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Abstract—In this paper we study a boundary value problem with the Poincare–Tricomi condition
for a degenerate partial differential equation of elliptic-hyperbolic type of the second kind. In the
hyperbolic part of a degenerate mixed differential equation of the second kind the line of degeneracy
is a characteristic. For this type of differential equations a class of generalized solutions is introduced
in the characteristic triangle. Using the properties of generalized solutions, the modified Cauchy and
Dirichlet problems are studied. The solutions of these problems are found in the convenient form for
further investigations. A new method has been developed for a differential equation of mixed type of
the second kind, based on energy integrals. Using this method, the uniqueness of the considering
problem is proved. The existence of a solution of the considering problem reduces to investigation of
a singular integral equation and the unique solvability of this problem is proved by the Carleman–
Vekua regularization method.
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1. INTRODUCTION

Degenerate partial differential equations occupy one of the central places in the theory of general
partial differential equations and have numerous applications in various branches of science and
technology. Partial differential equations of mixed type with degenerations have been systematically
studied since the middle of the last century after the well-known works of F. I. Frankl, which are reflected
in [1]. He showed applications of degenerate mixed type differential equations in solving problems of
transonic and supersonic gas dynamics. Later, another applications were find of degenerate differential
equations of mixed type in other fields of science and technology.

I. N. Vekua in [2] showed the importance of studying mixed-type differential equations in solving
problems of the theory of infinitesimal bending of surfaces. The problem of the outflow of a supersonic
jet from a vessel with flat walls reduces to the Tricomi problem for the Chaplygin equation. There are
a number of works in which the problems of Tricomi, Gellerstedt, and Bitsadze are studied. It is easy
to meet works, where new correct problems with bias are posed for equations of elliptic-hyperbolic and
parabolic-hyperbolic types of the first kind, for which the line of degeneration is not a characteristic
[3–19].
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A feature of degenerate hyperbolic differential equations is that for this kind of equations the Cauchy
problem with initial condition on the line of parabolic degeneracy does not always hold. For example,
the Cauchy problem in the usual formulation may turn out to be unsolvable, if the hyperbolic equations
degenerate along a line that is simultaneously a characteristic. Such type of differential equations are
called degenerate equations of the second kind.

Note that the solution of the Cauchy problem with initial condition

lim
y→0−

u(x, y) = τ(x), 0 ≤ x ≤ 1, lim
y→0−

∂u(x, y)

∂y
= ν(x), 0 < x < 1

for a differential equation

(−y)m uxx − uyy = 0, −1 < m < 0 (1)

on the negative half-axis y < 0 has a representation [19, pages 259–260]:

u (x, y) = γ2

1∫

0

τ (z) tβ (1− t)β dt+
2γ2

(1 + 2β) (m+ 2)
(−y)

m+2
2

1∫

0

τ ′ (z) tβ (1− t)β (2t− 1) dt

+ [2 (1− 2β)]1−2β γ1y

1∫

0

ν (z) t−β (1− t)−β dt, (2)

where −1 < 2β < 0 for −1 < m < 0 and

2β =
m

m+ 2
, γ1 = [2 (1− 2β)]2β−1 Γ (2− 2β)

Γ2 (1− β)
,

γ2 =
Γ (2 + 2β)

Γ2 (1 + β)
, z = x+

2

m+ 2
(−y)

m+2
2 (2t− 1) .

Definition 1. The function u (x, y) (represented by (2)) on the negative half-axis y < 0 is called
a generalized solution from the class R2 to the Cauchy problem for differential equation (1), if

τ (z) is representable in the following integral form τ (z) =
z∫
0

(z − t)−2β T (t) dt, where ν (z) and

T (z) are continuous and integrable functions on the interval (0, 1).
In [20] a generalized solution was obtained from the class R2 to the Cauchy problem for a hyperbolic

differential equation of the second kind. This generalized solution has a form

u (ξ, η) =

ξ∫

0

(η − t)−β (ξ − t)−β T (t) dt+

η∫

ξ

(η − t)−β (t− ξ)−β N (t) dt,

where

ξ = x− 2

m+ 2
(−y)

m+2
2 , η = x+

2

m+ 2
(−y)

m+2
2 , N (t) =

1

2 cos πβ
T (t)− γ1ν (t) .

Using this solution representation form, in [21–27] local and nonlocal boundary value problems for
mixed differential equations of the second kind were studied. It is proved that such type of problems
arise in studying some problems of mathematical biology [28] and physics [29].

