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Abstract—A constructive method is proposed for the solution of the Riemann–Hilbert problem
which is realized in the case of five singular points. The basic components of this method are the
logarithmization of the product of matrix functions and the determination of the parameters of a
related differential equation of Fuchsian type. The proposed method allows us to solve several related
problems, namely, to factorize the piecewise constant matrix functions, to find partial indices and to
explicitly solve the vector-matrix boundary value problem with the above piecewise constant matrix
function as a coefficient.
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1. INTRODUCTION

In 1857, B. Riemann (see, e.g. [29]) posed the following problem: to find (construct) a system of
functions Y (z) = (y1 (z) , . . . , ym (z))T , satisfying three conditions:

1. functions are analytic everywhere in ̂C except at a finite number of points a1, a2, . . . , an;

2. the vector Y (z) possesses a linear transformation with a non-singular constant matrix Vk

whenever z is orbiting around each singular point ak (k = 1, 2, . . . , n), i.e. Y � VkY , and
V1 · V2 · . . . · Vn = E, where E is the m×m identity matrix;

3. the functions y1 (z) , y2 (z) , . . . , ym (z) possess power type asymptotics of a finite order at each
singular point ak (k = 1, 2, . . . , n), i.e. |yj(z)| ≤ C|z− ak|−α, ∀z, 0 < |z − ak| < rk, ak �= ∞ and
|yj(z)| ≤ C|z|α, ∀z, |z| > r∞ for an appropriate α ≥ 0.

The matrices V1, V2, . . . , Vn generate the so called monodromy group ([2, 5]). Riemann found a
representation of the solution in the neighborhood of each particular singular point ak,

Riemann also pointed out that the functions y1, . . . , ym will be solutions of an m-th order complex
differential equation with rational coefficients (see, e.g., [4]). In 1900 Hilbert included the problem of
construction of a Fuchsian differential system into his list of mathematical problems for the twentieth
century. This question is now known as the twenty-first Hilbert problem or as the Riemann–Hilbert
problem, see [5, 8].
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The Riemann–Hilbert problem can be formulated as the Riemann boundary value problem for
analytic vector-functions ([24, 25, 31]). The vector-matrix Riemann boundary value problem with
piecewise continuous algebraic coefficients was first solved in [10] by using Green’s function method.
The solution of the Riemann-Hilbert problem by reduction to the Riemann boundary value problem was
proposed in 1908 by Plemelj [27] (see also [28]).

For a long time it was thought that Plemelj had found a complete and positive answer to the question
of existence of a complex differential equation with a given monodromy group. Therefore interest in this
problem was moved to the effective construction of its solution, the most known are results by Lappo-
Danilevsky (functions of matrices method), Röhrl (fibre bundles method) (see, e.g. [5, 3]). Erugin [7]
considered the case of four singular points and showed, in particular, that the Riemann–Hilbert problem
is related to Painlevé type differential equations (among the recent constructive results we can mention
the paper [3]).

The gaps in Plemelj’s 1908 paper were first discovered by Kohn [21] and by Arnol’d and Ill’yashenko
[2]. In the late 1980s Bolibrukh (see, e.g., [4]) found the first negative answer to the question. In fact,
Plemelj’s conclusion is valid for the so-called “regular” (see, [4, p. 7]) variant of the Riemann–Hilbert
problem. An extended description of the modern state of the Riemann-Hilbert problem as well as the
main results by Bolibruch are presented in [4] and [5].

Although this problem has in general a negative solution, there are few cases when an existence of
the positive solutions can be proved (for 2× 2 Fuchsian systems and any number of singular points this
is in Dekkers’ theorem [6]). Constructive procedures for solution to the Riemann–Hilbert problem is
known only for few cases. Thus, the solution for the systems of two unknown functions (m = 2) with
three singular points (n = 3) is given in [22]. We should also mention the paper [8], cf. [23, 30], which
is devoted to the connection between the factorization of piecewise constant m×m matrix functions
with n jumps and the Riemann–Hilbert problem (cases m = 2, n = 4 and m = 3, n = 3 are treated
there). Several constructive results related to the method developed in this paper are presented in [12–
19, 20]. The problem of construction of the differential equation of Fuchsian type is highly related to the
determination of accessor parameters which is not considered here, see [1].

The aim of our paper is to determine a procedure which makes the general case (small number of
unknown functions and arbitrary number of singular points) constructively solvable. We propose a novel
approach (logarithmization method) to the solution of the Riemann–Hilbert problem by bypassing of the
commutativity assumption of the generator (see [4]). It generalizes Lappo-Danilevsky’s approach and
is based on an exact representation for ln(V1 · · ·Vk). We limit our attention to the first nontrivial case
for which the problem is not solved, namely, for vector functions Y (z) = (y1, y2)

T (m = 2), and five
singular points (n = 5). The procedure has been checked to ensure that it is universal, i.e. that it works
after slight modifications in the case of six or more singular points and larger m, but its algoritmisation
is not yet done.

Within the paper we solve the following problems provided that the monodromy matrices are given.
Each of these problems has a particular interest.

1. the logarithmization method is developed, i.e. the method for an exact representation of the
logarithm of matrices, Sec. 3;

2. explicitly determined, by applying the logarithmization method, so called the differential matrix
([5]) of the system of differential equation, Sec. 4;

3. the above system is reduced to a Fuchsian differential equation of the second order and the
fundamental system of its solutions is constructed in Subsec. 4.1;

4. the local solution to the Riemann-Hilbert problem in a vicinity of each singular point is determined
in Subsec. 4.2;

5. the Riemann-Hilbert problem is solved globally by gluing the local solutions into a unique global
solution, Sec. 5;

6. the partial indices of the piecewise constant matrix are found and a solution to the corresponding
homogeneous Riemann boundary value problem with the piecewise constant matrix coefficient
and five singular points is constructed, Sec. 6.
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Solutions of these problems are realized in the case (m = 2, n = 5). Moreover, intermediate results of
Subsec. 3.1 allow us to apply the same technique in the cases m = 2, n = 3, and m = 2, n = 4. The
obtained solutions ([12–14]) coincide with those known in the literature. We believe that the general
situation can be treated by using our method, it is a goal for our further study.

2. RIEMANN–HILBERT PROBLEM
2.1. Riemann–Hilbert Problem for Two Unknown Functions and Five Singular Points (m = 2, n = 5)

The Riemann–Hilbert problem in the case m = 2, n = 5 consists in the determination of a vector
function (or, equivalently, a system of two functions) Y (z) = (y1(z), y2(z))

T , which is analytic in the
extended complex plane Ĉ except at five (different) singular points a1, a2, a3, a4, a5. This problem
we consider in the following class (see, e.g. [24], cf. [6]): Y (z) is supposed to be integrable in
neighbourhoods of a1, . . . , a4 (more precisely, |yj(z)| ≤ C|z − ak|−α, 0 < |z − ak| < rk) and almost
bounded in a neighbourhood of a5 = ∞ (the latter means thatY (z) is either bounded or has a logarithmic
singularity at a5 = ∞). Note that the problem in other classes may be unsolvable (cf. [24]).

