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Abstract—In this work boundary value problem for a circular plate under the action of two-sided gas
pressure is considered. The problem relations use a refined expression for the transverse distributed
force. The force consists of the average overpressure and the difference of pressures acting on
both surfaces of the plate as well as in the curvature that arises during bending. The effect of the
boundary conditions on the deflection values is shown, and the compression force of the middle
surface resulting from the thickness reduction of the plate has been also taken into account. Linear
and nonlinear axisymmetric bending has been investigated.
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1. INTRODUCTION

The effect of the average ambient pressure pm = (p1 + p2) on bending in the classical thin plate
theory [1–11] seems to be negligible. Herein p1 and p2 are overpressures applied to bottom and top
surfaces respectively. It was shown [12–15] that the transverse distributed load q depends not only on
the change in pressure pe = p2 − p1, but also on the deformation of the plate itself. Thus, the expression
for the distributed transverse load on a circular plate of thickness h in the linear approximation has the
form [13]

q = pe + pmh∇2w, ∇2 =
1

r

d

dr

(
r
d

dr

)
. (1)

In this case, it is assumed that the contour area of the plate is isolated from the action of overpressures p1
and p2. With a small relative thickness of the plate, a large ratio of the average pressure to the modulus of
elasticity of the material, the effect of the second component in (1) should be taken into account [12–15].

The linear bending of a rectangular plate with finite ratio of sides was studied in [14]. In this
article an equation for a transverse distributed load is derived based on the theory of elasticity. The
variability effect of the curvature of the middle surface and different boundary conditions on the value
of the transverse distributed force, deflection, and critical forces was also researched. If it is taken into
account the deformations in the plane of the middle surface induced by compression along the thickness
under the action of the average pressure pm, then in the absence of displacement on the supports, the
compressing forces arise. Herewith in the plane problem for a circular plate, the radial stress has the
form: σ0

r = −νpm [15]. In the development of [15], in this work the nonlinear system of differential
equations and the boundary conditions for the stress function corresponding to the problem are written
in a more general form.
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2. PROBLEM DEFINITION
Let us consider the static axisymmetric elastic bending of a circular plate of radius c and thickness h.

The lower and upper surfaces of the plate are affected by the gas pressures p0 + p1 and p0 + p2, where
p0 is the atmospheric pressure, p1, p2 are the uniform overpressures. The pressures p1 and p2 can be
both positive and negative, in the latter case, we have | p1 |< p0, | p2 |< p0. It is assumed that pressures
p1, p2 remain unchanged, when the plate is bending. The edge of the plate is isolated from the action
of overpressures (only p0 acts). Prior to the application of pressures p1, p2 the plate under an all-round
pressure p0 is in an unstressed plane state. The effect of gas densities on the transverse load is not taken
into account. The direction of the load q, and deflection w(r) are positively down.

In accordance with Kirchhoff’s hypotheses, the system of nonlinear equations of the bending about
the deflection functions w(r) and stresses Φ(r) has the form [7]

D
d(∇2w)

dr
− h

r

dΦ

dr

dw

dr
= Ψ,

d(∇2Φ)

dr
+

E

2r

(
dw

dr

)2

= 0, (2)

D =
Eh3

12(1 − ν2)
, σr =

dΦ

rdr
, σϕ =

d2Φ

dr2
, Ψ =

1

r

r∫
0

qrdr.

Taking into account q from (1), the load function Ψ can be written as

Ψ =
per

2
+ pmh

dw

dr
. (3)

Since considerable values pm of average pressure are allowed in the considered approach, it is
necessary to take into account the effect of strain ε0z in the plane of the middle surface due to compression
in thickness under the action of average pressure subject to a condition that the plate contour does not
move in the direction of the radius. In the first equation (2), instead of the radial stress dΦ/(rdr), it is
necessary to substitute the sum of the stresses dΦ/(rdr) + σ0

r due to the bending of the plate and its
compression in thickness.

