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Abstract—In this article we construct a special class of the generalized functions for the rigorous
justification of joining method of solving some diffraction problems of electromagnetic waves by
thin conducting screens. Linear functionals on a set of linear combinations of Hermit functions
are considered as the generalized functions. The traces of the solutions of Helmholtz equation on
the plane are interpreted in the generalized sense. The infinite sets of linear algebraic equations are
derived directly from the generalized boundary conditions. The results of the computing experiment
are presented.
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1. INTRODUCTION

Special classes of generalized functions were built in the work [1], it is convenient to use these
functions when solving problems of diffraction of electromagnetic waves on transverse screens in
cylindrical waveguides with metal walls. The generalized functions were defined as linear functionals
on set of linear combinations of functions that form a complete orthogonal set at the cross-section of the
waveguide. Similar constructions were used in the theory of ϕ-distributions in [2].

It was proposed to consider generalized solutions of electromagnetic field equations as mappings,
these mappings assign a generalized function (or a set of generalized functions) to each value of the
longitudinal coordinates. This approach allows to define correctly the traces of the unknown solutions
of partial differential equations on the cross-section of the cylindrical domain in the case when mixed
boundary conditions are set on this section. Moreover, the boundary conditions of diffraction problems
on the lateral screen in a cylindrical waveguide in the terms of generalized solutions of Helmholtz
equation and Maxwell equations are formulated directly as an infinite set of equation for the coefficients
of expansion of the field by eigen waves of the waveguide.

In this paper, the generalized functions are defined as linear functionals on set of linear combinations
of Hermit functions. The example of the problem of diffraction of electromagnetic wave on a thin
conductive ribbon shows that the generalized boundary conditions of this problem are equations of some
infinite set of linear algebraic equations. This set of equations can be derived also from the integral
equation of the diffraction problem, which we propose to consider as an integral equation of the 4th kind.
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1392 PLESHCHINSKII

2. HERMIT FUNCTIONS AND GENERALIZED FUNCTIONS

We recall some properties of the Hermit functions. The Hermit polynomials [3], 10.13,

H0(x) = 1, H1(x) = 2x, Hm+1(x) = 2xHm(x)− 2mHm−1(x), m = 1, 2, . . .

are orthogonal with a weight e−x2
set of functions on the axis (−∞,+∞). Hermit functions

hm(x) = e−x2/2Hm(x), m = 0, 1, . . .

are also orthogonal, but are not normalized,
+∞∫

−∞

hk(x)hm(x)dx = {k �= m : 0; k = m : hm}, hm = 2mm!
√
π.

Here and then hm with brackets are the Hermit functions, and hm without brackets are squares of norms.
For any m = 0, 1, 2, . . . we have

h′m(x) = mhm−1(x)− 1/2hm+1(x), xhm(x) = mhm−1(x) +
1/2hm+1(x),

further,

h′′m(x) = m(m− 1)hm−2(x)− (m+ 1/2)hm(x) + 1/4hm+2(x),

x2hm(x) = m(m− 1)hm−2(x) + (m+ 1/2)hm(x) + 1/4hm+2(x), . . .

Finally, the Hermit functions are the eigne functions of Fourier integral transformation F :

1√
2π

+∞∫

−∞

hm(x)eixξdx = imhm(ξ)

or briefly, (Fhm)(ξ) = imhm(ξ). Here and further i is an imaginary unit.

Simultaneously with the functions hm(x) we will use the functions h̃m(x) = hm(x)/hm (they’ll also
be called Hermit functions). Functions hm(x) and h̃m(x) are bi-orthonormal sets of function.