In [30] for the differential equation uxx + yuyy +
(
α+ 1

2

)
uy = 0 built a special class of solutions in

the case, when y < 0, α ∈
(
−1

2 , 0
)
∪
(
0, 12

)
.

In the hyperbolic part of the mixed domain, solvability of local and nonlocal boundary value problems
are studied in the class R2, and in the elliptic part of the domain the questions of classical solvability
are studied. These problems are equivalently reduced to singular integral equations. Then by the
regularization method they are reduced to study Fredholm integral equations of the second kind.
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Note that boundary value problems for mixed differential and integro-differential equations in rectan-
gular domains were studied in [31–34]. Boundary value problems with the Poincare–Tricomi condition
for degenerate differential equations of elliptic and elliptic-hyperbolic types of the second kind have been
studied, relatively little. We indicate here only the papers [35–36].

In this presented our paper by the aid of properties of generalized functions we study a boundary
value problem with the Poincare–Tricomi condition for an elliptic-hyperbolic differential equation of the
second kind.

2. FORMULATION OF THE PROBLEM

We consider the following mixed differential equation

sgny |y|m uxx + uyy = 0, −1 < m < 0 (3)

in the domain D = D1 ∪D2, where D1 is domain bounded by a curve σ for y > 0 with the end
points A(0, 0), B(1, 0) and with segment AB(y = 0), D2 is domain bounded by segment AB and by
characteristics

AC : x− 2

m+ 2
(−y)

m+2
2 = 0, BC : x+

2

m+ 2
(−y)

m+2
2 = 1.

We introduce the notations

J = {(x, y) : 0 < x < 1, y = 0} , ∂D = �σ ∪AB, 2β =
m

m+ 2

for

−1 < 2β < 0. (4)

ProblemPTPTPT . Find the function u(x, y), for which are true the following properties:

1) u(x, y) ∈ C
(
D
)
∪ C1 (D ∪ σ ∪ J), there ux can goes to infinity of order less than one units at the

point A (0, 0) and uy can goes to infinity of order less than −2β at the point B (1, 0);

2) function u(x, y) ∈ C2
(
D1

)
is a regular solution of the differential equation (3) in the domain D1,

and is generalized solution from the class R2 in the domain D2;
3) is fulfilled the gluing condition uy(x,−0) = −uy(x,+0);

4) u(x, y) satisfies the boundary value conditions

{δ(s)As[u] + ρ(s)u}|σ = ϕ(s), 0 < s < l, As [u] = ym
dy

ds

∂u

∂x
− dx

ds

∂u

∂y
, (5)

u(x, y)|AC = ψ(x), 0 ≤ x ≤ 1

2
, (6)

where dx
ds = − cos(n, y), dy

ds = cos(n, x), n is external normal to the curve σ, l is a length of the entire
curve σ, s is the arc length of the curve σ, measured from point B (1, 0); δ(s), ρ(s), ϕ(s), ψ(x) are given
sufficiently smooth functions and ψ(x) ∈ C1

[
0, 12

]
∩ C2

(
0; 12

)
, ϕ(l) = ψ(0) = 0.

We note that if we set δ(s) = 0 (ρ(s) = 0), then the problem PTcoincided with the problem T (TN )
for elliptic-hyperbolic equation of the first kind (see [37, pp. 177–185]). Therefore, we will assume in our
work that δ(s) �= 0, ρ(s) �= 0.

We assume that the curve σ satisfies the following conditions:
1) functions x(s) and y(s) are parametric equations of curve σ, have continuous derivatives x′(s),

y′(s) (these derivatives are nonzero simultaneously) and have second derivatives, which satisfy the
Hölder condition of the order κ (0 < κ < 1) on the segment 0 ≤ s ≤ l;

2) in the neighborhood of the end points of the curve σ the inequality is true:∣∣∣∣dxds
∣∣∣∣ ≤ Cym+1(s), x(l) = y(0) = 0, x(0) = 1, y(l) = 0, C = const. (7)
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3. UNIQUENESS OF THE SOLUTION OF THE PROBLEM PT

Theorem 1. If (4) and the following conditions are fulfilled

δ(s)ρ(s) ≥ 0, 0 ≤ s ≤ l, (8)

lim
y→0

(−y)
m
2 u2(1, y) = 0. (9)

