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1. INTRODUCTION
Let S be a countable family of subsets of ω. A numbering of S is a surjective map from the

set of natural numbers onto S. Since 1950s, computable numberings for families of c.e. sets have
been extensively studied by computability theorists: for known results, the reader is referred to the
monograph [1] and the surveys [2, 3]. Goncharov and Sorbi [4] started developing the theory of
generalized computable numberings. Their approach initiated a fruitful line of research, which is focused
on numberings in various recursion-theoretic hierarchies — see, e.g., [5–10].

This paper continues the investigations of Rogers semilattices in the analytical hierarchy, developed
in [11–14]. We consider the following problem:

Problem 1. Let n be a non-zero natural number. Are there infinitely many isomorphism types of
Rogers semilattices for Σ1

n-computable families?
We note that for the levels of the arithmetical hierarchy, the following results are known. V’yugin [15]

proved that there are infinitely many pairwise elementarily non-equivalent Rogers semilattices of
computable families. Badaev, Goncharov, and Sorbi [16] proved that for any natural number n ≥ 2,
there are infinitely many pairwise elementarily non-equivalent Rogers semilattices of Σ0

n-computable
families.

The paper [13] established that under the assumption of Projective Determinacy, there are at least
four pairwise non-isomorphic Rogers semilattices for Σ1

n-computable families. In this paper, we obtain
the following partial solution of Problem 1. Under the assumption of Projective Determinacy (PD), there
are infinitely many pairwise elementarily non-equivalent Rogers semilattices of Σ1

n-computable families
(Theorem 2). For n = 1 and n = 2, this result holds without assuming PD (Corollary 1).

The paper is arranged as follows. Section 2 contains the necessary preliminaries. Section 3 proves
the main result. Recall that the Axiom of Dependent Choices (DC) states the following. For any
non-empty set A and any set of pairs P ⊆ A×A, we have

(∀x ∈ A)(∃y ∈ A)P (x, y) ⇒ (∃f : ω → A)(∀n)P (f(n), f(n+ 1)).

Throughout the paper, our underlying set theory is ZF + DC.
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2. PRELIMINARIES

We give the necessary background on Rogers semilattices in the analytical hierarchy. For more
details and bibliographic references, the reader is referred to [13].

A numbering ν is reducible to a numbering μ, denoted by ν ≤ μ, if there is total computable function
f(x) such that ν(k) = μ(f(k)) for all k ∈ ω. As usual, we write ν ≡ μ if ν ≤ μ and μ ≤ ν.

The numbering ν ⊕ μ is defined as follows:

(ν ⊕ μ)(2x) = ν(x), (ν ⊕ μ)(2x+ 1) = μ(x).

It is well-known that for any numbering ξ, the condition (ν ≤ ξ & μ ≤ ξ) holds if and only if (ν ⊕ μ ≤ ξ).
Let Γ be a class of some recursion-theoretic hierarchy (e.g., Γ could be equal to Σ0

1, Σ−1
2 , Σ0

n, or Π1
n).

A numbering ν of a family S ⊂ P (ω) is Γ-computable if the set {〈k, x〉 : x ∈ ν(k)} belongs to the class
Γ. We say that a family S is Γ-computable if it has a Γ-computable numbering.

From now on, we assume that Γ always belongs to {Σ1
n,Π

1
n : n ≥ 1}. By Γ̆ we denote the dual class:

Γ̆ =

{
Σ1
n, if Γ = Π1

n,

Π1
n, if Γ = Σ1

n.

Let S be a Γ-computable family. By ComΓ(S) we denote the set of all Γ-computable numberings of
S. Since the relation ≡ is a congruence on the structure (ComΓ(S);≤,⊕), we use the same symbols ≤
and ⊕ on numberings and on their ≡-equivalence classes.

The quotient structure RΓ(S) := (ComΓ(S)/≡;≤,⊕) is an upper semilattice. We say that RΓ(S) is
the Rogers semilattice of the Γ-computable family S.

The following lemma allows us to proceed from a class Γ to its dual Γ̆, while preserving all the
properties of our Rogers semilattices.

Lemma 1 (see, e.g., Lemma 3.1 of [13]). Let S be a Γ-computable family. Consider the family
Dual(S) = {ω \A : A ∈ S}. Then the family Dual(S) is Γ̆-computable. Furthermore, the Rogers
semilattices RΓ(S) and RΓ̆(Dual(S)) are isomorphic.