Further down, for the deflection function w, the conditions of simple supported of the plate along the
contour [7]

w = 0,
d2w

dr2
+

ν

r

dw

dr
= 0 (r = c) (4)

and clamped

w = 0, dw/dr = 0 (r = c) (5)

will be used. For radial stresses on the middle surface the boundary condition (BC) in general form is
considered

(σr + σ0
r)h = −K(u+ u0), (6)

where by K we denote the support stiffness (r = c) with radial displacement of the plate. BC (6) can be
written separately for the bending problem

σrh = −Ku (7)

and for the plane problem

σ0
rh = −Ku0. (8)

For the stress function Φ, the condition (7) has the form

h

r

dΦ

dr
= −Kr

E

(
d2Φ

dr2
− ν

r

dΦ

dr

)
(r = c). (9)

Expression σ0
r has been define, taking into account the dependencies between deformations and stresses

in the plane problem for a circular plate

σ0
z =

E

1− v2
(ε0z + νε0r + νε0ϕ), σ0

r =
E

1− v2
(ε0r + νε0ϕ + νε0z), ε0r = ε0ϕ = u0

/
r (10)
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and the expression for the compression stress across the plate thickness,

σ0
z = −pm. (11)

We obtain from (10), (11)

ε0z = −(1− ν2)
pm
E

− 2ν
u0

r
, σ0

r = −νpm + Eν1
u0

r
, ν1 =

1 + ν − 2ν2

1− ν2
. (12)

Eliminating from (8) and the second relation (12) the displacement u0 for r = c, we have

σ0
r = − νpm

(1 + η)
, η =

Eν1h

Kc
. (13)

The η parameter represents the ratio of the tensile stiffness of the plate to the stiffness of the support
device. When this ratio is small (η � 1), from (13) the condition of no radial displacement (u0 = 0) and
σ0
r = −νpm is obtained. With a low stiffness of the support (η → ∞), the condition of free displacement

σ0
r = 0 follows. For η = 1, we have σ0

r = −νpm
2 .

From the equilibrium equation in stresses for the plane problem dσ0
r

dr +
σ0
r−σ0

ϕ

r = 0 taking into

account (10) we have dσ0
r

dr = 0, σ0
r = const. From the condition (13) it follows that σ0

r = − νpm
(1+ eta) over

the entire radius of the plate. Thus, instead of the system of equations (2) and considering (3), we have
the following nonlinear system of equations

D
d(∇2w)

dr
− h

dw

dr

(
dΦ

rdr
+ pm(1− ν

1 + η
)

)
=

per

2
,

d(∇2Φ)

dr
+

E

2r

(
dw

dr

)2

= 0. (14)

System (14) is supplemented by the boundary conditions (4), (9) or (5), (9) and the boundedness
conditions for the functions σr and θ = −dw

dr for r = 0.

3. SMALL DEFLECTIONS OF A CIRCULAR PLATE

In the case of a linear problem from (14) we have the equation

d(∇2w)

dr
−

pmh(1− ν
1+η )

D

dw

dr
=

per

2D
. (15)

In the case (4), making an approximate solution in the form [7]

w = f

(
1− 2a

r2

c2
+ ab

r4

c4

)
, a =

3 + ν

5 + ν
, b =

1 + ν

3 + ν
. (16)

and, integrating (15) by the Bubnov–Galerkin method, we obtain the following expression for the
relative defection in the center of the plate

ξ =
f

h
=

3q∗(1− ν2)

16ab(1 + α)
, α =

3(1 − ν2)pmc2

4Eh2β
(1− ν/(1 + η)), β =

b(3− 2b)

6− 8b+ 3b2
. (17)

Thus, the dimensionless parameter α determines the contribution of the second term in equation (15).
The clamped conditions of the contour (5) are satisfied with the deflection function [7]

w = f(1− r2/c2)2. (18)

Relative sag equals to

ξ =
f

h
=

3(1 − ν2)q∗

16(1 + α)
, q∗ =

pe
E

( c

h

)4
, α =

3pmc2

4Eh2
(1− ν2)(1 − ν/(1 + η)). (19)

From the expressions (17), (19) it is possible to visualize that the influence of the parameter α is the
greatest in the case of the simple supported, this is explained by the fact that the sign of the curvature of
the middle surface of the simple supported plate does not change over the entire surface, as opposed to
clamped.
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Fig. 1.