Then the solution of the problem PT is unique in the domain D.
Proof. We prove the theorem by the method of energy integrals. Let u (x, y) be a twice continuously

differentiable solution of equation (3) in the domain

D
ε1,ε2 ⊂ D, Dε1,ε2 = Dε1,ε2

1 ∪Dε1,ε2
2 ,

where Dε1,ε2
1 is domain with border

∂Dε1,ε2
1 = Aε1

ε2B
ε1
ε2 ∪ σε1

(
Aε1

ε2B
ε1
ε2 : y = ε2

)
strictly lying in the domain D1, while Dε1,ε2

2 is domain bounded with lines

Aε1
ε2B

ε1
ε2 : y = −ε2, Aε1

ε2Cε1 : x− 2

m+ 2
(−y)

m+2
2 = ε1, Bε1

ε2Cε1 : x+
2

m+ 2
(−y)

m+2
2 = 1− ε1,

where ε1, ε2 are small positive numbers.
In the domain D2 differential equation (3) takes the form (−y)muxx − uyy = 0. It is easy to check

that the following identity holds:

u [(−y)muxx − uyy] =
∂

∂x
[(−y)muux]−

∂

∂y
[uuy]− (−y)mu2x + u2y.

Integrating this identity over the domain Dε1,ε2
2 , we derive

0 =

∫∫

D
ε1,ε2
2

u [(−y)muxx − uyy] dxdy =

∫∫

D
ε1,ε2
2

{
∂

∂x
[(−y)muux]−

∂

∂y
[uuy]

}
dxdy

+

∫∫

D
ε1,ε2
2

[
u2y − (−y)mu2x

]
dxdy. (10)

Applying Green formula [35] to the first integral on the right-hand side of (10), we obtain

0 =

∫∫

D
ε1,ε2
2

u [(−y)muxx − uyy] dxdy =

∫

A
ε1
ε2

Cε1∪CB
ε1
ε2

∪Bε1
ε2

A
ε1
ε2

u [(−y)muxdy + uydx]

+

∫∫

D
ε1,ε2
2

[
u2y − (−y)mu2x

]
dxdy.

Calculating the first integral on the right-hand side of the last equality, taking into account the
condition (6) on the characteristic AC, we obtain∫

A
ε1
ε2

Cε1∪CB
ε1
ε2

∪Bε1
ε2

A
ε1
ε2

u [(−y)muxdy + uydx] =

∫

A
ε1
ε2

Cε1

u [(−y)muxdy + uydx]

+

∫

CB
ε1
ε2

u [(−y)muxdy + uydx] +

∫

B
ε1
ε2

A
ε1
ε2

u [(−y)muxdy + uydx]

=

B
ε1
ε2∫

Cε1

u [(−y)muxdy + uydx] +

ε1∫

1−ε1

u(x,−ε2)uy(x, ε2)dx.
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Consequently, we have

B
ε1
ε2∫

Cε1

u [(−y)muxdy + uydx] +

ε1∫

1−ε1

u(x,−ε2)uy(x, ε2)dx+

∫∫

D
ε1,ε2
2

[
(−y)mu2x + u2y

]
dxdy = 0.

Passing to the limits as ε1 → 0 and ε2 → 0, taking the gluing condition uy(x,−0) = −uy(x,+0) into
account we obtain

1∫

0

τ(x)ν(x)dx = −
∫∫

D2

[
u2y − (−y)mu2x

]
dxdy −

B∫

C

u [(−y)muxdy + uydx] .

On the characteristic BC we have dx = (−y)
m
2 dy. Therefore we have

B∫

C

u [(−y)muxdy + uydx] =

B∫

C

(−y)
m
2 u [uxdx+ uydy] =

B∫

C

(−y)
m
2 udy. (11)

Integrating in parts the last integral of (11) with conditions u|AC = 0 and (9), we obtain

B∫

C

(−y)
m
2 udu =

m

4

B∫

C

(−y)
m−2

2 u2dy.

For −1 < m < 0 from (11) yields
B∫

C

u [(−y)muxdy + uydx] =

B∫

C

(−y)
m
2 udu =

m

4

B∫

C

(−y)
m−2

2 u2du ≤ 0. (12)

Now we show that the first integral on the right-hand side of equality (10) is not positive. Passing to
characteristic variables

ξ = x− 2

m+ 2
(−y)

m+2
2 , η = x+

2

m+ 2
(−y)

m+2
2 ,

we obtain ∫∫

D2

[
u2y − (−y)mu2x

]
dxdy = −2

∫∫

Δ1

(
m+ 2

4

)m
2

(η − ξ)
m

m+2 uξuηdξdη, (13)

where Δ1 = {(ξ, η) : 0 < ξ < 1, ξ < η < 1} is image of the domain D2 in coordinates (ξ, η).