Let αk, βk be eigenvalues of the matrices Vk, k = 1, . . . , 5. We choose the branch of the logarithmic
function in such a way that ρk = 1

2πi lnαk, σk = 1
2πi ln βk satisfy the conditions (which is possible since

Δ is a real number, see e.g. [4])

−1 < Re ρk ≤ 0, −1 < Re σk ≤ 0, Δ =

5
∑

k=1

(ρk + σk) , −9 ≤ Δ ≤ 0. (1)

Thus, the behaviour of the components of the solution at a5 = ∞ is determined by the numbers
ρ := ρ5 + k1, σ := σ5 + k2, where integer numbers k1, k2 are chosen in such a way that the so called
Fuchs relation is satisfied,

4
∑

k=1

(ρk + σk) + ρ+ σ = 1, (2)

which is equivalent to the relation k1 + k2 = 1−Δ. These numbers can be chosen as

k1 =

[

2−Δ

2

]

, k2 =

[

1−Δ

2

]

if Re ρ5 ≤ Re σ5;

k1 =

[

1−Δ

2

]

, k2 =

[

2−Δ

2

]

if Re σ5 ≤ Re ρ5. (3)

Since the symmetry of relation (2) we can consider without loss of generality that Re ρ ≥ Re σ.
It is known (see, e.g. [4]) that the solution to the Riemann–Hilbert problem can be represented in the

locality of each singular point by the following form

Y (z) =

⎛

⎝

y1(z)

y2(z)

⎞

⎠ = Dk

⎛

⎝

(z − ak)
ρk uk (z)

(z − ak)
σk vk (z)

⎞

⎠ , 0 < |z − ak| < rk, rk > 0, k = 1, 2, 3, 4, (4)

Y (z) =

⎛

⎝

y1(z)

y2(z)

⎞

⎠ = D5

⎛

⎝

z−ρ u5 (z)

z−σ v5 (z)

⎞

⎠ , |z| > r∞, r∞ > 0, (5)

where Dk (k = 1, 2, 3, 4, 5) transform the monodromy matrices Vk into a normal Jordan form, the
functions uk (z) are analytic in the neighborhoods of points ak, and the functions vk (z) are either analytic
if ρk �= σk, or have the form

vk (z) =
1

2πi
ln (z − ak)uk (z) + wk (z) if ρk = σk, k = 1, 2, 3, 4, (6)

v5 (z) =
1

2πi
ln z · u5 (z) +w5 (z) if ρ5 = σ5, (7)

with wk (z) being analytic in a neighborhood of the point ak, uk (ak) �= 0, wk (ak) �= 0, k = 1, 2, 3, 4, 5.
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2.2. Relation to the Matrix Differential Equation

Let Y1(z) =

⎛

⎝

y11(z)

y21(z)

⎞

⎠, Y2(z) =

⎛

⎝

y12(z)

y22(z)

⎞

⎠ be two linear independent solutions to the Riemann–

Hilbert problem. Then the matrix Y (z) =

⎛

⎝

y11(z) y12(z)

y21(z) y22(z)

⎞

⎠ satisfies the following matrix differential

equation with five singular points a1, a2, a3, a4, a5 = ∞

dY

dz
= Y

4
∑

k=1

Uk

z − ak
, (8)

where Uk are so called differential matrices (note that in general the differential equation obtained from
the Riemann–Hilbert problem is not Fuchsian, i.e. not necessarily its differential matrix can have only
first order singularities, see e.g. [6]). The constant matrices Uk, k = 1, 2, 3, 4 are similar to matrices

Wk = 1
2πi lnVk and matrix U5 = −

4
∑

k=1

Uk is similar to the matrix S =

⎛

⎝

−ρ 0

0 1− σ

⎞

⎠. Multiplying both

sides of equation (8) by a nonsingular constant matrix C we arrive at the following differential equation

d (Y C)

dz
= (Y C)

4
∑

k=1

C−1UkC

z − ak
. (9)

At the bypasses around the singular points a1, . . . , a5 the matrix (Y C) is transformed as follows
(Y C) �→ (VkY C). Hence the columns of the matrix (Y C) are linear independent solutions of the same
Riemann–Hilbert problem and this matrix satisfies the differential equation (9) with differential matrices
C−1UkC .

Therefore the differential matrices of the Riemann–Hilbert problem can differ only in similarity
transformation. A method of construction of the differential matrices in the case of the Riemann–Hilbert
problem with two unknown functions is presented below in Sec. 4.

3. LOGARITHMIZATION METHOD

In this section, we describe in detail the logarithmization method for the product of matrices which
allows us to get solution to the Riemann–Hilbert problem not assuming any commutativity of the given
matrices. In order to show the essence of the method, we start with the case of the product of two and
three matrices (Subsec. 3.1). Further development of the method is presented in the next subsection
(Subsec. 3.2). For readers convenience we include the detailed description of the logarithmization
method into Appendix at the end of the paper.

3.1. Logarithmization Method for the Product of two and Three Invertible Matrices

Let V1, V2 be a constant nonsingular square 2× 2 matrices. The equality ln (V1 · V2) = lnV1 + lnV2

is satisfied only if V1, V2 are permutation matrices. Now we establish a relationship between the
logarithms of matrices V1, V2, V3 = V1 · V2 for any (non-permutation) matrices.

Proposition 1. Let αk, βk be the eigenvalues of the matrices Vk, k = 1, 2, 3 and ρk = 1
2πi lnαk,

σk = 1
2πi ln βk be the eigenvalues of the matrices Wk = 1

2πi lnVk, k = 1, 2, 3. Let the branches of the
logarithmic functions be fixed in such a way that |Re (ρk − σk)| < 1, k = 1, 2, and the branches for
ρ3, σ3 be satisfied the following relation

ρ1 + σ1 + ρ2 + σ2 = ρ3 + σ3. (10)

Let ρ3 �= σ3.
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Then the matrix S3 =

⎛

⎝

ρ3 0

0 σ3

⎞

⎠ can be represented as a sum of two matrices

S3 = S1 + S2, (11)

where

S1 =

⎛

⎝

ρ1σ1−(ρ3−ρ2)(ρ3−σ2)
σ3−ρ3

[(ρ3−σ1)(σ3−ρ1)−ρ2σ2]a
σ3−ρ3

ρ2σ2−(ρ3−ρ1)(σ3−σ1)
[σ3−ρ3]a

(σ3−ρ2)(σ3−σ2)−ρ1σ1

σ3−ρ3

⎞

⎠ , (12)

S2 =

⎛

⎝

ρ2σ2−(ρ3−ρ1)(ρ3−σ1)
σ3−ρ3

[ρ2σ2−(ρ3−σ1)(σ3−ρ1)]a
σ3−ρ3

(ρ3−ρ1)(σ3−σ1)−ρ2σ2

[σ3−ρ3]a
(σ3−ρ1)(σ3−σ1)−ρ2σ2

σ3−ρ3

⎞

⎠ , (13)

and a is an arbitrary constant. Here Sk ∼ Wk, k = 1, 2 (∼ stands for similarity relation which, in
fact, preserves eigenvalues of the matrix).

Note that the logarithmization method can be applied to any Jordan form of the matrix. Let us show it
at the construction of the differential matrix of the Riemann–Hilbert problem with three singular points.
In this case it is suitable to use in of V3 = V1V2. In this case the Fuchs relation becomes

ρ1 + σ1 + ρ2 + σ2 + ρ+ σ = 1. (14)

By taken ρ3 = −ρ and σ3 = 1− σ we can see that (14) coincides with (10). Thus
⎛

⎝

−ρ 0

0 1− σ

⎞

⎠ = S1 + S2, or

⎛

⎝

0 0

0 1

⎞

⎠ = S1 + S2 +

⎛

⎝

−ρ 0

0 −σ

⎞

⎠ . (15)

If V 0
3 =

⎛

⎝

α3 0

0 β3

⎞

⎠ is the Jordan form of the matrix V3, then the matrices S3 =

⎛

⎝

ρ 0

0 σ

⎞

⎠ and S′
3 =

⎛

⎝

ρ 0

0 σ − 1

⎞

⎠ are different branches of the multivalued function 1
2πi lnV

0
3 , and the matrix N =

⎛

⎝

0 0

0 1

⎞

⎠

is one of the branches of the multivalued function 1
2πi lnE, moreover

N = S1 + S2 + S3. (16)

Let us show that representation (15) remains valid ifα3 = β3 and the Jordan form of the matrix V3 has the

form V 0
3 =

⎛

⎝

α3 0

1 β3

⎞

⎠. Then by Lagrange-Sylvester formula [9] f(V 0
3 ) = f(α3)E + f ′(α3)(V

0
3 − α3E)

we find S3 =
1
2πi lnV

0
3 =

⎛

⎝

ρ 0

δ ρ

⎞

⎠, where δ = 1
2πiα3

. Thus we have in (16)

⎛

⎝

−ρ 0

−δ 1− ρ

⎞

⎠ = S1 + S2.

Matrix T =

⎛

⎝

1 0

δ 1

⎞

⎠ adduce the matrix in the left hand-side to the diagonal form

⎛

⎝

−ρ 0

0 1− ρ

⎞

⎠ =

S′
1 + S′

2, where S′
1, S′

2 have the form (12), (13), respectively, with ρ3 = −ρ, σ3 = 1− ρ. Therefore in
what follows we can use logarithmization method for any Jordan form of 2× 2 matrices.