There are also simple formulas for the functions h̃m(x) for differentiation and multiplication by
degrees of x:

h̃′0(x) = −h̃1(x), h̃′m(x) = 1/2h̃m−1(x)− (m+ 1)h̃m+1(x), m = 1, 2, . . .

xh̃0(x) = h̃1(x), xh̃m(x) = 1/2h̃m−1(x) + (m+ 1)h̃m+1(x), m = 1, 2, . . .

h̃′′0(x) = −1/2h̃0(x) + 2h̃2(x), h̃′′1(x) = −3/2h̃1(x) + 6h̃3(x),

h̃′′m(x) = 1/4h̃m−2(x)− (m+ 1/2)h̃m(x) + (m+ 1)(m+ 2)h̃m+2(x), m = 2, 3, . . .

x2h̃0(x) =
1/2h̃0(x) + 2h̃2(x), x2h̃1(x) =

3/2h̃1(x) + 6h̃3(x),

x2h̃m(x) = 1/4h̃m−2(x) + (m+ 1/2)h̃m(x) + (m+ 1)(m+ 2)h̃m+2(x), m = 2, 3, . . .

and et cetera.
As the generalized functions (g.f.), we will consider linear functionals on a set of linear combina-

tions of the Hermit functions hm(·). Any such g.f. f [·] can be identified with the set (sequence) of its
values f0, f1, . . . on functions h0(·), h1(·), . . .

We use round or square brackets to refine type of universal parameter · (“dot” or “joker”).
The Hermit functions are functions that quickly decrease on infinity. A set of their linear combinations

is a subspace of a space of fast decreasing functions. Therefore, the linear space of the g.f. contains in
itself the space of Schwartz distributions [4].
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The functional

f [·] : hm(·) �→ fm =

+∞∫

−∞

f(x)h̃m(x)dx, m = 0, 1, . . .

corresponds to the integrable function f(·). Its values on the Hermit functions are the coefficients of
expansion into the Fourier series by the Hermit functions hm(·).

If a series with coefficients fm converges, and its sum is equal to the function f(·), that is, the function
f(·) expands into a Fourier series by Hermit functions, we will call the appropriate to it g.f. regular. For
regular g.f. we will use the designations of the form f [x].

In general, the formula f(·) =
∑+∞

m=0 fmhm(·) (formal series by the Hermit functions) will be
considered only as instruction that the appropriate functional accepts values fm = on functions hm(·).

3. OPERATIONS ON GENERALIZED FUNCTIONS

It is clear that a set of g.f. is a linear space with obvious addition and multiplication operations
by number. Other linear operations on the g.f. are introduced in a similar way as operations over
distributions [5].

We define multiplying the g.f. by the ordinary function as follows:

a(·)f [·] : hm(·) �→ f [a(·)hm(·)],
if a(·)hm(·) is a linear combination of Hermit functions.

For example, as xhm(x) = mhm−1(x) +
1/2hm+1(x) and x2hm(x) = m(m− 1)hm−2(x) + (m+

1/2)hm(x) + 1/4hm+2(x), then (xf)m = mfm−1 +
1/2fm+1 and (x2f)m = m(m− 1)fm−2 + (m+

1/2)fm + 1/4fm+2 (instead of a(x) = x or a(x) = x2 we write x or x2). More generally, let

a(x)hm(x) =

+∞∑
n=0

amnhn(x), m = 0, 1, . . . , amn =

+∞∫

−∞

a(x)hm(x)h̃n(x)dx, n = 0, 1, . . .

Then by definition

a(·)f [·] : hm(·) �→
+∞∑
n=0

amnfn

(if all these series converge). It is clear that if the sums are finite, this definition is just the same as the
previous definition.

Let’s define first derivative of g.f. f [·] as g.f. f ′[·] with values (f ′)m = −1/2fm−1 + (m+ 1)fm+1.
We have for an ordinary differentiable function

(f ′)m =

+∞∫

−∞

f ′(x)h̃m(x)dx = −
+∞∫

−∞

f(x)h̃′m(x)dx

= −
+∞∫

−∞

f(x)[1/2h̃m−1(x)− (m+ 1)h̃m+1(x)]dx = −1/2fm−1 + (m+ 1)fm+1.

When m = 0 and m = 1, we set h̃m(x) ≡ 0 for m < 0.
Second derivative of g.f. f [·] is linear functional with values

(f ′′)m = 1/4fm−2 − (m+ 1/2)fm + (m+ 1)(m+ 2)fm+2.

It is easy to see also that the second derivative of the g.f. is a derivative of the first derivative. Any next
derivative is calculated as a derivative of the previous derivative.
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Fourier’s transformation F of g.f. is a linear functional also, whose values are (Ff)m = imfm. This
definition coincides with the definition used in the distribution theory:

Ff [·] : hm(·) �→ f [Fhm(·)] = imf [hm(·)].