In domain Δ1 the differential equation (3) takes the form uξη − β
η−ξ (uη − uξ) = 0. Multiplying both

sides of this equation by uη, we have

uξuη = u2η −
η − ξ

β
uηuξη. (14)

Substitute (14) in (13). As a result yields
∫∫

D2

[
u2y − (−y)mu2x

]
dxdy = −2

(
m+ 2

4

) m
m+2

×

⎡
⎣
∫∫

Δ1

(η − ξ)
m

m+2u2ηdξdη − 1

β

∫∫

Δ1

(η − ξ)
2(m+1)
m+2 uηuξηdξdη

⎤
⎦ .
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Integrating the last integral in parts, we have∫∫

D2

[
u2y − (−y)mu2x

]
dxdy =

2(m+ 2)

m

(
m+ 2

4

) m
m+2

×

⎡
⎣
∫∫

Δ1

(η − ξ)
m

m+2u2ηdξdη + (η − ξ)
2(m+1)
m+2 u2η

∣∣∣∣
η=ξ

⎤
⎦ .

Since the last term in the square bracket is zero for η = ξ, then we obtain∫∫

D2

[
u2y − (−y)mu2x

]
dxdy =

2(m+ 2)

m

(
m+ 2

4

) m
m+2

∫∫

Δ1

(η − ξ)
m

m+2u2ηdξdη.

Here by virtue of ∫∫

Δ1

(η − ξ)
m

m+2u2ηdξdη ≥ 0

for −1 < m < 0 yields ∫∫

D2

[
u2y − (−y)mu2x

]
dxdy ≤ 0. (15)

By virtue of inequalities (12) and (15), from (10) we obtain
1∫

0

τ(x)ν(x)dx ≥ 0. (16)

Differential equation (3) in domain D1 has the form ymuxx + uyy = 0. Integrating the following
identity

u [ymuxx + uyy] =
∂

∂x
[ymuux] +

∂

∂y
[uuy]− ymu2x − u2y

over the domain Dε1,ε2
1 ⊂ D1, we derive

0 =

∫∫

D
ε1,ε2
1

u [ymuxx + uyy] dxdy =

∫∫

D
ε1,ε2
1

{
∂

∂x
[ymuux] +

∂

∂y
[uuy]

}
dxdy −

∫∫

D
ε1,ε2
1

[
ymu2x + u2y

]
dxdy.

Applying Green formula [35] to the first integral on the right-hand side of the last equality, we obtain

0 =

∫∫

D
ε1,ε2
1

u [ymuxx + uyy] dxdy = −
∫∫

D
ε1,ε2
1

[
ymu2x + u2y

]
dxdy +

∫

∂D
ε1,ε2
1

u [ymuxdy − uydx] .

Hence by virtue of dy = 0 on AB and dy = cos(n, x)ds, dx = − cos(n, y)ds, we obtain

0 = −
∫∫

D
ε1,ε2
1

[
ymu2x + u2y

]
dxdy −

x2∫

x1

u(x, ε2)uy(x, ε2)dx+

∫

σε1

uAs[u]ds, (17)

where x1, x2 are abscissas of the intersection points of line y = ε2 with curve σε1 .
By virtue of condition 1) of the problemPT , zero valuesϕ(s) ≡ b(x) ≡ 0 and (5), from (17) as ε1 → 0,

ε2 → 0 we obtain
∫∫

D1

[
ymu2x + u2y

]
dxdy +

1∫

0

τ(x)ν(x)dx +

∫

σ

δ(s)ρ(s)

δ2(s)
u2ds = 0. (18)
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By virtue of inequalities (8) and (16), from (18) implies that ux = uy = 0 in D1, i.e. u(x, y) = const
for all (x, y) ∈ D1. Since, each term of equality (18) is non-negative, then u(x, y) = 0 on σ. By the
aid of the Hopf principle [19, pages 44–48], we conclude that u(x, y) ≡ 0 in D̄1 for δ(s) �= 0. Now
from the uniqueness of the solution of Cauchy problem it follows that u(x, y) ≡ 0 in D̄2. Consequently,
u(x, y) ≡ 0 in D. This is ended the proof of uniqueness of the solution of the problem PT . Theorem 1 is
proved. �

Remark. Uniqueness of the solution of the problem PT for ρ(s) �= 0, ∀s ∈ [0, l] be proved by the
principle of extremum.