Corollary 1. If ρ3 = ρ1 + ρ2, σ3 = σ1 + σ2, i.e the matrices S1 and S2 can be reduced to a
triangular form by a unique similarity transformation, then the matrix S may be presented in
the simple form

S3 =

⎛

⎝

ρ1 c

0 σ1

⎞

⎠+

⎛

⎝

ρ2 −c

0 σ2

⎞

⎠ or S3 =

⎛

⎝

ρ1 0

c σ1

⎞

⎠+

⎛

⎝

ρ2 0

−c σ2

⎞

⎠ .
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Proposition 2. Let αk, βk be the eigenvalues of the matrices Vk, k = 1, 2, 3, V4 = V1V2V3 and
ρk = 1

2πi lnαk, σk = 1
2πi lnβk be the eigenvalues of the matrices Wk = 1

2πi lnVk, k = 1, 2, 3, 4. Let
the branches of the logarithmic functions be fixed as before. Let ρ4 �= σ4. Then the Jordan

form S4 =

⎛

⎝

ρ4 0

0 σ4

⎞

⎠ of the logarithm of the product of three nonsingular 2× 2 matrices can be

represented by a sum of logarithms of three matrices which are similar to Wk, k = 1, 2, 3, in one
of the following form:

⎛

⎝

s1 c

γ1
c ρ1 + σ1 − s1

⎞

⎠+

⎛

⎝

s2 − (1 + τ) c

−γ2
(1+τ)c ρ2 + σ2 − s2

⎞

⎠+

⎛

⎝

s3 τc

γ3
τc ρ3 + σ3 − s3

⎞

⎠ , (17)

⎛

⎝

s1
γ1
d

d ρ1 + σ1 − s1

⎞

⎠+

⎛

⎝

s2
−γ2

(1+τ)d

− (1 + τ) d ρ2 + σ2 − s2

⎞

⎠+

⎛

⎝

s3
γ3
τd

τd ρ3 + σ3 − s3

⎞

⎠ , (18)

sk = 1
σ4−ρ4

[ρ4 (σ4 − ρk − σk) + ρkσk − τk], γk = − (sk − ρk) (sk − σk), τk are defined by the for-

mulas τ3 = ρ12σ12, τ1 = ρ23σ23, τ2 = ρ13σ13 =
∑4

k=1 ρkσk − τ1 − τ3, τ is a solution to algebraic
equation equation γ1τ

2 + (γ1 + γ3 − γ2) τ + γ3 = 0, c and d are arbitrary constants.
Remark 1. Representations (17) and (18), are, in general, equivalent (are equal up to a

similarity transformation by a diagonal matrix). If the matrix D4 transforms V4 to its Jordan
form, and any of the matrices Vk (k = 1, 2, 3) are transformed to their triangular forms, then
γk = 0 and we can choose the representation that corresponds to the form of the triangular matrix
(upper or lower triangular form).

Note that as in Proposition 1 we can show that the logarithmization method can be applied to any
Jordan form of the matrix W4.

Corollary 2. If γ1 = − (s1 − ρ1) (s1 − σ1) = 0, then c1d1 = 0. The following simpler matrix
representations are then possible for S4:

S4 =

⎛

⎝

ρ1 0

γ2−γ3
c σ1

⎞

⎠+

⎛

⎝

s2 −c

−γ2
c ρ2 + σ2 − s2

⎞

⎠+

⎛

⎝

s3 c

γ3
c ρ3 + σ3 − s3

⎞

⎠ ,

S4 =

⎛

⎝

ρ1
γ2−γ3

d

0 σ1

⎞

⎠+

⎛

⎝

s2
−γ2
d

−d ρ2 + σ2 − s2

⎞

⎠+

⎛

⎝

s3
γ3
d

d ρ3 + σ3 − s3

⎞

⎠ ,

S4 =

⎛

⎝

ρ1 0

0 σ1

⎞

⎠+

⎛

⎝

s2
−γ3
d

−d ρ2 + σ2 − s2

⎞

⎠+

⎛

⎝

s3
γ3
d

d ρ3 + σ3 − s3

⎞

⎠ .

Similar representations occur in the cases γ2 = 0, γ3 = 0.

3.2. Logarithmization Method for the Product of Four Invertible Matrices

Let us present the matrix S5 =

⎛

⎝

−ρ 0

0 1− σ

⎞

⎠ as a sum of four matrices S5 = S1 + S2 + S3 + S4,

where Sk ∼ Wk = 1
2πi lnVk, k = 1, 2, 3, 4. For this, we rewrite the matrix V5 := V1 · V2 · V3 · V4 as the

following products of three matrices

V5 = V1 · V2 · (V3 · V4) = V1 · V2 · V34, (19)
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V5 = (V1 · V2) · V3 · V4 = V12 · V3 · V4, (20)

and apply formulas (17), (18). For further analysis we need to know not only the eigenvalues αk, βk of
the monodromy matrices Vk, but also the eigenvalues of the products V1V2, V2V3, V3V4, V1V2V3, V2V3V4

of these matrices and their logarithms.
We denote by αk,k+1, βk,k+1 the eigenvalues of Vk,k+1 = VkVk+1, k = 1, 2, 3, and by αk,k+1,k+2,

βk,k+1,k+2 the eigenvalues of Vk,k+1,k+2 = VkVk+1Vk+2, k = 1, 2. We determine the following pa-
rameters ρk,k+1 =

1
2πi lnαk,k+1, σk,k+1 =

1
2πi ln βk,k+1, ρk,k+1,k+2 =

1
2πi lnαk,k+1,k+2, σk,k+1,k+2 =

1
2πi ln βk,k+1,k+2, in such a way that branches of the logarithmic functions are fixed according to the
conditions

ρk,k+1 + σk,k+1 = ρk + ρk+1 + σk + σk+1, |Re (ρk,k+1 − σk,k+1)| < 1, k = 1, 2, 3,

ρk,k+1,k+2 + σk,k+1,k+2 = ρk + ρk+1 + ρk+2 + σk + σk+1 + ρk+2,

|Re (ρk,k+1,k+2 − σk,k+1,k+2)| < 1, k = 1, 2.

Proposition 3. Let αk, βk be the eigenvalues of the matrices Vk, k = 1, 2, 3, 4, and ρk = 1
2πi lnαk,

σk = 1
2πi ln βk be the eigenvalues of the matrices Wk = 1

2πi lnVk, k = 1, 2, 3, 4. Let the branches of
the logarithmic functions are fixed as above. Let ρ5 �= σ5.

Then the Jordan form S5 =

⎛

⎝

ρ5 0

0 σ5

⎞

⎠ of the logarithm of the product of four nonsingular

matrices of the second order can be represented by a sum of logarithms of three matrices which
are similar to Wk, k = 1, 2, 3, 4:

S5 =

⎛

⎝

s1 c

γ1
c ρ1 + σ1 − s1

⎞

⎠+

⎛

⎝

s2 −(1 + τ1)c

− γ2
(1+τ1)c

ρ3 + σ3 − s3

⎞

⎠

+

⎛

⎝

s3 τ1(1 + τ2)c

γ3
τ1(1+τ2)c

ρ3 + σ3 − s3

⎞

⎠+

⎛

⎝

s4 −τ1τ2c

− γ4
τ1τ2c

ρ4 + σ4 − s4

⎞

⎠ , (21)

where τ1, τ2 are solutions to γ1τ
2
1 + (γ1 + γ34 − γ2)τ1 + γ34 = 0, γ12τ22 + (γ12 + γ4 − γ3)τ2 + γ4 = 0,

respectively, and c is an arbitrary constant.
If we replace τ1 by 1

τ1
and take into account that γ12 = γ34, then we arrive at another presentation of

the matrix S5:

S5 =

⎛

⎝

s1 τ1c

γ1
τ1c

ρ1 + σ1 − s1

⎞

⎠+

⎛

⎝

s2 −(1 + τ1)c

− γ2
(1+τ1)c

ρ3 + σ3 − s3

⎞

⎠

+

⎛

⎝

s3 (1 + τ2)c

γ3
(1+τ2)c

ρ3 + σ3 − s3

⎞

⎠+

⎛

⎝

s4 −τ2c

− γ4
τ2c

ρ4 + σ4 − s4

⎞

⎠

= S′
1 + S′

2 + S′
3 + S′

4, (22)

as well as at the equivalent presentation

S5 =

⎛

⎝

s1
γ1
τ1d

τ1d ρ1 + σ1 − s1

⎞

⎠+

⎛

⎝

s2 − γ2
(1+τ1)d

−(1 + τ1)d ρ3 + σ3 − s3

⎞

⎠

+

⎛

⎝

s3
γ3

(1+τ2)d

(1 + τ2)d ρ3 + σ3 − s3

⎞

⎠+

⎛

⎝

s4 − γ4
τ2d

−τ2d ρ4 + σ4 − s4

⎞

⎠

= S′′
1 + S′′

2 + S′′
3 + S′′

4 , (23)
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where c and d are arbitrary constants,

sk =
ρ(σ + ρk + σk − 1) + ωk − ω∗

k

1 + ρ− σ
, k = 1, 2, 3, 4,

ω∗
1 = ω234, ω∗

2 = ω134, ω∗
3 = ω124, ω∗

4 = ω123,

and τ1, τ2 are solutions of the following equations, respectively,

γ12τ
2
1 + (γ12 + γ1 − γ2)τ1 + γ1 = 0, γ12τ

2
2 + (γ12 + γ4 − γ3)τ2 + γ4 = 0. (24)

It follows from (22) that the above presentation of the matrix S is determined uniquely up to similarity
transformation via a diagonal matrix. Therefore, the matrices in (22) and (23) are differential matrices of
the equation (8). It can be shown that the statement remains valid for another Jordan form of the matrix
W5.

4. FUCHSIAN DIFFERENTIAL EQUATION WITH FIVE SINGULAR POINTS

4.1. Construction of the Differential Equation

Let us now construct the second order differential equation of the Fuchsian class, related to the
following matrix differential equation

dY

dz
(z) = Y (z)

4
∑

k=1

Sk

z − ak
, or

dY

dz
= Y (z)S(z), (25)

with respect to the unknown matrix Y (z) = (yij(z)) and matrices Sk as presented in (21), where
S(z) = (sij(z)). Thus

s11(z) =
4

∑

k=1

sk
z − ak

, s12(z) =
4

∑

k=1

ck
z − ak

, s21(z) =
4

∑

k=1

dk
z − ak

, s22(z) =
4

∑

k=1

ρk − σk − sk
z − ak

,

4
∑

k=1

ck = 0,

4
∑

k=1

dk = 0, s′k = ρk − σk − sk, sks
′
k − ckdk = ρkσk.

Matrix equation (25) can be written in the following scalar form
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

y′11 = s11y11 + s21y12,

y′12 = s12y11 + s22y12,

y′21 = s11y21 + s21y22,

y′22 = s12y21 + s22y22.

(26)

By changing the first equation of (26) to express y12,

y12 =
1

s21

(

y′11 − s11y11
)

(27)

and substituting it into the second equation, we arrive at the following differential equation:

y′′ −
(

s11 + s22 +
s′21
s21

)

y′ +

(

s11s22 − s12s21 − s′11 +
s′21
s21

s11

)

y = 0. (28)

It follows from the third and the fourth equations of (26) that the function y21 is also a solution to
equation (28).

Now we reformulate equation (28), using the forms of the matrices Sk in (21). Note that s′
21
s21

=

(ln s21)
′ =

(

ln
4
∑

k=1

dk
z−ak

)′
. By direct calculation we obtain

s′21
s21

=
1

z − b1
+

1

z − b2
+

4
∑

k=1

1

z − ak
.
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where b1, b2 are the roots of the following quadric equation
(

4
∑

k=1

akdk

)

z2 −
(

4
∑

k=1

akdk(a1 + a2 + a3 + a4 − ak)

)

z − a1a2a3a4

(

4
∑

k=1

dk
ak

)

= 0. (29)

Since d1 = dτ1, d2 = −d(1 + τ1), d3 = d(1 + τ2), d4 = −dτ2 we can rewrite (29) in the form

(a3 − a2 + τ1(a1 − a2) + τ2(a3 − a4)) z
2 − ((a3 − a2)(a1 + a4) + τ1(a1 − a2)(a3 + a4

+τ2(a3 − a4)(a1 + a2)) z + ((a3 − a2)a1a4 + τ1(a1 − a2)a3a4 + τ2(a3 − a4)a1a2) = 0.

Further, we have

s11 + s22 +
s′21
s21

=

4
∑

k=1

ρk + σk − 1

z − ak
+

1

z − b1
+

1

z − b2
,

s11s22 − s12s21 =
s1s

′
1 − c1d1

(z − a1)2
+

s1s
′
2 + s′1s2 − c1d2 − c2d1
(z − a1)(z − a2)

+ · · ·

=
ρ1σ1

(z − a1)2
+

(s1 + s2)(s
′
1 + s′2)− (c1 + c2)(d1 + d2)− s1s

′
1 − s2s

′
2 + c1d1 + c2d2

(z − a1)(z − a2)
+ · · ·

=
ρ1σ1

(z − a1)2
+

ω12 − ρ1σ1 − ρ2σ2
(z − a1)(z − a2)

+ · · · =
4

∑

k=1

ωk

(z − ak)2
+

4
∑

k,j=1,k �=j

ωkj − skj − ωk − ωj

(z − ak)(z − aj)
,

−s′11 +
s′21
s21

s11 =

(

1

z − b1
+

1

z − b2

) 4
∑

k=1

sk
z − ak

−
4

∑

k,j=1,k �=j

sk + sj
(z − ak)(z − aj)

.

It follows from Proposition 3 that

s1 + s2 =
[ρ(σ + ρ12 + σ12 − 1) + ω12 − ω34]

1 + ρ− σ
= s12.

Analogously

sk + sj =
[ρ(σ + ρkj + σkj − 1) + ωkj − ω∗∗

kj ]

1 + ρ− σ
= skj, (30)

where
ω∗∗
12 = ω34, ω∗∗

34 = ω12, ω∗∗
14 = ω23, ω∗∗

13 = ω24, ω∗∗
23 = ω14, ω∗∗

24 = ω13. (31)

Substituting the obtained formulas into (28), we arrive at the following form for the solution of the
Riemann–Hilbert problem with five singular points

Theorem 1. Second order differential equation of the Fuchsian type, with five singular points
and a given monodromy group, can be presented in the form

y′′(z) +

(

4
∑

k=1

1− ρk − σk
z − ak

− 1

z − b1
− 1

z − b2

)

y′(z) +

(

4
∑

k=1

ωk

(z − ak)2

+

4
∑

k,j=1,k �=j

ωkj − skj − ωk − ωj

(z − ak)(z − aj)
+

(

1

z − b1
+

1

z − b2

) 4
∑

k=1

sk
z − ak

⎞

⎠ y(z) = 0. (32)

4.2. Local Solution to the Differential Equation

In a neighbourhood of each of the singular points a1, . . . , a5, equation (32) has two independent
solutions (see e.g. [11], cf. [7])

uk(z) = (z − ak)
ρk

∞
∑

n=0

B(k)
n (z − ak)

n,
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vk(z) = (z − ak)
σk

∞
∑

n=0

C(k)
n (z − ak)

n, whenever ρk �= σk,

vk(z) =
1

2πi
ln(z − ak)uk(z) + (z − ak)

ρkwk(z), whenever ρk = σk, k = 1, . . . , 4, (33)

u5(z) = z−ρ
∞
∑

n=0

B(5)
n z−n,

v5(z) = z−σ
∞
∑

n=0

C(5)
n z−n, whenever ρ �= σ

v5(z) =
1

2πi
ln zuk(z) + z−ρw5(z), whenever ρ = σ. (34)

Here the functions wk(z) are analytic in the vicinity of the singular points ak, k = 1, . . . , 5, and the

coefficients B
(k)
n , C

(k)
n are defined from recurrence relations, after substitution into equation (32). In

the vicinity of points b1 and b2, equation (32) has two linear independent solutions

ubk(z) =

∞
∑

n=0

B(bk)
n (z − bk)

n, vbk(z) = (z − bk)
2

∞
∑

n=0

C(bk)
n (z − bk)

n, k = 1, 2. (35)

The point b1 and/or b2 might coincide with one of the singular points ak(k = 1, . . . , 4). If the matrix S1

is triangular, then γ1 = 0 and d1 = 0. Then if by linear transformation the point a1 corresponds to 0,
then z = 0 is a root of equation (29) and b1 = a1 whenever γ1 = 0.