Let’s find the Fourier transform of the first derivative of the g.f.:

(Ff ′)m = im(f ′)m = im[−1/2fm−1 + (m+ 1)fm+1] = −1/2i
mfm−1 + (m+ 1)imfm+1

= −1/2i(Ff)m−1 − (m+ 1)i(Ff)m+1 = (−iξ(Ff))m.

Similarly, the Fourier transform of the second derivative of the g.f. has the form

(Ff ′′)m = im(f ′′)m = im[1/4fm−2 − (m+ 1/2)fm + (m+ 1)(m+ 2)fm+2]

= −1/4i
m−2fm−2 − (m+ 1/2)i

mfm − (m+ 1)(m+ 2)im+2fm+2

= −1/4(Ff)m−2 − (m+ 1/2)(Ff)m − (m+ 1)(m+ 2)(Ff)m+2 = (−ξ2(Ff))m.

here we use the degrees ξ as multipliers at Ff to emphasize that the second multiplier is the Fourier
transform.

The sequence of g.f. fj[·] converges to the g.f. f [·] for j → +∞, if fj,m = (fj)m → fm when j → +∞
∀m = 0, 1, . . . The parameter that extracts the g.f. in the parametric family is not necessarily integer.
For example, the sequence of g.f. fz[·] converges to the g.f. f0[·] for z → 0, if (fz)m → (f0)m when z → 0
for all m = 0, 1, . . .

The values of the g.f. at the points are not defined. G.f. f [·] and g[·] are equal, if fm = gm ∀m.
Now let the numerical axis x consist of two parts: M and N . We will say that f [·] = 0 on M or on

N , if
+∞∑
m=0

Imnfm = 0 n = 0, 1, . . . or
+∞∑
m=0

Jmnfm = 0 n = 0, 1, . . . ,

here

Imn =

∫

M

hm(x)h̃n(x)dx, Jmn =

∫

N

hm(x)h̃n(x)dx.

It’s easy to see that Jmn = δmn − Imn. So f [·] = 0 on M or on N then and only then if

fn =

+∞∑
m=0

Jmnfm n = 0, 1, . . . or fn =

+∞∑
m=0

Imnfm n = 0, 1, . . .

If g.f. f [·] coincides with the ordinary function g(·) on M, then
+∞∑
m=0

Imnfm =

∫

M

g(x)h̃n(x)dx, n = 0, 1, . . .

4. ABSTRACT FUNCTIONS. HELMHOLTZ EQUATION

Let z be a number belonging to a certain interval of the real axis. Mappings z �→ of g.f. will be called
abstract functions (a.f.). Then the a.f. u(z)[·] is identified with the sequence of functions um(z), their
values at a fixed z are the values of g.f. on hm(·).

The properties of a.f. on the argument z are determined through the properties of the functions um(z).
For example, if all functions um(z) are differentiable, then the abstract function u(z)[·] will be called a
differentiable by z. Then u′(z)[·] is the a.f. also with values u′m(z) on hm(·).

How to solve differential equations in which derivatives of a.f. by z are involved? If u′(z)[·] = 0[·],
which is equivalent to u′m(z) = 0, m = 0, 1, . . . , then um(z) = cm or u(z)[·] = c[·], where c[·] is an
arbitrary g.f.
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If a linear homogeneous equation of an order n is set, and its coefficients do not depend on z (i.e. they
are functions of x, and multiplication by function of x is performed by the rule of multiplication of the g.f.
by the usual function), we reason like this (by analogy with the Euler method ). We build a characteristic
polynomial of λ and find its roots. If λ(x) is a simple root of characteristic polynomial, then eλ(x)z is a
particular solution of the differential equation, it can be multiplied by arbitrary g.f. (more precisely, the
arbitrary g.f. is multiplied by ordinary function eλ(x)z of x). Then the summand eλ(x)zc[·] appears in the
general solution of the equation.

We’ll look for a.f. u(z)[·], satisfying Helmholtz equation

∂2u

∂x2
+

∂2u

∂z2
+ k2u(x, z) = 0.

