 0.5× 103 m in this work. The environmental disturbance is produced by piston 3, which vibrates
in the cylinder 4 (radius R1 = 0.05 m and height L1 = 0.038 m) connected to the glass tube 5 (length
L0 = 1.06 m and radius R0 = 0.018 m). Such design feature allows intensifying the media oscillations
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Fig. 1. Experimental unit. (1) Vibration generator, (2) vibrating table, (3) piston, (4) cylinder, (5) quartz tube,
(6) oscillograph, (7) voltage amplifier, (8) pressure indicator, (9) acceleration indicator, (10) controller.

in the tube if compared to the uniform tube under the same conditions. To consider the design features of
the unit we introduce the computed length of tube L and the effective amplitude of piston displacement l:

L = L0 +m2(L1 + l0), m =
R1

R0
, l = m2l0. (1)

Thus, the specified values (1) will be used instead of tube length L0 and amplitude of piston displacement
l0 in the further assumptions and calculations.

The vibration generator is driven by 10 VENZO 880 controller produced by DynaTronic Corporation
with the help of closed-loop system IEPE of AP2037-100 acceleration indicator 9 produced by Global
Test Company and computer software. The pressure disturbance is measured with the help of 8530C-15
indicator 8 produced by Bruel and Kjaer Company. The signal of bridge voltage amplifier 7 of ENDEVCO
type (model 136) manufactured by Bruel and Kjaer Company is sent to the digital oscillographs 6 of DSO
type produced by Agilent Technologies Company.

3. RESULTS AND THEIR DISCUSSION

The theoretical resonance frequency was estimated according to the known dependence [13]

ν1 =
c0

2L(1 + β′)
, β′ =

1

R0

√
2

√
μ

ρ0ω

(
1 +

κ− 1√
Pr

)
,

where R0 is equilibrium speed of sound, β′ is absorption coefficient, κ is adiabatic exponent, Pr is
Prandtl number, μ is dynamic viscosity, ρ0 is undisturbed media density, ω is circular frequency. The
result of experimental conditions is presented by ν1 = 128.06 Hz. Due to the obtained oscillograms
of gas pressure oscillations for different amplitudes of piston displacement (Fig. 2), it was determined
that experimentally found resonance frequency is 128 Hz being equal to the rated one. It is seen on the
oscilograms that the form of pressure wave for all studied amplitudes and excitation frequencies is the
same. As the resonance is approached, the pressure amplitude increases to its maximum value. The
small nonlinearity which is preserved away from the resonance is observed. The increase of gas pressure
amplitude may be also admitted in the course of increasing of piston displacement amplitude.

To analytically describe the forced oscillations of gas in the tube we use the continuity and Navier–
Stocks equations as well as entropy variations [6] which after some transformations [7, 8] carried out
due to the boundary conditions of piston and closed tube end

x = 0, u = 0; x = L, up = ωl cosωt
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Fig. 2. Oscillograms of gas pressure disturbances at different times depending on the amplitude of piston displacement
near the resonance frequency ν1 = 128 Hz.

are equated to the following

C − (cot2 ωt+ 1)−1/2

2
=

(
g(ωt) − 2r

π

)2

− απ−1/2

∞∫
0

g(ωt− ωξ)(ωξ)−1/2d(ωξ), (2)

where ξ is variable arising in the course of evaluation, C is integration constant, g(ωt) function depends
on parameter ε as g(ωt) = ε−1/2h(t), which characterizes the amplitude of gas oscillations

ε = − 4l

(κ+ 1)L cos(ωL/c0)
,

r is non-dimensional frequency and α is friction coefficient

r =
πc0ε

−1/2

(κ+ 1)ωL cot(ωL/c0)
, α =

4β′

κ+ 1

(
2

ε

)1/2

.

To calculate the swing amplitude of gas pressure we use the energy method [7]〈
Ėp

〉
=

〈
Ėw

〉
+

〈
Ėn

〉
,

where
〈
Ėp

〉
is average energy in the course of vibration, which is created by the piston per time unit;〈

Ėw

〉
,
〈
Ėn

〉
is energy dissipation rate as a result of wall and nonlinear losses respectively.