Now we present the elements y12, y22 of the matrix Y (z) in terms of the elements y11, y21. Substitut-
ing expressions for s21, s11 into (32) we then obtain

y12 =
1

dr

4
∏

k=1

(z − ak)

(z − b1)(z − b2)

(

y′11 −
4

∑

k=1

sk
z − ak

y11

)

=
1

d

p(z)

q(z)

(

y′11 −
4

∑

k=1

sk
z − ak

y11

)

,

where

p(z) =

4
∏

k=1

(z − ak), q(z) = r(z − b1)(z − b2) = (a3 − a2 + τ1(a1 − a2) + τ2(a3 − q4)) z
2

− ((a3 − a2)(a1 + a4) + τ1(a1 − a2)(a3 + a4) + τ2(a3 − a4)(a1 + a2)) z

+ ((a3 − a2)a1a4 + τ1(a1 − a2)a3a4 + τ2(a3 − a4)a1a2) .

Analogously,

y22 =
1

dr

4
∏

k=1

(z − ak)

(z − b1)(z − b2)

(

y′21 −
4

∑

k=1

sk
z − ak

y21

)

=
1

d

p(z)

q(z)

(

y′21 −
4

∑

k=1

sk
z − ak

y21

)

.

Therefore, if uk, vk is a fundamental system of solutions to differential equation (32) in a neigh-
bourhood of the point ak, k = 1, . . . , 5, then the solution Y (z) to the matrix equation (25) in this
neighbourhood can be written in the form

Y (z) = Dk

⎛

⎜

⎜

⎝

uk
p(z)
q(z)

(

u′k −
4
∑

k=1

sk
z−ak

uk

)

vk
p(z)
q(z)

(

v′k −
4
∑

k=1

sk
z−ak

vk

)

⎞

⎟

⎟

⎠

⎛

⎝

1 0

0 d

⎞

⎠ = X(z)

⎛

⎝

1 0

0 d

⎞

⎠ , (36)

where Dk are the matrices transforming matrices Vk, k = 1, . . . , 5, to their normal Jordan forms. The
order h of the determinant of the matrix X(z) at infinity is

h = Re ρ+ (Re σ + 1)− 2 = Re ρ+ Re σ − 1,
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and the order of the first column of the matrix X(z) is h1 = min {Re ρ,Re σ} = Re ρ. Since s1 + s2 +
s3 + s4 = −ρ, then the order of the second column of X(z) is h2 = min {Re ρ,Re σ − 1} = Re σ − 1.
Hence h = h1 + h2. Therefore we arrive at the following result (cf. [24]).

Theorem 2. Let uk, vk, k = 1, . . . , 5, be a linear independent solutions of equation (32) in a
neighbourhood of the corresponding singular point ak, represented in one of the forms (33), (34).

Let p(z) =
4
∏

k=1

(z− ak), q(z) = r(z− b1)(z − b2) and b1, b2 be the roots of the quadric equation (29).

Then the matrix

X(z) = Dk

⎛

⎜

⎜

⎝

uk
p(z)
q(z)

(

u′k −
4
∑

k=1

sk
z−ak

uk

)

vk
p(z)
q(z)

(

v′k −
4
∑

k=1

sk
z−ak

vk

)

⎞

⎟

⎟

⎠

(37)

is a local solution to the Riemann–Hilbert problem (i.e. solves equation (25)) in a neighbour-
hood of each singular point ak, k = 1, . . . , 5. The matrix X(z) meets the following conditions:

a) detX(z) �= 0,∀z �= ak, k = 1, . . . , 5;
b) the columns of X(z) belong to a chosen class of functions, specifically they are supposed to

be integrable in a neighbourhood of a1, . . . , a4 and almost bounded in a neighbourhood of a5 = ∞;
c) the order of detX(z) at infinity is equal to the sum of the orders of its columns.

5. GLOBAL SOLUTION TO THE RIEMANN–HILBERT PROBLEM

The obtained solution exists not only in a neighbourhood of each singular point. An analytic
continuation of a local solution in a neighbourhood of a certain singular point does not necessarily
become the solution at another singular point. Thus, in order to obtain a solution over the whole
complex plane (i.e. the global solution), we need to relate the local representations to each other (i.e.
assemble these representations into a unique analytic solution). Note that analytic continuation of the
local solution corresponding a5 coincides with the starting local solution corresponding to a1 due to
fulfillment of the Fuchs relation. Possible direct calculation can be provided too.

The solution (37) to equation (25) in a neighbourood of each singular point ak is determined up to
two constants, since the matrix Dk that transforms Vk to a normal Jordan form is not defined uniquely
and has the form

Dk = D̃kTk, where Tk =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(

δk 0

0 εk

)

, if αk �= βk,

(

δk 0

εk
δk
αk

)

, if αk = βk,

(38)

where D̃k are fixed matrices transforming Vk to a normal Jordan forms, and the constants δk, εk are
subjects for further determination. The fundamental system of solutions to differential equation (32) is
also determined up to two constant multipliers. Without loss of generality we fix values of the coefficients

B
(k)
0 , C

(k)
0 , k = 1, . . . , 5, in (33), (34), e.g. B

(k)
0 = 1, C

(k)
0 = 1, k = 1, . . . , 5. Since equation (32) has

only two linear independent solutions, the solutions uk, vk and uk+1, vk+1 satisfy the following linear
relations:

⎛

⎝

uk(z)

vk(z)

⎞

⎠ = Λk

⎛

⎝

uk+1(z)

vk+1(z)

⎞

⎠ , (39)

where Λk (λij) are constant nonsingular matrices whose elements can be found via the formulas

Λk =

⎛

⎝

uk(z0) u′k(z0)

vk(z0) v′k(z0)

⎞

⎠

⎛

⎝

uk+1(z0) u′k+1(z0)

vk+1(z0) v′k+1(z0)

⎞

⎠

−1

,
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and z0 is a fixed point in a common part of the convergence domains for the corresponding series.
Local solutions in neighbourhoods of points ak and ak+1 are analytic continuation of each other iff

Dk

⎛

⎝

uk(z)

vk(z)

⎞

⎠ = DkΛk

⎛

⎝

uk+1(z)

vk+1(z)

⎞

⎠ = Dk+1

⎛

⎝

uk+1(z)

vk+1(z)

⎞

⎠ or, in notation from (38) D̃kTk = D̃k+1Tk+1.

Denoting Mk

(

μ
(k)
ij

)

= D̃−1
k+1D̃k, we define δk, εk from the system TkΛk = MkTk+1, k = 1, . . . , 4. In

particular, if ρ1 �= σ1 and ρ2 �= σ2, then such a system has the form
⎛

⎝

δ1 0

0 ε1

⎞

⎠

⎛

⎝

λ
(1)
11 λ

(1)
12

λ
(1)
21 λ

(1)
22

⎞

⎠ =

⎛

⎝

μ
(1)
11 μ

(1)
12

μ
(1)
21 μ

(1)
22

⎞

⎠

⎛

⎝

δ2 0

0 ε2

⎞

⎠ . (40)

The solvability condition for system (40) has the form

λ
(1)
11 λ

(1)
22 μ

(1)
12 μ

(1)
21 = λ

(1)
12 λ

(1)
21 μ

(1)
11 μ

(1)
22 . (41)

If matrices V1 and V2 are transformed by the same similarity transformation to the triangular form,
then relation (41) holds automatically. If not then we may rewrite (41) in the form

λ
(1)
11 λ

(1)
22

λ
(1)
12 λ

(1)
21

=
μ
(1)
11 μ

(1)
22

μ
(1)
12 μ

(1)
21

. (42)

Since ρ1 �= σ1 and ρ2 �= σ2, we can then take matrices D̃k in one of the forms

D̃k =

⎛

⎝

ν
(k)
12 ν

(k)
12

αk − ν
(k)
11 β − ν

(k)
11

⎞

⎠ or D̃k =

⎛

⎝

αk − ν
(k)
22 β − ν

(k)
22

ν
(k)
21 ν

(k)
21

⎞

⎠ , k = 1, 2;

M1 =
1

ν
(1)
12 (β1 − α1)

⎛

⎝

(β1 − ν
(1)
11 )ν

(2)
12 − (α2 − ν

(2)
11 )ν

(1)
12 (β1 − ν

(1)
11 )ν

(2)
12 − (α2 − ν

(2)
11 )ν

(1)
12

−(α1 − ν
(1)
11 )ν

(2)
12 + (α2 − ν

(2)
11 )ν

(1)
12 −(α1 − ν

(1)
11 )ν

(2)
12 + (β2 − ν

(2)
11 )ν

(1)
12

⎞

⎠ .