Helmholtz equation in generalized sense is understood as an infinite set of equations

u′′m(z) + k2um(z) + 1/4um−2(z)− (m+ 1/2)um(z) + (m+ 1)(m + 2)um+2(z) = 0, m = 0, 1, . . .

Multiply these equations by im, this operation is equivalent to Fourier transformation on the variable x.
In front of um(z) there will appear a multiplier im, and in front of um−2(z) and um+2(z) the multipliers
−im will appear.

For (Fu)m(z) = imum(z) we have equations (m = 0, 1, . . . )

(Fu)′′m(z) + k2(Fu)m(z)− 1/4(Fu)m−2(z)− (m+ 1/2)(Fu)m(z)

− (m+ 1)(m + 2)(Fu)m+2(z) = 0.

This is equivalent to the equation

(Fu)′′(z)[ξ] + (k2 − ξ2)(Fu)(z)[ξ] = 0,

and general solution of which has the form

(Fu)(z)[ξ] = eiγ(ξ)za[ξ] + e−iγ(ξ)zb[ξ].

Here we write down ξ instead of “dot” in order to suggest that this formula is written down for the Fourier
transforms of g.f., at the same time, the variable x moves into a variable ξ when Fourier transformation.

In the terms of formal series we have

a[ξ] =

+∞∑
m=0

amhm(ξ), b[ξ] =

+∞∑
m=0

bmhm(ξ)

and then

eiγ(ξ)za[ξ] + e−iγ(ξ)zb[ξ] =

+∞∑
m=0

[
ameiγ(ξ)z + bme−iγ(ξ)z

]
hm(ξ).

Also formally we have (Fourier inverse transformation is written down as the integral)

u(z)[x] =
1√
2π

+∞∫

−∞

(
eiγ(ξ)za[ξ] + e−iγ(ξ)zb[ξ]

)
e−iξxdξ.

But if a[ξ], b[ξ] are regular g.f., then

u(x, z) =

+∞∑
m=0

1√
2π

+∞∫

−∞

(
ameiγ(ξ)z + bme−iγ(ξ)z

)
hm(ξ)e−iξxdξ.

Let’s call the solutions of Helmholtz equation positively oriented when b[·] = 0 and negatively
oriented when a[·] = 0.

Let’s agree not to put the symbol of Fourier transformation for the Fourier transforms of g.f., we will
specify the corresponding variable in brackets: we write g[ξ] instead of Fg[·]. Then for positively oriented
solutions of the Helmholtz equation we have

u0[ξ] = u(0)[ξ] = a[ξ], u1[ξ] = u′(0)[ξ] = iγ(ξ)a[ξ]
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and the condition u1[ξ]− iγ(ξ)u0[ξ] = 0 is a necessary and sufficient condition for the g.f. u0[·] and u1[·]
be the traces of positively oriented solution of Helmholtz equation (for z > 0) on the straight line z = 0.

Similarly, the condition u1[ξ] + iγ(ξ)u0[ξ] = 0 is a necessary and sufficient condition for the g.f. u0[·]
and u1[·] be the traces of negatively oriented solution of Helmholtz equations (for z < 0) on the straight
line z = 0.

Note that the values of the Helmholtz equation solutions at z > 0 and at z < 0 will be regular g.f.
Within the framework of the theory of the g.f., their traces (“zero” and “first”) on a straight line z = 0
always exist, which in general case are not regular functions.

In addition, the limit of the Fourier transform of a.f. for z → 0 and the Fourier transform of its limit
for z → 0 are equal.

If you don’t care about the mathematical rigor of reasonings, here’s what you can formally do. After
Fourier transformation by variable x → ξ, the equation

∂2u

∂x2
+

∂2u

∂z2
+ k2u(x, z) = 0

goes into the equation

(Fu)′′(ξ, z) + (k2 − ξ2)(Fu)(ξ, z) = 0.

It’s general solution has the form

(Fu)(ξ, z) = a(ξ)eiγ(ξ)z + b(ξ)e−iγ(ξ)z

and then for, positively oriented solutions we have

u(x, z) =
1√
2π

+∞∫

−∞

a(ξ)eiγ(ξ)ze−iξxdξ.