Let us differentiate (2) in time multiplying it on −ωρ0c
2
0h(t)/π and averaging according to the period

of oscillation. We obtain the following after some transformations

− ω

2π
ρ0c

2
0lω

ts+2π/ω∫
ts

h(t) cos ωtdt = −ω

π
ρ0c

2
0(κ+ 1)L

ts+2π/ω∫
ts

h(t)h′(t)

[
h(t)− 2r

π
ε1/2

]
dt

+
ω

2π
ρ0c

2
0βL

ts+2π/ω∫
ts

h(t)

∞∫
0

h′(t− ξ)ξ−1/2dξdt. (3)

Here ts corresponds to the average time of compression, 2π/ω is period of piston oscillations. There

is a term determining the piston work
〈
Ėp

〉
in the left member of equation (3). The first term of the

right member corresponds to the energy dissipation caused by the nonlinear losses
〈
Ėn

〉
, the second
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term is an energy dissipation rate
〈
Ėw

〉
caused by the wall losses [6]. In fact, the tube influenced by

the frictional force from the side of gas vibrates in the coordinate system, which is resting toward the
pressure wave

τw = −μ
∂ub
∂y

∣∣∣∣
w

, (4)

where ub is speed in the boundary layer, which may be defined, from Stokes equation

∂ub
∂t

= v
∂2ub
∂y2

in case of the following boundary conditions: ub = −u1(x, t), y = 0; ub = 0, y = ∞.

The work performed by the tube walls per time unit is calculated by the integration of τwu1 product
over the surface of tube walls, which is then determined by averaging the cross-section and time. Thus,
we obtain

〈
Ėw

〉
= −2μ

R
(1 +

κ− 1√
Pr

)
ω

2π

L∫
0

ts+2π∫
ts

u1(x, t)

(
∂ub
∂y

)
dxdt,

where (κ− 1)/
√
Pr component considers the influence of gas heat conduction.

We assume that wall losses are so small that h to time dependence is the same as of the nonviscous
gas. Then we may take h = h0 [2r/n+ cos(ωt/2− π/4)] , where h0 is value which is to be determined.
After calculating some equation terms (4) we get〈

Ėw

〉
= ρ0c

3
0h

2
0b, where b = 1.982

π

R
√

ρ0ω/μ

(
1 +

κ− 1√
Pr

)
, (5)

〈
Ėn

〉
= ρ0c

3
0h

3
0d, where d = 2(κ− 1)

[
1

3
cos3 Δ0 +

(
2r

π

)2

(1− ε1/2) cosΔ0

]
. (6)

Thus, the energy produced by the piston for the saw-toothed wave is 3/4 of the total energy being equal
to 〈

Ėp

〉
= ρ0c

3
0h0εa, where a =

3κ+ 3

8

(
cosΔ0 +

cos 3Δ0

3

)
. (7)

Substituting the equations (5)–(7) in (3), we obtain the following equation

h20 +mh0 − nε = 0, (8)

where m = b/d, n = a/d. The solution of equation (8) relating to h0 determines the dimensionless
amplitude of pressure disturbance Δp = 2ρ0c

2
0h0.

The theoretical dependence and experimental data relating to the swing amplitude of gas pressure
and amplitude of piston displacement toward the resonance frequency are shown in Fig. 3. As we can
see the results of theoretical calculations are in good agreement with the obtained experimental data in
case of oscillations available across the entire range of piston displacement amplitudes. The discrepancy
does not exceed 10%. In the course of increasing of excitation amplitude (over 0.25 × 10−3 m) the
experimental values are just above the theoretical ones. This is explained by the greater influence of
nonlinearity in case of high oscillation amplitudes in the resonance, which are seen on oscillograms
in Fig. 2. Moreover, to analyze the influence of oscillation intensity the obtained experimental results
were approximated by the power function Δp = Aln0 . Consequently, the constant values and power
coefficients become A = 0.2, n = 0.85 for these experiments in case of gas oscillation on the resonance
frequency ν1 = 128 Hz. It should be noted that power coefficient n for the shock wave mode is 0.5 [7],
and for shock-free wave mode is close to 1 [13]. Thus, the transient oscillation mode is observed in these
experiments.
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Fig. 3. Dependence of pressure disturbance Δp on amplitude of piston dispalcement l0 at an resonance frequency
ν1 = 128 Hz.

4. CONCLUSION

The nonlinear oscillations of gas in the closed tube with the step-like cross-section are studied in
vicinity to resonance at different amplitudes of piston displacement. It is defined that presence of step-
like cross-section allows intensifying the media oscillations without shockwaves. The good agreement
of theoretical and experimental data is obtained.
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