Figure 1 shows the dependence of the average pressure pm/E on the parameter of the plate wall
thinness c/h for the parameter α = 10−2 . The dashed line corresponds to the dependence at η � 1,
the dotted line represents to η = 1, the solid line describes to η → ∞. Curves 1 and 2 describe the
dependencies for simple supported and clamped, respectively. For the values of the average pressure and
thin-walled parameters that define the areas above the curves in Fig. 1, the effect of the average pressure
for bending must be taken into account.

The α parameter and the average pressure have the least effect on the bending under one-sided
pressure. Let p1 = 0, pm = p2/2. We limit the value of p2 to the applicability of linear equation (15)
and its solutions (17), (19). Setting ξ ≤ 1 in (17), (19), we obtain, respectively

p2
E

≤ 16ab(1 + α)

3(1− ν2)
(h/c)4,

p2
E

≤ 16(1 + α)

3(1− ν2)
(h/c)4. (20)

Taking into account (20), pm = p2/2, (17), (19), we have the largest possible values of the parameter α
at the BC of the simple supported and clamped of the plate contour, respectively:

α =
2

β(c/h)2/(ab(1 − ν/(1 + η)))− 2
, α =

2

(c/h)2/(1− ν/(1 + η)) − 2
. (21)

Assuming in (21) that α = 0.01, we find that for clamped of the plate contour and c/h ≤ 12, η � 1
the point in Fig.1 is above the curve, and for c/h > 12, η � 1 it is below the curve (there is no effect of
average pressure). This is explained by the fact that with a decrease in the relative thickness, the bending
stiffness and the permissible one-sided pressure quickly fall. Moreover, the ratio pm/E is also small.

Table 1 shows the values of the α parameter for three pressure options p1, p2 at the same change in
pressure pe = 10−3 bar, elastic modulus E = 2 · 106 bar and thin-walled parameter c/h = 300.

It has been seen from (17), (19) and table that at large and close pressures p1 and p2, when the
average pressure pm is large and the difference p2 − p1 is small, the greatest deviation of the parameter
α from the classical value α = 0 and the effect on bending are realized (for the same values of E, c, h).
Note that the modulus of the parameter α increases with decreasing support stiffness.

Table 1. Effect of boundary conditions and average pressure on the α parameter

Pressure, bar α

BC p1 p2 pm η � 1 η = 1 η → ∞

(4)

0.2000 0.2010 0.2005 0.0166 0.0201 0.0237

20.000 20.001 20.0005 1.653 2.007 2.361

−0.9010 −0.9000 −0.9005 −0.0744 −0.0903 −0.1063

(5)

0.2000 0.2010 0.2005 0.0004 0.0005 0.0006

20.000 20.001 20.0005 0.4298 0.5220 0.6140

−0.9010 −0.9000 −0.9005 −0.0020 −0.0024 −0.0028
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4. NONLINEAR BENDING

We take the same approximating functions for deflection w as in the linear solution. In the case
of a clamped edge, substituting functions (18) in the second equation (14), we obtain the following
expression bounded at r = 0 [7]

dΦ

dr
= −Ef2r3

c4

(
1− 2r2

3c2
+

r4

6c4

)
+

Cr

2
.

Condition (9) implies

C =
Ef2

3c2

(
3Eh+Kc(5− 3ν)

Eh+Kc(1− ν)

)
.

For K → ∞ (u(c) = 0) we have C = Ef2(5−3ν)
3c2(1−ν)

; for K = 0 (σr(c) = 0) we obtain C = Ef2

c2
. Let us

substitute the expressions into the system of equations (14):

d(∇2w)

dr
=

32fr

c4
,

dw

dr
= −

(
4fr

c2

)(
1− r2

c2

)
,

d2Φ

dr2
=

Ef2

6c2

(
Kc(5− 3ν) + 3Eh

Kc(1− ν) + Eh
− 18r2

c2
+

20r4

c4
− 7r6

c6

)
.