Hence by simple algebra we get

μ
(1)
11 μ

(1)
22 = ν

(2)
12 (ν

(1)
12 )−1(β1 − α1)

−2(α12 + β12 − α1β2 − α2β1),

μ
(1)
12 μ

(1)
21 = ν

(2)
12 (ν

(1)
12 )−1(β1 − α1)

−2(α12 + β12 − α1α2 − β1β2).

Hence condition (42) can be rewritten as

λ
(1)
11 λ

(1)
22

λ
(1)
12 λ

(1)
21

=
α12 + β12 − (α1β2 + α2β1)

α12 + β12 − (α1α2 + β1β2)
. (43)

We note that neither the numerator nor the denominator of the ratio in (43) is non-vanishing. Moreover,
this ratio can not equal unity due to the non-singularity of matrices Λ1 and M1. Direct observation

shows that the recurrent relations for coefficients B
(1)
n and C

(1)
n contain in the denominators only ρ1, σ1

and do not contain the other pairs ρ2, σ2; ρ3, σ3; ρ4, σ4; . . . , ρ, σ. Analogously, recurrent relations for

coefficients B
(2)
n and C

(2)
n contain in the denominators only ρ2, σ2 and do not contain the other pairs

ρ1, σ1; ρ3, σ3; ρ4, σ4; . . . , ρ, σ. Therefore, the function f(ρ1, σ1; ρ2, σ2; ρ3, σ3; ρ4, σ4; ρ12, σ12; . . . ; ρ123,

σ123; . . . ; ρ, σ) =
λ
(1)
11 λ

(1)
22

λ
(1)
12 λ

(1)
21

is an entire function with respect to all of its variables excluding ρ1, σ1; ρ2, σ2;

ρ12, σ12 and does not include the values 0, 1,∞. Hence, the function f depends only on ρ1, σ1; ρ2, σ2;
ρ12, σ12.

Substitute the following into (32): ρ3 = σ3(ω3 = 0); ρ4 = σ4(ω4 = 0); ρ34 = σ34(ω34 = 0); ρ23 =
ρ234 = ρ2;σ23 = σ234 = σ2(ω23 = ω234 = ω2). The Fuchs relation (2) then becomes ρ12 + σ12 + ρ+
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σ = 1. Hence we have ρ = −ρ12, σ = 1− σ12. It then follows ω13 = ω14 = ω1, ω23 = ω2, ω = ω123 =
ω13. Therefore

s12 =
[ρ(σ + ρ12 + σ12 − 1) + ω12 − ω34

1 + ρ− σ
= ρ12; s3 =

[ρ(σ + ρ3 + σ3 − 1) + ω3 − ω124

1 + ρ− σ
= 0;

s4 =
[ρ(σ + ρ4 + σ4 − 1) + ω4 − ω123

1 + ρ− σ
= 0;

γ12 = −(s12 − ρ12)(s12 − σ12) = 0, γ34 = γ12 = 0, γ3 = γ4 = 0.

From the first equation (24) we have τ1 =
γ2

γ2−γ1
, moreover the second equation is satisfied identically. It

then follows from representation (22) that in equation (29) we have d1 + d2 = 0, d3 = d4 = 0, and that
equation (29) can be written in the form

(a1 − a2)z
2 − (a1 − a2)(a3 + a4)z + (a1 − a2)a3a4 = 0,

whose roots are z1 = a3, z2 = a4. Thus we have from equation (32) that b1 = a3, b2 = a4, s12 =
ρ12, s13 = s1 + s3 = s1, s14 = s1 + s4 = s1, s23 = s2 + s3 = s2, s24 = s2 + s4 = s2, s34 = 0, and that
equation (32) can be written in the form

y′′ +

(

1− ρ1 − σ1
z − a1

+
1− ρ2 − σ2

z − a2

)

y′

+

(

ρ1σ1
(z − a1)2

+
ρ2σ2

(z − a2)2
+

ρ12σ12 − ρ1σ1 − ρ2σ2
(z − a1)(z − a2)

)

y = 0. (44)

Equation (44) is the Riemann differential equation (see [26]). Its solution can be presented via the Gauss

hypergeometric function (see [26]), 2F1(a, b; c; z) =
∞
∑

n=0

(a)n(b)n
(c)n

zn, ((q)n is the Pochhammer symbol,

(q)0 = 1, (q)n = q(q − 1) · · · (q − n+ 1)) with parameters a = ρ1 + ρ2 − ρ12, b = ρ1 + ρ2 − σ12, c =
1 + ρ1 − σ1.

From (40) it follows that we can take δ1 = c, ε1 =
μ
(1)
21 λ

(1)
11

μ
(1)
11 λ

(1)
21

c, δ2 =
λ
(1)
12

μ
(1)
12

c, ε2 =
λ
(1)
11

μ
(1)
11

c, where c is an

arbitrary constant. Analogously, we can define connections between γk, δk, εk in those cases when at
least one of the matrices Vk, k = 1, 2, is transformed to the triangular Jordan canonical form.

6. PARTIAL INDICES AND SOLUTION TO BOUNDARY VALUE PROBLEM

The Riemann–Hilbert problem can be formulated as the Riemann boundary value problem for
analytic functions. To see this we draw a simple closed loop Γ through our singular points. Then
bypassing the point ak the following transformation yields Y + � V1 · V2 · . . . · Vk · Y + = Y −. Hence
we arrive at the boundary condition

Y +(t) = A(t)Y −(t), t ∈ Γ \ {a1, a2, . . . , a5}, (45)

where A(t) = Ak = (V1V2 · · ·Vk)
−1 , t ∈ (ak, ak+1), An = E (note that we are looking for the solution

to (45) unbounded near each singular point as stated in condition (iii) of the Riemann problem).
We must now recall some definitions from the theory of boundary value problems corresponding to

the considered situation (see [24, § 126]). The matrix-function X(z), analytic outside the contour Γ, is
called the canonical matrix for boundary value problem (45) if it satisfies the following conditions:

1. X+(t) = A(t)X−(t), t ∈ Γ \ {a1, a2, . . . , a5};

2. detX(z) �= 0, ∀z �= a1, a2, . . . , a5;

3. the columns of the matrix X(z) belong to the chosen class of solutions, namely, are supposed to
be integrable in a neighbourhood of a1, . . . , a4 (i.e. satisfy power type asymptotics similar to that
in (iii) of Introduction) and almost bounded in a neighbourhood of a5 = ∞;
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4. the order of the determinant of X(z) at infinity is equal to the sum of the orders at infinity of its
columns.

Thus the columns of the canonical matrix are formed of the special system of the linear independent
solutions to the boundary value problem (45). The order of the determinant detX(z) of the canonical
matrix at infinity is called the index (or general index) of the boundary value problem (45), and the
integer parts of the orders of its columns are called the partial indices.

Theorem 3. Let uk, vk, k = 1, . . . , 5, be linear independent solutions of equation (32) in a
neighbourhood of the corresponding singular point ak, represented by one of the forms (33), (34).

Let p(z) =
4
∏

k=1

(z − ak), q(z) = r(z − b1)(z − b2) and b1, b2 be the roots of the quadratic equation

(29). Then the matrix (37) is the canonical matrix of boundary value problem (45).

The orders of the columns of (37) at infinity are equal

p1 = min{Re ρ,Re σ} = Re ρ = Re ρ5 +

[

1−Δ

2

]

,

p2 = min{Re ρ,Re σ − 1} = Re σ − 1 = Re ρ5 +
[

−Δ

2

]

,

where Δ =
5
∑

k=1

ρk + σk.

The partial indices of boundary value problem (45) are χ1 = [p1] =
[

1−Δ
2

]

, χ2 = [p2] =
[−Δ

2

]

,
0 ≤ χ1 ≤ 5, 0 ≤ χ2 ≤ 4, |χ2 − χ1| ≤ 1.

The general index of boundary value problem (45) is equal χ = χ1 + χ2 = −Δ, 0 ≤ χ ≤ 9.