4. BASIC FUNCTIONAL RELATIONSHIPS

We introduce the following notations:

u (x, 0) = τ (x) , (x, 0) ∈ J, (19)

lim
y→−0

∂u (x, y)

∂y
= ν− (x) , lim

y→+0

∂u (x, y)

∂y
= ν+ (x) , (x, 0) ∈ J. (20)

In studying this problem PT an important role are played functional relations between ν± (x) and
τ (x), which were bring from elliptical and hyperbolic parts of the domain D.

A generalized solution from class R2 to the Cauchy problem with conditions (19), (20) for differential
equation (3) in the domain D2 is given by the formula [37, p. 230, form. 27.5]:

u (ξ, η) =

ξ∫

0

(η − t)−β (ξ − t)−β T (t) dt+

η∫

ξ

(η − t)−β (t− ξ)−β N (t) dt, (21)

where

ξ = x− 2

m+ 2
(−y)

m+2
2 , η = x+

2

m+ 2
(−y)

m+2
2 , γ2 = [2(1− 2β)]2β−1 Γ(2− 2β)

Γ2(1− β)
, (22)

N (t) =
T (t)

2 cos πβ
− γ2ν

− (t) , (23)

τ (x) =

x∫

0

(x− t)−2β T (t) dt, (24)

T (x) and ν− (x) are functions of continuous in (0, 1) and integrable on [0, 1], τ (x) is zero of the order
not less then −2β as x → 0. Putting ξ = 0 in (21) and taking into account (6), (22), we obtain

ψ(η) =

η∫

0

N(ζ)ζ−β(η − ζ)−βdζ.

This is first kind Volterra integral equation with respect to N(ζ). We set

Φ(ζ) = N(ζ)ζ−β. (25)

Then we have
η∫

0

Φ(ζ)(η − ζ)−βdζ = ψ(η). (26)

We apply a fractional order differential operator Dα
0xf(x) to (26):

Dβ−1
0η Φ(η) =

1

Γ(1− β)
ψ(η). (27)

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 42 No. 3 2021



670 YULDASHEV et al.

We apply the differential operator D1−β
0η to both sides of equation (27) taking into account

D1−β
0η Dβ−1

0η Φ (η) = Φ (η). Then we have

Φ(η) =
1

Γ(1− β)
D1−β

0η ψ(η). (28)

By direct verification it is easy to check that function (28) is a solution of the equation (26). Taking
into account (25) and (28) from (23) we obtain the first functional relation between T (x) and ν−(x),
which are bringing from the D2 to the domain J :

T (ζ) = γ3ν
−(ζ) +

2 cos πβ

Γ(1− β)
ζβD1−β

0η ψ(η), (29)

where γ3 = 2γ2 cos πβ.
In the positive half-plane y > 0 the differential equation (3) takes the form

ymuxx + uyy = 0, −1 < m < 0. (30)

Consider the following auxiliary problem.
Problem PTPTPT+. Find in domain D1 a solution u(x, y) ∈ C(D1) ∩ C1

(
D1 ∪ σ ∪ J

)
∩ C2

(
D1

)
of the

equation (30), satisfying to the boundary value conditions (5) and (19).
Solution of the problem PT+ with conditions (5) and (19) for differential equation (3) in domain D1

exists, unique and has the form (see [37, page 179]):

u(x, y) =

1∫

0

τ(ξ)
∂

∂η
G2(ξ, 0;x, y)dξ +

l∫

0

ϕ(s)

δ(s)
G2(ξ, η;x, y)ds, (31)

where G2(ξ, η;x, y) is Green function of the problem PT+ for equation (3) and

G2(ξ, η;x, y) = G02(ξ, η;x, y) +H2(ξ, η;x, y),

G02(ξ, η;x, y) is the Green function of the problem PT+ for equation (3) in normal domain D0, which
bounded with segment AB and normal curve

σ0 :

(
x− 1

2

)2

+
4

(m+ 2)2
ym+2 =

1

4
,

H2 (ξ, η;x, y) = G2 (ξ, η;x, y) −G02 (ξ, η;x, y)

=

l∫

0

λ2(s; ξ, η)

{
As [G02 (ξ (s) , η (s) ;x, y)] +

ρ(s)

δ(s)
G02 (ξ (s) , η (s) ;x, y)

}
ds, (32)

λ2 (s; ξ, η) is solution of the integral equation

λ2 (s; ξ, η) + 2

l∫

0

λ2 (t; ξ, η) {As [q2 (ξ (t) , η (t) ;x(s), y(s))]

+
ρ(s)