After integration by the Bubnov–Galerkin method, we obtain the equation

2

21
(7A− 12)ξ3 +

16(1 + α)

3(1 − ν2)
ξ = q∗, A =

Kc(5− 3ν) + 3Eh

Kc(1− ν) + Eh
, (22)

where q∗ and α are presented in (19).

With simple supported (16) we have dΦ
dr = −Ef2a2r3

c4

(
1− 2br2

3c2
+ b2r4

6c4

)
+ Cr

2 . From the condition of

fixing the points of the contour of the plate (9), we determine

C =
Ef2a2

3c2

(
(Eh− νKc)(6− 4b+ b2) +Kc(18 − 20b+ 7b2)

Eh+Kc(1− ν)

)
.

In particular, for K → ∞ (u(c) = 0) we have

C =
Ef2a2

3c2(1− ν)

(
6(3 − ν)− 4b(5− ν) + b2(7− ν)

)
;

for K = 0 (σr(c) = 0) we obtain

C =
Ef2a2

3c2
(
6− 4b+ b2

)
.

Using the Bubnov–Galerkin method, we obtain the equation for ξ

8a3eξ3 +
16ab(1 + α)

3(1− ν2)
ξ = q∗, (23)

where

e =
Ab

12β
− 14− 28b+ 21b2 − 7b3 + b4

7(3− 2b)
, A =

(Eh −Kcν)(6 − 4b+ b2) +Kc(18 − 20b + 7b2)

Kc(1− ν) + Eh
,

q∗, α correspond to (17). The equation (23) for ν = 0.3, K → ∞ has the form

2.660ξ3 + 1.437(1 + α)ξ = q∗, α = 1.8
pm
E

( c

h

)2
.

For K = 0 from (23) it follows:

0.377ξ3 + 1.437(1 + α)ξ = q∗, α = 2.6
pm
E

( c

h

)2
.
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Fig. 2.

In Fig. 2a shows nonlinear dependencies q∗(ξ) for various cases of fixing edges in a simple supported
plate: K → ∞ (solid line), K = 0 (dash-dotted line). Linear solutions are shown in Fig. 2b, the solid line
shows the dependencies taking into account the compression of the plate in thickness. It can be seen
that for a fixed value of K and q∗, an increase in the parameters α leads to a decrease in the deflection,
and for negative values of α, the deflection increases.

In a nonlinear solution, the effect of average pressure can be significant even in the case of one-sided
pressure [13]. Taking for example ν = 0.3, p1 = 0, pm = p2/2 represent (23) as

2.660ξ3 + 1.437(1 + α)ξ = q∗, q∗ = (p2/E) (c/h)4 , α ≈ (0.9p2/E) (c/h)2 . (24)

We will restrict the deflection in the center of the plate to four thicknesses (ξ = 4).Then from (24) it
follows

α ≈ 148

(c/h)2 − 5.2
. (25)

From the expression (25) it can be seen that for c/h ≥ 122, when α = 10−2, there is no effect of the
average pressure on bending, while, for example, for c/h = 12, there is a noticeable influence (α ≈ 1).

5. CONCLUSION

Thus, the effect on bending of the average overpressure pm = (p1 + p2)/2 on the surface of a thin
circular plate has been determined by the dimensionless parameter α = κ(pm/E)(c/h)2(1− ν/(1 + η)).
The effect essentially depends on the boundary conditions on the contour of the plate through the
coefficient κ, for example, for ν = 0.3, η � 1 when clamped we have κ = 0.48, with simple support we
obtain κ = 1.84. Herein, the parameter η determines the ratio of the plate tensile stiffness to the support
device stiffness. For α � 1, the classical theory of bending of thin plates is valid.
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