Hence

u0(x) =
1√
2π

+∞∫

−∞

a(ξ)e−iξxdξ, u1(x) =
1√
2π

+∞∫

−∞

a(ξ)iγ(ξ)e−iξxdξ,

i.e. u0(ξ) = a(ξ), u1(ξ) = iγ(ξ)a(ξ) and u1(ξ)− iγ(ξ)u0(ξ) = 0.

5. THE PROBLEM OF DIFFRACTION OF ELECTROMAGNETIC WAVE BY RIBBON

We consider the two-dimensional problem of diffraction of the parallel polarized electromagnetic wave
on a thin conducting infinite ribbon [6].

Let M be a part of the axis x corresponding to the ribbon, and N be a supplement of M to the
whole axis. We’ll look for a.f. u1(z)[·] and u2(z)[·], satisfying the Helmholtz equation at z > 0 and z < 0
respectively.

We need to find functions for z > 0 and for z < 0, satisfying Helmholtz equation, conditions at infinity
and boundary conditions for z = 0:

u00[·] + u10[·] = 0, u00[·] + u20[·] = 0 on M,

u10[·] = u20[·], u11[·] = u21[·] on N .

Here u00(x) = u0(x, 0) is a zero trace on the axis x (it is a regular function) of potential function u0(x, z)
of the wave from an external source.

The diffraction problem is reduced to the one-side boundary value problem

u10[·] = −u00(·) on M; u11[·] = 0 on N .

Really, u10[x] = u20[x] all over the axis. Therefore u10[ξ] = u20[ξ], u
1
1[ξ] = −u21[ξ] and u10[x] = −u20[x]. But

then u10[x] = u20[x] = 0 on N .
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The conditions of the boundary value problem in terms of the g.f. have the form
+∞∑
m=0

Imnu0m = −u00n, n = 0, 1, . . . , (1)

+∞∑
m=0

Jmnu1m = 0, n = 0, 1, . . . , (2)

here u0m and u1m are the values of the functionals u10[·] and u11[·], the same values are Fourier coefficients
of traces on the axis x of solution of the Helmholtz equation when z > 0. As before, these integrals have
the form

Imn =

∫

M

hm(x)h̃n(x)dx, Jmn = δmn − Imn.

For the plane wave u0(x, z) = e−iκ sin θ·x−iκ cos θ·z we have

u00n =

∫

M

u00(x)h̃n(x)dx =

∫

M

e−iκ sin θ·xh̃n(x)dx.

We add to the equations (1) and (2) the connection between the traces of the solution in the terms of
the Fourier transforms: u11[ξ]− iγ(ξ)u10[ξ] = 0, that is

(Fu1)m − i

+∞∑
n=0

γmn(Fu0)n = 0, γmn =

+∞∫

−∞

γ(ξ)hm(ξ)h̃n(ξ)dξ, γ(ξ) =
√

κ2 − ξ2.

Since (Fu1)m = imu1m, (Fu0)n = inu0n, then

u1n +

+∞∑
m=0

im−n−1γmnu0m = 0, n = 0, 1, . . . (3)

So, the conditions of the diffraction problem are formulated as ISLAE, composed of three groups of
equations (1), (2), (3).

If the solvability conditions of the over-determined problem are written down in the form of u10[ξ] +
i

γ(ξ)
u11[ξ] = 0, then instead of (3) we will have

u0n +

+∞∑
m=0

u1mim−n+1γ̃mn = 0, γ̃mn =

+∞∫

−∞

1

γ(ξ)
hm(ξ)h̃n(ξ)dξ. (4)

We can also leave only one group of unknowns in the final ISLAE: we express u1n through u0m out
of (3) and substitute it into (2) or we express u0n through u1m out of (4) and substitute it in (1).

The formal construction of the ISLAE of the diffraction problem on the ribbon can be carried out as
follows. We’ll look for zero trace and the first trace in the form

u10(x) =
+∞∑
m=0

u0mhm(x), u11(x) =
+∞∑
m=0

u1mhm(x).

Let’s start directly with the conditions of the one-side boundary value problem

u10(x) = −u00(x) on M; u11(x) = 0 on N .

Multiply these equalities by h̃n(x) and integrate them over the appropriate part of the axis x. We’ll get
(1) and (2).