Problem (45) has l = χ+ 2 linear independent solutions in the class of analytic vector-
functions integrable in a neighbourhood of a1, . . . , a4 (i.e. satisfy power type asymptotics similar
to that in (iii) of Introduction) and almost bounded at a neighbourhood of a5 = ∞, which can be
found via the formula

Y (z) = X(z)

⎛

⎝

Pχ1(z)

Pχ2(z)

⎞

⎠ ,

where Pχ1(z), Pχ2(z) are polynomials of orders χ1, χ2 respectively.

Corollary 3. With the solution of the boundary value problem we can construct the solution of
the factorization problem of the piecewise constant matrix A(t), t ∈ Γ. The partial indices of this
factorization are χ1, χ2. It follows from Theorem 3 that the partial indices are stable.

7. CONCLUSION

In this paper, we have proposed a method of construction of the solution of the Riemann–Hilbert
problem in the case of several singular points. To avoid additional calculations we have restricted
ourselves to the case of five singular points, but the method is universal and can be applied for larger
numbers of points. During the course of the construction we have also determined the canonical
matrix of the homogeneous boundary value problem with piecewise constant matrix coefficient. Thus
the solvability conditions and solutions of the boundary value problem can be written in the standard
way (see, e.g., [24]). Finally, the canonical matrix allows us to construct a solution for the factorization
problem of the piecewise constant matrix (cf. [23, 8]).
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Appendix

The proof of Proposition 1. Incorporating similarity of matrices Sk ∼ Wk we rewrite relation (11)
in the form

⎛

⎝

ρ3 0

0 σ3

⎞

⎠ =

⎛

⎝

s1 c

d ρ1 + σ1 − s1

⎞

⎠+

⎛

⎝

s2 −c

−d ρ2 + σ2 − s2

⎞

⎠ , (46)

which is equivalent to the following system of four algebraic equations
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

s1 + s2 = ρ3,

ρ1 + σ1 + ρ2 + σ2 − s1 − s2 = σ3,

s1(ρ1 + σ1 − s1)− cd = ρ1 · σ1,
s2(ρ2 + σ2 − s2)− cd = ρ2 · σ2.

(47)

We note that assumption (10) yields linear dependence of the first and second equations in (47). Hence
we can determine only three parameters of system (47). Simple algebra gives the solution of this system

s1 =
ρ1σ1 − (ρ3 − ρ2)(ρ3 − σ2)

σ3 − ρ3
, s2 =

ρ2σ2 − (ρ3 − ρ1)(ρ3 − σ1)

σ3 − ρ3
.

The product cd can be determined either from the third or fourth equation.

cd = s1(ρ1 + σ1 − s1)− ρ1σ1 = −(s1 − ρ1)(s1 − σ1).

The first factor s1 − ρ1 is

s1 − ρ1 =
ρ1σ1 − (ρ3 − ρ2)(ρ3 − σ2)− ρ1(σ3 − ρ3)

σ3 − ρ3
.

Using (10) we can present this in the form

s1 − ρ1 =
ρ1σ1 − ρ3(ρ1 + σ1 − σ3)− ρ2σ2 − ρ1(σ3 − ρ3)

σ3 − ρ3
=

(ρ3 − ρ1)(σ3 − σ1)− ρ2σ2
σ3 − ρ3

.

Similarly

s1 − σ1 =
(ρ3 − σ1)(σ3 − ρ1)− ρ2σ2

σ3 − ρ3
.

By taking

c = (s1 − σ1)a, d = −(s1 − ρ1)
1

a
,

with arbitrary constant a we arrive at the final representation for matrices S1 and S2. �

The proof of Proposition 2. Let ρ4 �= σ4. Then the matrix S4 reduces to the diagonal Jordan form

S4 =

⎛

⎝

ρ4 0

0 σ4

⎞

⎠, which can be represented by a sum of three matrices

S4 = S1 + S2 + S3 =

3
∑

k=1

⎛

⎝

sk ck

dk s′k

⎞

⎠ , (48)
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where
Sk ∼ Wk; s′k = ρk + σk − sk, ckdk = −(sk − ρk)(sk − σk), k = 1, 2, 3,

3
∑

k=1

sk = ρ4,

3
∑

k=1

s′k = σ4,

3
∑

k=1

ck = 0,

3
∑

k=1

dk = 0.

The aim now becomes finding an explicit representation for the matrices Sk, k = 1, 2, 3.
Let us write the product V1 · V2 · V3 in the following two forms

V4 = V1 · V2 · V3 = V1 (V2 · V3) = V1 · V23, (49)

V4 = V1 · V2 · V3 = (V1 · V2) · V3 = V12 · V3, (50)

denote by α23, β23 and α12, β12 the eigenvalues of the matrices V23 and V12, respectively, and define the
parameters

ρ23 =
1

2πi
lnα23, σ23 =

1

2πi
ln β23, ρ12 =

1

2πi
lnα12, σ12 =

1

2πi
ln β12,

where the branches of the logarithmic functions are fixed according to the following conditions,

ρ23 + σ23 = ρ2 + ρ3 + σ2 + σ3, |Re (ρ23 − σ23)| < 1,

ρ12 + σ12 = ρ1 + ρ2 + σ1 + σ2, |Re (ρ12 − σ12)| < 1.

Using representations (12), (13) to (49) and (50) we arrive at two formulas for S4

S4 = S1 + S2 + S3 = S1 + S23 =

⎛

⎝

s1 c1

d1 s′1

⎞

⎠+

⎛

⎝

ρ4 − s1 −c1

−d1 σ4 − s′1

⎞

⎠ , (51)

S4 = S1 + S2 + S3 = S12 + S3 =

⎛

⎝

ρ4 − s3 −c3

−d3 σ4 − s′3

⎞

⎠+

⎛

⎝

s3 c3

d3 s′3

⎞

⎠ , (52)

where

s1 =
[ρ1σ1 − (ρ4 − ρ23)(ρ4 − σ23)]

σ4 − ρ4
=

[ρ4(σ4 − ρ1 − σ1) + ρ1σ1 − ρ23σ23)]

σ4 − ρ4
, (53)

s3 =
[ρ3σ3 − (ρ4 − ρ12)(ρ4 − σ12)]

σ4 − ρ4
=

[ρ4(σ4 − ρ3 − σ3) + ρ3σ3 − ρ12σ12)]

σ4 − ρ4
. (54)

Here S12 ∼ 1
2πi ln(V1V2), S23 ∼ 1

2πi ln(V2V3).
It follows from (51), (52) that S2 = S12 − S1 = S23 − S3. Then, in particular,

⎛

⎝

s2 c2

d2 s′2

⎞

⎠ =

⎛

⎝

ρ4 − s3 − s1 −c3 − c1

−d3 − d1 σ4 − s′3 − s′1

⎞

⎠ .

Hence

s2 =
[−ρ4(ρ2 − σ2)− ρ1σ1 − ρ3σ3 + ρ12σ12 + ρ23σ23]

σ4 − ρ4
, (55)

s2s
′
2 − (c1 + c3)(d1 + d3) = ρ2σ2. (56)

To simplify relation (55) we apply the following identity.
Lemma 1.

det(S1 + S2 + S3) = det(S1 + S2) + det(S1 + S3) + det(S2 + S3)

− det(S1)− det(S2)− det(S3). (57)
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Proof. It follows from the elementary algebra and known relation for the determinant of the sum of
two 2× 2 matrices

det(A+B) = det(A) + det(B) + tr(A)tr(B)− tr(AB).

�

Let us denote

ω23 := det(S2 + S3) = ρ23σ23 = det

(

1

2πi
lnV23

)

,

ω12 := det(S1 + S2) = ρ12σ12 = det

(

1

2πi
lnV12

)

. (58)

Then, it follows from (57) that

ω13 := det(S1 + S3) =
4

∑

k=1

ρkσk − ω23 − ω12. (59)

Hence relation (55) can be rewritten in the form

s2 =
[ρ4(σ4 − ρ2 − σ2) + ρ2σ2 − ω13]

σ4 − ρ4
. (60)

We now transform relation (56). We denote γk := −(sk − ρk)(sk − σk). Then, since ckdk = sks
′
k −

ρkσk = γk, we see from (56):

γ2 − γ1 − c3d1 − c1d3 − γ3 = 0.