δ(s)
q2 (ξ (t) , η (t) ;x(s), y(s))

}
dt = −2q2(ξ(s), η(s); ξ, η),

q2 (x, y, x0, y0) is fundamental solution of differential equation (3) and

q2 (x, y, x0, y0) = k2

(
4

m+ 2

)4β−2 (
r21
)−β

(1− σ)1−2β F (1− β, 1 − β, 2 − 2β; 1− σ) , (33)

r2

r21

⎫⎬
⎭ = (x− x0)

2 +
4

(m+ 2)2

(
y

m+2
2 ∓ y

m+2
2

0

)2

,

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 42 No. 3 2021



ON SOLVABILITY OF A POINCARE–TRICOMI TYPE PROBLEM 671

σ =
r2

r21
, β =

m

2(m+ 2)
< 0, k2 =

1

4π

(
4

m+ 2

)2−2β Γ2 (1− β)

Γ (2− 2β)
,

F (a, b, c; z) is Gauss hypergeometric function.
We differentiate (31) with respect to y. Then taking (32) and (33) into account as y → 0 we obtain

the functional relation between τ(x) and ν(x), which are bringing from the domain D1 to J :

ν(x) = k2

1∫

0

|t− x|2β−2 τ(t)dt− k2

1∫

0

τ(t)dt

(t+ x− 2tx)2−2β

+

1∫

0

τ(t)
∂2H2(t, 0;x, 0)

∂η∂y
dt+

l∫

0

χ(s)
∂q2(t, η;x, 0)

∂y
ds, (34)

where χ(s) is solution of the integral equation

χ(s) + 2

l∫

0

χ(t)

{
As [q2 (ξ(t), η(t);x(s), y(s))] +

ρ(s)

δ(s)
q2 (ξ(t), η(t);x(s), y(s))

}
dt =

2ϕ(s)

δ(s)
.

Substituting (24) into 34 and taking into account the identities:
x∫

0

(x− t)2β−2τ(t)dt =
Γ (1 + 2β) Γ (1− 2β)

2β (2β − 1)
D1−2β

0x D2β−1
0x T (x) =

πT (x)

(2β − 1) sin 2πβ
,

1∫

x

(t− x)2β−2τ(t)dt =
Γ (1 + 2β) Γ (1− 2β)

2β (2β − 1)
D1−2β

x1 D2β−1
0x T (x)

=
π cot 2βπ

1− 2β
T (x) +

1

1− 2β

1∫

0

(
1− t

1− x

)1−2β T (t)

t− x
dt,

1∫

0

(t+ x− 2tx)2β−2 τ(t)dt =
1

1− 2β

1∫

0

(
1− t

1− x

)1−2β T (t)dt

x+ t− 2xt
,

we obtain the functional relationship between T (x) and ν+(x), which are bringing from D1 to domain J :

ν+(x) = −πk2 tan βπ

1− 2β
T (x) +

k2
1− 2β

1∫

0

(
1

x

)−2β

T (t)

[
1

x− t
+

1− 2t

x+ t− 2xt

]
dt

+

1∫

0

T (t)dt

t∫

0

(t− z)−2β ∂2H2(z, 0;x, 0)

∂η∂y
dz +

l∫

0

∂q2(t, η;x, 0)

∂y
χ(s)ds, (x, 0) ∈ J. (35)

5. EXISTENCE OF THE SOLUTION OF PROBLEM PT

Definition 2 [38, pages 255–259]. We say that the solution ω(z) of a singular integral equation

ω(z) + λ

1∫

0

ω(ζ)dζ

ζ − z
−

1∫

0

K(z, ζ)ω(ζ)dζ = F (z)

belongs to class h(0), if this function ω(z) is bounded as z → 0 and unbounded as z → 1.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 42 No. 3 2021



672 YULDASHEV et al.

Theorem 2. If conditions (4) and (7) are satisfied, then a solution of problem PT exists in the
domain D.