We substitute Fourier transforms of traces of the solution of the Helmholtz equation into the
solvability condition of the over-determined problem, (multipliers im appear in sums), then we multiply
this condition by h̃n(x) and integrate it all over the axis x. We get (3) (or (4)).
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6. INTEGRAL EQUATIONS OF THE 4TH KIND

The problem of diffraction of the electromagnetic wave on the ribbon is also reduced to integral
equations of different kinds [7]. For example, you can think as follows:

u10(x) =
1√
2π

+∞∫

−∞

u10(ξ)e
−iξxdξ =

1√
2π

+∞∫

−∞

(
1

iγ(ξ)
u11(ξ)

)
e−iξxdξ

=
1√
2π

+∞∫

−∞

−i

γ(ξ)

⎛
⎝ 1√

2π

+∞∫

−∞

u11(x1)e
ix1ξdx1

⎞
⎠ e−iξxdξ =

+∞∫

−∞

u11(x1)K−1(x1, x)dx1,

where

K−1(x1, x) =
−i

2π

+∞∫

−∞

1

γ(ξ)
eix1ξe−iξxdξ = − i

2
H

(1)
0 (k|x− x1|).

Since u11(x) = 0 at N , we have an integral equation of the 1st kind∫

M

u11(x1)K−1(x1, x)dx1 = −u00(x), x ∈ M.

Its kernel contains a logarithmic singularity (on a diagonal), therefore, it is appropriate for a numerical
solving such an equation to use the Galerkin method with the expansion of the unknown function by
Chebyshev polynomials of the 1st kind with the weight.

We will call the integral equation of the form

a(x)ϕ(x) +

+∞∫

−∞

ϕ(x1)K(x1, x)dx1 = f(x), x ∈ (−∞,+∞),

the integral equation of the 4th kind, if K(t, x) = 0 for x, belonging to some subset (−∞,+∞).
Let, as in our case, (−∞,+∞) = M∪N , K(t, x) = 0 and a(x) �= 0 when x ∈ N . Then the function

ϕ(x) directly is found on N , and the 4th kind equation turns into the equation of the form

a(x)ϕ(x) +

∫

M

ϕ(x1)K(x1, x)dx1 = g(x), x ∈ M.

Its right-hand side contains an integral by N of the already known function ϕ(x). Inverse procedure is
also possible: integral equation on M can be easily extended to N , if you extend the unknown function
on N .

Thus, from the diffraction problem, we move to the integral equation of the 4th kind on (−∞,+∞)

+∞∫

−∞

u11(x1)K−1(x1, x)dx1 = −u00(x), x ∈ M, u11(x) = 0, x ∈ N .

We can now use orthogonal at (−∞,+∞) Hermit function set. We will look for a solution of the
integral equation in the following form: u1(x1) =

∑+∞
m=0 u1mhm(x1). Then

+∞∫

−∞

u1(x1)K(x1, x)dx1 =

+∞∑
m=0

u1m
−i

2π

+∞∫

−∞

1

γ(ξ)
e−iξx

⎛
⎝

+∞∫

−∞

hm(x1)e
iξx1dx1

⎞
⎠ dξ

=

+∞∑
m=0

u1m
−i

2π

+∞∫

−∞

1

γ(ξ)
e−iξx

√
2πimhm(ξ)dξ.
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Let’s take into account the decomposition e−iξx =
√
2π

∑+∞
k=0 i

−kh̃k(ξ)hk(x). Therefore,

+∞∫

−∞

u1(x1)K(x1, x)dx1 = −
+∞∑
m=0

u1m

+∞∑
k=0

im−k+1hk(x)γ̃mk, γ̃mk =

+∞∫

−∞

1

γ(ξ)
hm(ξ)h̃k(ξ)dξ.

So,
+∞∑
m=0

u1m

+∞∑
k=0

im−k+1γ′mkhk(x) = u00(x), x ∈ M.

After projecting on h̃n(x), we have ISLAE
+∞∑
m=0

u1m

+∞∑
k=0

im−k+1γ′mkIkn = u00n, n = 0, 1, . . .

u1n −
+∞∑
m=0

u1mImn, n = 0, 1, . . .