Hence, either

γ2 − γ1 − γ3 − γ1
c3
c1

− γ3
c1
c3

= 0 (c1 �= 0, c3 �= 0), (61)

or

γ2 − γ1 − γ3 − γ3
d1
d3

− γ1
d3
d1

= 0 (d1 �= 0, d3 �= 0). (62)

With τ = c3
c1

in (61) or τ = d3
d1

in (62) we obtain the following equation with respect to τ :

γ1τ
2 − (γ1 + γ3 − γ2)τ + γ3 = 0. (63)

If γ1 �= 0, then the solution to (63) has the form

τ =
1

2γ1

(

γ1 + γ3 − γ2 ±
√

(γ21 + γ22 + γ23)− 2(γ1γ2 + γ1γ3 + γ2γ3)

)

. (64)

If γ1 = 0, then τ = γ3
γ2−γ3

.

With known τ , we determine all entries ck, dk of the matrices Sk, k = 1, 2, 3.
If τ = c3

c1
, then c1 = c, c3 = τc, c2 = − (c1 + c3) = − (1 + τ) c, d1 =

γ1
c , d2 = − γ2

(1+τ)c , d3 =
γ3
c ,

where c is an arbitrary constant, c �= 0.
If τ = d3

d1
, then d1 = d, d3 = τd, d2 = − (d1 + d3) = − (1 + τ) d, c1 =

γ1
d , c2 = − γ2

(1+τ)d , d3 =
γ3
d ,

where d is an arbitrary constant, d �= 0.
Therefore, we have obtained two representations of the Jordan canonical form of the logarithm of the

product of three nonsingular 2× 2 matrices as sum of matrices:
⎛

⎝

ρ4 0

0 σ4

⎞

⎠ =

⎛

⎝

s1 c

γ1
c ρ1 + σ1 − s1

⎞

⎠+

⎛

⎝

s2 − (1 + τ) c

−γ2
(1+τ)c ρ2 + σ2 − s2

⎞

⎠+

⎛

⎝

s3 τc

γ3
τc ρ3 + σ3 − s3

⎞

⎠ , (65)

⎛

⎝

ρ4 0

0 σ4

⎞

⎠ =

⎛

⎝

s1
γ1
d

d ρ1 + σ1 − s1

⎞

⎠+

⎛

⎝

s2
−γ2

(1+τ)d

− (1 + τ) d ρ2 + σ2 − s2

⎞

⎠+

⎛

⎝

s3
γ3
τd

τd ρ3 + σ3 − s3

⎞

⎠ , (66)
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where the parameters sk, k = 1, 2, 3, are defined in (53), (60), (54), respectively, τ is determined from
equation (63), and c and d are arbitrary constants. �

The proof of Proposition 3. In the considered class of solutions, by Lemma 1 we have

det(S1 + S2 + (S3 + S4)) = ω12 + ω234 + ω134 − ω1 − ω2 − ω34 =: ω,

det((S1 + S2) + S3 + S4) = ω123 + ω34 + ω134 − ω12 − ω3 − ω4 =: ω.

Therefore, we have two relations, either

ω134 = ω + ω1 + ω2 + ω34 − ω12 − ω234, (67)

ω234 = ω + ω3 + ω4 + ω12 − ω34 − ω123. (68)

Let us write the first representation of the matrix S, corresponding to (20)

S5 =

⎛

⎝

s1 c1
γ1
c1

ρ1 + σ1 − s1

⎞

⎠+

⎛

⎝

s2 −(1 + τ1)c1

− γ2
(1+τ1)c1

ρ2 + σ2 − s2

⎞

⎠+

⎛

⎝

s34 τ1c1
γ34
τ1c1

ρ34 + σ34 − s34

⎞

⎠

= S1 + S2 + S34, (69)

where

s1 =
[ρ(σ + ρ1 + σ1 − 1) + ω1 − ω234]

1 + ρ− σ
,

s2 =
[ρ(σ + ρ2 + σ2 − 1) + ω2 − ω134]

1 + ρ− σ
,

s34 =
[ρ(σ + ρ34 + σ34 − 1) + ω34 − ω12]

1 + ρ− σ
,

γk = −(sk − ρk)(sk − σk), k = 1, 2; γ34 = −(s34 − ρ34)(s34 − σ34),

the number τ1 is a solution of equation (70)

γ1τ
2
1 + (γ1 + γ34 − γ2)τ1 + γ34 = 0, (70)

and c1 is an arbitrary constant.

Let us write the second representation of the matrix S, corresponding to (20)

S5 =

⎛

⎝

s12 c2
γ12
c2

ρ12 + σ12 − s12

⎞

⎠+

⎛

⎝

s3 −(1 + τ2)c2

− γ3
(1+τ2)c2

ρ3 + σ3 − s3

⎞

⎠+

⎛

⎝

s4 τ2c2
γ4
τ2c2

ρ4 + σ4 − s4

⎞

⎠

= S12 + S3 + S4, (71)

where

s12 =
[ρ(σ + ρ12 + σ12 − 1) + ω12 − ω34]

1 + ρ− σ
,

s3 =
[ρ(σ + ρ3 + σ3 − 1) + ω3 − ω124]

1 + ρ− σ
,

s4 =
[ρ(σ + ρ4 + σ4 − 1) + ω4 − ω123]

1 + ρ− σ
,

γ12 = −(s12 − ρ12)(s12 − σ12); γk = −(sk − ρk)(sk − σk), k = 3, 4,

and τ2 is a solution to equation (72)

γ12τ
2
2 + (γ12 + γ4 − γ3)τ2 + γ4 = 0, (72)

while c2 is an arbitrary constant.
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Comparing (69) and (71) we conclude that S1 + S2 = S12 and S3 + S4 = S34, i.e.
⎛

⎝

s1 + s2 −τ1c1

1
c1

(

γ1 +
γ2

1+τ1

)

ρ1 + σ1 + ρ2 + σ2 − s1 − s2

⎞

⎠ =

⎛

⎝

s12 c2
γ12
c2

ρ12 + σ12 − s12

⎞

⎠ , (73)

⎛

⎝

s3 + s4 −c2

1
c2

(

γ4
τ2

+ γ3
1+τ2

)

ρ3 + σ3 + ρ4 + σ4 − s3 − s4

⎞

⎠ =

⎛

⎝

s34 τ1c1
γ34
τ1c1

ρ34 + σ34 − s34

⎞

⎠ . (74)

Now we will show that for c2 = −τ1c1 relations (73) and (74) are satisfied identically. By Proposition 2,

s1 + s2 =
[ρ(σ − 1) + ρ(σ + ρ12 + σ12 − 1) + ω1 + ω2 − ω134 − ω234]

1 + ρ− σ

=
[ρ(σ + ρ12 + σ12 − 1) + ω12 − ω34]

1 + ρ− σ
= s12. (75)

Analogously, it can be shown that s3 + s4 = s34. Now we check that the following relations hold,

1

c1

(

γ1 −
γ2

1 + τ1

)

=
γ12
c2

and
1

c2

(

γ4
τ2

− γ3
1 + τ2

)

=
γ34
τ1c1

,

which, under the condition c2 = −τ1c1, take the forms

γ1 −
γ2

1 + τ1
=

γ12
−τ1

and − γ4
τ2

+
γ3

1 + τ2
= γ34. (76)

From (69) and (71) it follows that the following relations are valid

γ1 −
γ2

1 + τ1
+

γ34
τ1

= 0 and
γ4
τ2

− γ3
1 + τ2

+ γ12 = 0.

Direct calculations, however, show γ12 = γ34. Hence equality (76) is satisfied identically.
Therefore, we get the following representation of matrix S5:

S5 =

⎛

⎝

s1 c

γ1
c ρ1 + σ1 − s1

⎞

⎠+

⎛

⎝

s2 −(1 + τ1)c

− γ2
(1+τ1)c

ρ3 + σ3 − s3

⎞

⎠

+

⎛

⎝

s3 τ1(1 + τ2)c

γ3
τ1(1+τ2)c

ρ3 + σ3 − s3

⎞

⎠+

⎛

⎝

s4 −τ1τ2c

− γ4
τ1τ2c

ρ4 + σ4 − s4

⎞

⎠

= S1 + S2 + S3 + S4, (77)

where τ1, τ2 are solutions to (70), (72), respectively, and c is an arbitrary constant. �
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