By ≤ω we denote the standard ordering of natural numbers. Following [17], we use the following
notations: for a number k ∈ ω,

• E1
2k+1 is the (lightface) class Π1

2k+1, and Υ1
2k+1 is the class Σ1

2k+1;

• E1
2k+2 = Σ1

2k+2 and Υ1
2k+2 = Π1

2k+2.

Tanaka [18] developed recursion theory for subsets ofω, belonging to the levels of analytical hierarchy,
under the assumption of Projective Determinacy (PD). One of his results (given below) will be especially
useful for us.

Let n be a non-zero natural number. A set A ⊆ ω is called E1
n-maximal if A satisfies the following:

(a) A ∈ E1
n, and the complement A = ω \ A is infinite.

(b) For every E1
n set C, either A ∩ C or A \ C is finite.

Theorem 1 (Tanaka, Theorem 3.1 and Corollary 3.4 of [18]). Assume PD. There is a E1
n-maximal

set.
Remark 2.1. Without assuming PD, one can prove the existence of Π1

1-maximal and Σ1
2-maximal

sets: the Π1
1-case is due to Kreisel and Sacks (item (C) on p. 332 in [19]); the Σ1

2-case is due to Tanaka
(see p. 113 of [18] — he does not assume PD for Σ1

2).
The following general fact about numberings will be employed in our proofs:
Lemma 2 (essentially Proposition 3.1 from [20]). Let ν, μ0, and μ1 be arbitrary numberings. If

ν ≤ μ0 ⊕ μ1, then at least one of the following conditions holds:
1. ν ≤ μ0.
2. ν ≤ μ1.
3. There are numberings ν0 and ν1 such that ν0 ≤ μ0, ν1 ≤ μ1, and ν ≡ ν0 ⊕ ν1. Moreover, if the

numberings ν, μ0, and μ1 are E1
n-computable, then both ν0 and ν1 are also E1

n-computable.
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3. THE MAIN RESULT

Theorem 2. Assume PD. Let n be a non-zero natural number. There are Σ1
n-computable

infinite families Si, i ∈ ω, such that the elementary theories of Rogers semilattices RΣ1
n
(Si) are

pairwise different.
Proof. Recall that Badaev, Goncharov, and Sorbi [16] proved that for m ≥ 2, there are infinitely

many pairwise elementarily non-equivalent Rogers semilattices at the Σ0
m-level. We follow the outline

of their proof, while carefully ensuring that their methods are correctly transferred into the setting of the
analytical hierarchy.

We employ Lemma 1, and instead of directly working with the level Σ1
n, we build E1

n-computable
families Si such that the semilattices RE1

n
(Si), i ∈ ω, are pairwise elementarily non-equivalent. From

now on, we use the following notation: for a family S, R1
n(S) := RE1

n
(S).

Theorem 1 implies that we can fix a E1
n-maximal set M .

First, we define auxiliary families Tj , j ≥ 1. Our final goal is the following: We will show that for
i ∈ ω, the desired family Si can be chosen as some Tji.

Let j be a non-zero natural number. For a non-zero l ≤ j, define a computable set

Rl := {j · t+ (l − 1) : t ∈ ω}.
Clearly, the sets Rl, 1 ≤ l ≤ j, form a partition of ω. Fix a total computable, injective function pl(x) such
that range(pl) = Rl. We define:

Ml := pl(M) ∪
⋃
m�=l

Rm, T [l]
j := {Ml ∪ {x} : x �∈ Ml}, Tj :=

⋃
1≤l≤j

T [l]
j .

Note that the families T [l]
j , 1 ≤ l ≤ j, are pairwise disjoint.

Claim 3.1. Each Ml is a E1
n-maximal set.

Proof. Without loss of generality, we may assume that j > 1 and l = 1. Note that x ∈ M1 if and
only if ⎛

⎝x ∈
⋃
m�=1

Rm

⎞
⎠ ∨ ∃y[y ∈ M & p1(y) = x].

Hence, the set M1 is E1
n. Clearly, the complement M1 = p1(M ) is an infinite set.

Let C be an arbitrary E1
n set. Consider a E1

n set

D := p−1
1 (C) = {x ∈ ω : ∃y[y ∈ C & p1(x) = y]}.