Proof. Eliminating ν−(x) and ν+(x) from relations (29) and (35), taking into account (20) and the
gluing condition ν−(x) = −ν+(x), we have

T̃ (x)− γ4

1∫

0

[
1

x− t
− 1

x+ t− 2xt

]
T̃ (t)dt−

1∫

0

K(x, t)T̃ (t)dt = F (x), (36)

where γ4 =
cos βπ

π(sinβπ−1) , T̃ (x) = x1−2βT (x),

K (x, t) =
γ3

sin βπ − 1

(x
t

)1−2β
t∫

0

(t− z)−2β ∂2H2(z, 0;x, 0)

∂η∂y
dz, (37)

F (x) =
2 cos πβ

(sinπβ − 1) Γ(1− β)
x1−βD1−β

0η ψ(η) +
γ3x

1−2β

(sinπβ − 1)

l∫

0

∂q2(t, η;x, 0)

∂y
χ(s)ds. (38)

We study the kernel and the right side of the singular integral equation (36). For 0 < x < 1 and
0 < z < 1 it is true the inequality [37, page 181]:∣∣∣∣∂

2H2(z, 0;x, 0)

∂η∂y

∣∣∣∣ < C1(x+ z − 2xz)2β−1, (39)

where C1 = const in D1. By virtue of (39), from (37) we obtain

|K(x, t)| ≤ C1
γ3

sin βπ − 1

(x
t

)1−2β

∣∣∣∣∣∣
t∫

0

(t− z)−2β (x+ z − 2xz)2β−1dz

∣∣∣∣∣∣ . (40)

By changing the variable z = t (1− σ) and using the integral representation of the hypergeometric
function [37, § 2, form. 2.10], from (40) we obtain

|K(x, t)| ≤ C1
γ3

sin βπ − 1

(
x

x+ t− 2xt

)1−2β
∣∣∣∣∣∣

1∫

0

σ−2β

[
1− (1− 2x)t

x+ t− 2xt
σ

]2β−1

dσ

∣∣∣∣∣∣
≤ C1

γ3
sin βπ − 1

(
x

x+ t− 2xt

)1−2β ∣∣∣∣F
(
1− 2β, 1 − 2β, 2− 2β;

t (1− 2x)

x+ t− 2xt

)∣∣∣∣ . (41)

Since c− a− b = 2− 2β − 2 + 4β = 2β < 0, then by the aid of the formula:

F (a, b, c, z) = (1− z)c−a−b F (c− a, c− b, c; z) , |arg(1− z)| < π

and by the estimate

|F (a, b, c, z)| ≤

⎧⎪⎨
⎪⎩

const, c− a− b > 0, 0 ≤ z ≤ 1,

const · (1− z)c−a−b, c− a− b < 0, 0 < z < 1,

const · [1 + ln(1− z)] , c− a− b = 0, 0 < z < 1

(42)

from (41) for 0 ≤ t ≤ 1 we come to an estimate

|K(x, t)| ≤ C1C2
γ3

sin βπ − 1

(
x

x+ t− 2xt

)1−2β ( x

x+ t− 2xt

)2β

≤ C3x

x+ t− 2xt
.

Now we estimate the right-hand side of equation (36). Differentiating (33) with respect to y, then
putting y = 0, we obtain

∂q2 (ξ, η; t, 0)

∂y
= k2η

[
(ξ − t)2 +

4

(m+ 2)2
ηm+2

]β−1

. (43)
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Substituting (43) into (38), we have

F (x) =
2 cos πβ

(sin πβ − 1) Γ(1− β)
x1−βD1−β

0η ψ(η)

− γ3x
1−2β

1− sinπβ

l∫

0

[
(ξ(s)− t)2 +

4

(m+ 2)2
ηm+2(s)

]β−1

η(s)χ(s)ds. (44)

By virtue of properties of the functions ψ (x) and ϕ (s), it follows from (44) that the function F (x)
has derivatives of any order in the interval (0, 1). Let us find out the behavior of the function F (x) and
its derivative as x → 0 and as x → 1. Consider the expression

F1(x) =

l∫

0

[
(ξ(s)− t)2 +

4

(m+ 2)2
ηm+2(s)

]β−1

η(s)χ(s)ds. (45)

We estimate the expression (45). By virtue of δ(s), ρ(s), ϕ(s) ∈ C [0, l], for enough small x > 0 there
hold inequalities

|F1 (x)| ≤
l∫

l−ε

|χ(s)|
[
(ξ − x)2 +

4

(m+ 2)2
ηm+2

]β−1

ηds +O(1)

< C4

l∫

l−ε

[
(ξ − x)2 +

4

(m+ 2)2
ηm+2

]β−1

ηds +O(1).