Here, as before, we have

Ikn =

∫

M

hk(x)h̃n(x)dx, u00n =

∫

M

u00(x)h̃n(x)dx.

7. COMPUTING EXPERIMENT

To get an approximate solution of the diffraction problem, we will carry out a truncation of ISLAE
(1), (2), (3) as follows. We leave M0 unknowns u0m, M1 unknowns u1m, and N0 equations in the group
(1), N1 equations in the group (2) and M1 equations in the group (3):

M0−1∑
m=0

Imnu0m = −u00n, n = 0..N0 − 1,

M1−1∑
m=0

Jmnu1m = 0, n = 0..N1 − 1,

u1n +

M0−1∑
m=0

im−n−1γmnu0m = 0, n = 0..M1 − 1.

This SLAE will be presented in the following form
P∑

m=0

anmvm = bn, n = 0..Q,

where P = M0 +M1 − 1, Q = N0 +N1 +M1 − 1. Here, by vm the unknowns u00, . . . , u0,M0−1,
u10, . . . , u1,M1−1 are denoted.

Since the number of equations in the general case is greater than the number of unknowns (for
example, if M0 = M1 = N0 = N1 = M ), then we will look for a minimum of residual all over the SLAE
equations. Then we’ll get a SLAE with a square matrix

P∑
m=0

( Q∑
n=0

a∗nkanm
)
vm =

Q∑
n=0

a∗nkbn, k = 0..P.
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Fig. 1. Scattering diagram at χ = (a) 0.1, (b) 1.0, and (c) 2.0.

We can exclude the unknowns u1m and decrease twice the size of the final SLAE. Let M0 = M1 = N0 =
N1 = M . Then we have

M−1∑
m=0

Imnu0m = −u00n, n = 0..M − 1;

M−1∑
m=0

Jmku1m = 0, k = 0..M − 1. (5)

We substitute here u1m =
∑M−1

n=0 in−m+1γnmu0n and we get

M−1∑
m=0

Jmk

(
M−1∑
n=0

in−m+1γnmu0n

)
= 0, k = 0..M − 1

or
M−1∑
m=0

(
M−1∑
k=0

im−k+1Jknγmk

)
u0m = 0, n = 0..M − 1. (6)

Double SLAE (5), (6) will be written in the form
M−1∑
m=0

anmu0m = bn, n = 0..2M − 1.

Here at n = 0..M − 1 we have

m = 0..M − 1 : anm = Imn, an+M,m =
M−1∑
k=0

im−k+1Jknγmk;

bn = −u00n, bn+M = 0.

The minimum condition of residual all over the equations of the SLAE gives a new SLAE
M−1∑
m=0

(
2M−1∑
n=0

a∗nkanm

)
um =

2M−1∑
n=0

a∗nkbn, k = 0..M − 1. (7)

As above, the solution of the Helmholtz equation at the z > 0 has the form

u(x, z) =
1√
2π

+∞∫

−∞

u0(ξ)e
iγ(ξ)ze−iξxdξ.

If ξ ∈ (−k, k), then the elementary plane wave eiγ(ξ)ze−iξx transfers energy in the direction of
(cosϕ, 0, sinϕ), where the angle ϕ is counted from the axis of x. It’s easy to see that ξ = −k cosϕ,
γ(ξ) = k sinϕ. Dependencies between |u0(ξ)| =

∣∣∑+∞
m=0 u0mimhm(ξ)

∣∣ and angle ϕ are built on polar
diagrams, these diagrams show the distribution of the energy of the scattered field in the far zone.

Let χ = λ/h be the ratio of wavelength to the half-wide of the ribbon. At very small χ (wide ribbon)
the energy is distributed almost evenly in all directions. There is one lobe on the diagram at χ = 1.0.
With the increase of χ the number of lobes increases. On Figs. 1 and 2 the case of the normal fall of the
on the diagram on the ribbon is shown, the angle θ = 0.
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Fig. 2. Scattering diagram at χ = (a) 4.0, (b) 8.0, and (c) 16.0.
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Fig. 3. Scattering diagram at θ = (a) π/6, (b) π/4, and (c) π/3.

Figure 3 shows how the scattering diagram changes when a wave falls obliquely on a ribbon χ = 2.0.
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