Notice that D is also equal to p−1
1 (C ∩R1). Since the set M is E1

n-maximal, one of the following two
cases holds:

(a) M ∩D is finite. Then M1 ∩ C = p1(M ∩D) is also finite.

(b) M \D is finite. Then M1 \ C = p1(M \D) is finite.

Therefore, we deduce that M1 is E1
n-maximal. �

Now we want to show that every Tj is a E1
n-computable family. In order to obtain this, we establish

the following simple fact:
Lemma 3. Let A be an arbitrary E1

n subset of ω such that A �= ω. Then the family V :=
{A ∪ {x} : x �∈ A} is E1

n-computable.
Proof. We define a numbering ξ as follows. Fix an element b �∈ A. For k ∈ ω, we set x ∈ ξ(k) if and

only if (x = k) ∨ (x ∈ A) ∨ [x = b& k ∈ A]. Clearly, the numbering ξ is E1
n-computable, and

ξ(k) =

{
A ∪ {k}, if k �∈ A,

A ∪ {b}, if k ∈ A.
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Therefore, ξ indexes precisely the family V . �

Claim 3.2. For every j ≥ 1, the family Tj is E1
n-computable.

Proof. Clearly, it is sufficient to show that each T [l]
j , where 1 ≤ l ≤ j, has a E1

n-computable
numbering. This fact follows from Lemma 3. �

Now we establish a series of (technical) claims, which help us to witness the desired elementary
differences.

Claim 3.3. Let j ≥ 1 and 1 ≤ l ≤ j. Let ν be an arbitrary E1
n-computable numbering of Tj . Then

the index set I [l]j (ν) := {k ∈ ω : ν(k) ∈ T [l]
j } is Δ1

n.

Proof. Fix two different elements b and c from Ml. Then it is easy to see that

ν(k) �∈ T [l]
j ⇔ b ∈ ν(k) & c ∈ ν(k).

Hence, the set I [l]j (ν) is Υ1
n. On the other hand, the index sets I

[m]
j , 1 ≤ m ≤ j, form a partition of ω.

Therefore, we deduce that I [l]j (ν) ∈ Δ1
n. �

Claim 3.4. Let j ≥ 1 and 1 ≤ l ≤ j. Let ν be an arbitrary E1
n-computable numbering of Tj .

Suppose that ν is equal to ν0 ⊕ ν1, where ν0 and ν1 are arbitrary numberings. Then there is a
number i ∈ {0, 1} such that all but finitely many elements of T [l]

j have νi-indices. Proof. By

Claim 3.3, the index set I [l]j (ν) is Δ1
n. Consider the sets

Q0 := {k : 2k ∈ I
[l]
j (ν)}, Q1 := {k : 2k + 1 ∈ I

[l]
j (ν)}.

Clearly, each Qi is Δ1
n, and furthermore, Qi is equal to I

[l]
j (νi).

Consider the sets Vi, i ∈ {0, 1}, defined as follows:

x ∈ Vi ⇔ (x ∈ Ml) ∨ ∃k[k ∈ Qi & x ∈ νi(k)].

It is easy to see that each νi is a E1
n-computable numbering, and hence, the sets Vi are E1

n. Clearly,
Vi ⊇ Ml.

Since every set from T [l]
j has a (ν0 ⊕ ν1)-index, we deduce that V0 ∪ V1 = ω. This fact and the E1

n-
maximality of Ml together imply that there is at least one Vi with Vi =

∗ ω. Thus, only finitely many sets

Ml ∪ {x} from T [l]
j (namely, precisely those with x ∈ ω \ Vi) do not have νi-indices. �

The key idea behind the desired elementary differences is the following: one needs to carefully work
with minimal pairs.

Definition 1 (see p. 145 of [16]). Let V be a E1
n-computable family. We say that two E1

n-
computable numberings ν0 and ν1 of V induce a minimal pair inside R1

n(V) if there is no E1
n-

computable numbering μ of V with μ ≤ ν0 and μ ≤ ν1.
The next lemma provides a sufficient condition, which allows us to find two E1

n-computable number-
ings of Tj that do not induce a minimal pair.

From now on, we treat a binary string σ ∈ 2<ω of a non-zero length m as a tuple (σ(1), σ(2), . . . ,
σ(m)). The length of σ is denoted by |σ|.

Lemma 4. Let j ≥ 1, m ≥ j, and let γ
[0]
1 , γ

[1]
1 , γ

[0]
2 , γ

[1]
2 , . . . , γ

[0]
m+1, γ

[1]
m+1 be E1

n-computable

numberings of the family Tj . If γ
[0]
1 ⊕ γ

[1]
1 ≡ γ

[0]
2 ⊕ γ

[1]
2 ≡ · · · ≡ γ

[0]
m+1 ⊕ γ

[1]
m+1, then there are a

E1
n-computable numbering δ of Tj and a binary string σ such that |σ| = m, δ ≤ γ

[0]
m+1, and

δ ≤ γ
[σ(1)]
1 ⊕ γ

[σ(2)]
2 ⊕ · · · ⊕ γ

[σ(m)]
m .

Proof. First, note the following: If the numbering γ
[0]
m+1 is reducible to some γ

[ρ]
i , where 1 ≤ i ≤ m

and ρ ∈ {0, 1}, then one can just choose δ := γ
[0]
m+1, and this finishes the proof. Hence, without loss of

generality, we may assume that γ[0]m+1 is not reducible to any of these γ
[ρ]
i .
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For each non-zero number i ≤ j, we will choose the value σ(i) ∈ {0, 1} and a numbering δ
[σ(i)]
i of

some subfamily of Tj such that δ[σ(i)]i ≤ γ
[σ(i)]
i , δ[σ(i)]i ≤ γ

[0]
m+1, and the family

{A ∈ T [i]
j : A does not have a δ

[σ(i)]
i -index}

is finite. The search of the desired objects proceeds as follows. Since γ[0]m+1 ≤ γ
[0]
i ⊕ γ

[1]
i , by Lemma 2, we

deduce that γ[0]m+1 = δ
[0]
i ⊕ δ

[1]
i , where δ

[ρ]
i ≤ γ

[ρ]
i . Claim 3.4 implies that there is at least one ρi ∈ {0, 1}

such that all but finitely many elements from T [i]
j have δ

[ρi]
i -indices. We choose one such ρi, and define

σ(i) := ρi.

The choice of δ[σ(i)]i , 1 ≤ i ≤ j, implies that

δ∗ := δ
[σ(0)]
0 ⊕ δ

[σ(1)]
1 ⊕ · · · ⊕ δ

[σ(j)]
j ≤ γ

[0]
m+1, δ∗ ≤ γ

[σ(0)]
0 ⊕ γ

[σ(1)]
1 ⊕ · · · ⊕ γ

[σ(j)]
j . (1)

If δ∗ indexes all the family Tj , then we set δ := δ∗. Otherwise, there are only finitely many sets
B0, B1, . . . , Br from Tj , which do not have δ∗-indices. We put

δ′(k) :=

{
Bk, if k ≤ r,

B0, if k > r;
δ := δ∗ ⊕ δ′.

It is not hard to see that we still have δ ≤ γ
[0]
m+1 and δ ≤ γ

[σ(0)]
0 ⊕ γ

[σ(1)]
1 ⊕ · · · ⊕ γ

[σ(j)]
j . Thus, it is evident

that for a number i with j < i ≤ m, one can choose the value σ(i) in an arbitrary way. Lemma 4 is proved.
�

Now we show how to obtain minimal pairs inside R1
n(T

[l]
j ), where j ≥ 1 and 1 ≤ l ≤ j.

Fix two different numbers a[0] and a[1] from M . Recall that pl is a computable bijection from ω onto
Rl. For ρ ∈ {0, 1} and k ∈ ω, set

α
[ρ]
l (k) :=

{
Ml ∪ {pl(a[ρ])}, if k ∈ M,

Ml ∪ {pl(k)}, if k �∈ M.

An argument similar to that of Lemma 3 shows that α[ρ]
l is a E1

n-computable numbering of the family

T [l]
j .

Claim 3.5. The numberings α
[0]
l and α

[1]
l induce a minimal pair inside R1

n(T
[l]
j ).

Proof. Towards a contradiction, assume that ξ is a numbering of T [l]
j such that ξ ≤ α

[0]
l and ξ ≤ α

[1]
l .

For ρ ∈ {0, 1}, fix a computable function fρ which reduces ξ to α
[ρ]
l .

For an arbitrary number k, the following holds:

1. If f0(k) = f1(k), then f0(k) �∈ M . Indeed, assume that f0(k) ∈ M , then

Ml ∪ {pl(a[0])} = α
[0]
l (f0(k)) = ξ(k) = α

[1]
l (f1(k)) = Ml ∪ {pl(a[1])},

which contradicts with a[0] �= a[1].

2. If ξ(k) �= Ml ∪ {pl(a[0])} and ξ(k) �= Ml ∪ {pl(a[1])}, then f0(k) = f1(k). Indeed, it is clear that
both f0(k) and f1(k) do not belong to M . Hence,

Ml ∪ {pl(f0(k))} = α
[0]
l (f0(k)) = ξ(k) = α

[1]
l (f1(k)) = Ml ∪ {pl(f1(k))}.

Since the function pl is injective, we deduce f0(k) = f1(k).
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These two facts together imply that the set W := {y ∈ ω : ∃k(f0(k) = f1(k) = y)} is an infinite c.e.

subset of M . Clearly, this contradicts the E1
n-maximality of M . Therefore, α[0]

l and α
[1]
l induce a minimal

pair. �

The next lemma is the last important ingredient of the proof: it gives a sufficient condition for having
a lot of minimal pairs inside R1

n(Tj). Before giving the lemma, for the sake of completeness, we recall a
simple combinatorial fact:

Claim 3.6. Suppose that j ≥ 2N+k, where N ≥ 1 and k ≥ 0. Then there are subsets F1, F2, . . . ,
FN of the set J := {1, 2, . . . , j} such that for any binary string σ of length N , we have

card(F
σ(1)
1 ∩ F

σ(2)
2 ∩ · · · ∩ F

σ(N)
N ) ≥ 2k.

Here F 1 := F and F 0 := J \ F .

Proof. It is sufficient to give a proof only for j = 2N+k. Then J can be identified with the set J∗ which
contains all binary strings of length N + k. For a non-zero i ≤ N , we put Fi := {τ ∈ J∗ : τ(i) = 1}. �

Lemma 5. Let m ≥ 1 and j ≥ 22
m+m+1. There are E1

n-computable numberings β
[0]
1 , β

[1]
1 , β

[0]
2 ,

β
[1]
2 , . . . , β

[0]
2m , β

[1]
2m of the family Tj with the following properties:

(A) β
[0]
1 ⊕ β

[1]
1 ≡ β

[0]
2 ⊕ β

[1]
2 ≡ · · · ≡ β

[0]
2m ⊕ β

[1]
2m .

(B) For any non-zero i ≤ 2m, the numberingsβ[0]
i and β

[1]
i induce a minimal pair insideR1

n(Tj).
(C) Consider arbitrary non-zero number t ≤ m, set I = {i1 <ω i2 <ω · · · <ω it} ⊂ {1, 2, . . . , 2m},

and binary string σ with |σ| = t. Then for any ρ ∈ {0, 1} and any i ∈ {1, 2, . . . , 2m} \ I, the

numberings β
[ρ]
i and β

[σ(1)]
i1

⊕ β
[σ(2)]
i2

⊕ · · · ⊕ β
[σ(t)]
it

induce a minimal pair inside R1
n(Tj).

Proof. Let J := {1, 2, . . . , j}. By Claim 3.6, we can fix subsets F1, F2, . . . , F2m of the set J such that
for any binary string σ of length 2m, we have

card(F
σ(1)
1 ∩ F

σ(2)
2 ∩ · · · ∩ F

σ(2m)
2m ) ≥ 2m+1.

For every non-zero i ≤ 2m and every ρ ∈ {0, 1}, we define a numbering

β
[ρ]
i :=

⎛
⎝⊕

l∈F 0
i

α
[1−ρ]
l

⎞
⎠⊕

⎛
⎝⊕

l∈F 1
i

α
[ρ]
l

⎞
⎠ , (2)

where the numberings α
[0]
l and α

[1]
l are the same as in Claim 3.5. We show that the numberings β

[ρ]
i

satisfy the lemma.

(A) Clearly, for every non-zero i ≤ 2m, we have β[0]
i ⊕ β

[1]
i ≡

⊕
1≤l≤j(α

[0]
l ⊕ α

[1]
l ).

(B) Towards a contradiction, assume that there is a numbering ξ of the family Tj with ξ ≤ β
[0]
i and

ξ ≤ β
[1]
i . Without loss of generality, we may assume that the number 1 belongs to Fi. Hence, we have

α
[0]
1 ≤ β

[0]
i and α

[1]
1 ≤ β

[1]
i .

Recall that the families T [l]
j , 1 ≤ l ≤ j, are disjoint, hence ξ � α

[ρ]
l for all l and ρ. Since ξ ≤ β

[1]
i , by

Lemma 2, there are numberings ξl, 1 ≤ l ≤ j, such that ξl indexes precisely the family T [l]
j ,

ξ ≡ ξ1 ⊕ ξ2 ⊕ · · · ⊕ ξj,

and ξl is reducible to an appropriate α
[ρ]
l taken from the decomposition of β[1]

i (as dictated by(1)). In

particular, ξ1 ≤ α
[1]
1 .

On the other hand, the reducibility ξ ≤ β
[0]
i implies that ξ1 is reducible to α

[0]
1 . Thus, the numberings

α
[0]
1 and α

[1]
1 do not induce a minimal pair, which contradicts Claim 3.5.
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(C) Assume, towards a contradiction, that there is a numbering ξ of Tj such that ξ ≤ β
[ρ]
i and

ξ ≤ β
[σ(1)]
i1

⊕ β
[σ(2)]
i2

⊕ · · · ⊕ β
[σ(t)]
it

. As in the proof of (B), we can choose a decomposition

ξ ≡ ξ1 ⊕ ξ2 ⊕ · · · ⊕ ξj,

where each ξl indexes T [l]
j , and ξl is reducible to an appropriate α[ε]

l , recovered from (1) for the numbering

β
[ρ]
i .

Since t+ 1 ≤ m+ 1 ≤ 2m, there is a number l∗ ∈ F ρ
i ∩ F

1−σ(1)
i1

∩ F
1−σ(2)
i2

∩ · · · ∩ F
1−σ(t)
it

. Since

l∗ ∈ F ρ
i , we deduce that the numbering α

[1]
l∗ occurs in the decomposition of β[ρ]

i provided by (1), and the

numbering α
[0]
l∗ does not occur there. Hence, ξl∗ is reducible to α

[1]
l∗ .

Similarly, for each non-zero p ≤ t, only α[0]
l∗ (but not α[1]

l∗ ) occurs in the corresponding decomposition

of β[σ(p)]
ip

. Since ξ is reducible to β
[σ(1)]
i1

⊕ · · · ⊕ β
[σ(t)]
it

, we deduce that ξl∗ is reducible to α
[0]
l∗ . Therefore,

α
[0]
l∗ and α

[1]
l∗ do not induce a mininal pair, which contradicts Claim 3.5. Lemma 5 is proved. �

We proceed to the finishing touches of the proof. Define a computable function h(x) as follows:

h(0) := 1, h(e+ 1) := 22
h(e)+h(e)+1.

We show that for the families Si := Th(i), i ∈ ω, their Rogers E1
n-semilattices have pairwise different

elementary theories.
Suppose that i < e. By Lemma 4, the structure R1

n(Si) satisfies the following property: for arbitrary

γ
[0]
1 , γ[1]1 , γ[0]2 , γ[1]2 , . . . , γ[0]h(i)+1, γ[1]h(i)+1 with γ

[0]
1 ⊕ γ

[1]
1 ≡ γ

[0]
2 ⊕ γ

[1]
2 ≡ · · · ≡ γ

[0]
h(i)+1 ⊕ γ

[1]
h(i)+1, we can find

a binary string σ such that |σ| = h(i), and the numberings γ
[0]
h(i)+1 and γ

[σ(1)]
1 ⊕ γ

[σ(2)]
2 ⊕ · · · ⊕ γ

[σ(h(i))]
h(i)

do not induce a minimal pair.

On the other hand, since h(e) ≥ h(i+ 1) = 22
h(i)+h(i)+1, by Lemma 5, this property fails inside

R1
n(Se). This concludes the proof of Theorem 2. �

Note that Remark 2.1 implies the following
Corollary 1. For the classes Σ1

1 and Σ1
2, Theorem 2 holds without assuming PD.
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