Hence, by virtue of (26), for sufficiently small ε > 0 we obtain

|F1 (x)| < C5

l∫

l−ε

η
m
2

∣∣∣∣dηds
∣∣∣∣
[
x2 +

4

(m+ 2)2
ηm+2

]− 1
2
−β

ds+O(1)

< C6

δ∫

0

[
x2 + η̃2

]− 1
2
−β

dη̃ +O(1). (46)

By the change μ2 = ω in (46), using the integral representation of the hypergeometric function [37, § 2,
form. 2.10] and taking into account (42) we obtain

|F1 (x)| <
δ2

x2β+1

∣∣∣∣Γ(1, 5)Γ(β)Γ(0, 5 + β)

∣∣∣∣
(
δ2

x2

)− 1
2

+
δ

x2β+1

∣∣∣∣ Γ(1, 5)Γ(−β)

Γ(0, 5)Γ(1 − β)

∣∣∣∣ (x2 + δ2)−βx2β+1F

(
β,

1

2
, 1 + β;

x2

x2 + δ2

)

<
δ

x2β

∣∣∣∣Γ(1, 5)Γ(β)Γ(0, 5 + β)

∣∣∣∣+
∣∣∣∣ δΓ(1, 5)Γ(−β)

Γ(0, 5)Γ(1 − β)

∣∣∣∣ (x2 + δ2)−β < C7x
−2β. (47)

If 1− x is sufficiently small, by the similarly way we obtain

|F1 (x)| = C8 (1− x)−2β . (48)

Carrying out the same reasoning, we obtain∣∣F ′
1 (x)

∣∣ < C9x
−2β−1,

∣∣F ′
1 (x)

∣∣ = C10 (1− x)−2β−1 . (49)

By virtue of (47)–(49), from (44) we deduce that F (x) ∈ C(J) ∩C2(J) and the function F ′(x) turns
to infinity order less then 2β + 1 as x → 1, and as x → 0 this derivative F ′(x) is bounded.
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By the change of variables ζ = t2

1−2t+2t2
, z = x2

1−2x+2x2 , we represent the equation (36) as follows

ω(z) + γ4

1∫

0

ω(ζ)dζ

ζ − z
−

1∫

0

K(z, ζ)ω(ζ)dζ = F̃ (z), (50)

where

ω(z) = (1− 2x+ 2x2)T̃ (x), F̃ (z) = (1− 2x+ 2x2)F (x),

K(z, ζ) =
1− 2t+ 2t2

2t(1− t)(1 − 2x+ 2x2)
K(x, t) + γ4

(1− 2x+ 2x2)(1− 2t+ 2t2)

(1− t)(t+ x− 2xt)
,

x =

√
z√

z +
√
1− z

, t =

√
ζ√

ζ +
√
1− ζ

.

Since 1− γ24 �= 0, then equation (50) is a normal type equation. Its index is zero in the class h(0), i.e.
in the class of functions, which bounded as z → 0 and unbounded as z → 1.

Thus, we studied the solution ω(z) of singular integral equation (50) in the class h(0).
We reduce the singular integral equation (50) by the well-known Carleman–Vekua regularization

method [38] to an equivalent Fredholm equation of the second kind, the solvability of which implies from
the uniqueness of the solution of problem PT .

From the equality T̃ (x) = x1−2βT (x) and ω(z) = (1− 2x+ 2x2)T̃ (x) we find the function T (x),
which is continuous in (0, 1) and integrable on [0, 1].

Substituting T (x) into (24), we find τ(x). Then from (29) and (35) we find ν±(x). When τ(x) is
known function, then the solution of the problem PT for differential equation (3) in the domain D1 we
restore as a solution of the problem PT+ for differential equation (3) with conditions (5) and (19). The
solution of the problem PT for differential equation (3) in the domain D2 we restore as a generalized
solution of the Cauchy problem with conditions (19) and (20) for differential equation (3).

Thus, in the domain D a solution of the problem PT exists. Theorem 2 is proved. �

REFERENCES
1. F. I. Frankl, Selected Works on Gas Dynamics (Nauka, Moscow, 1973) [in Russian].
2. I. N. Vekua, Generalized Analytic Functions (Fizmatgiz, Moscow, 1959) [in Russian].
3. E. I. Moiseev and M. Mogimi, “On the completeness of eigenfunctions of the Neumann–Tricomi problem for

a degenerate equation of mixed type,” Differ. Equat. 41, 1789–1791 (2005).
4. E. I. Moiseev and M. Mogimi, “On the completeness of eigenfunctions of the Tricomi problem for a degenerate

equation of mixed type,” Differ. Equat. 41, 1462–1466 (2005).
5. E. I. Moiseev, T. E. Moiseev, and A. A. Kholomeeva, “On the non-uniqueness of the solution of the inner

Neumann-Hellerstedt problem for the Lavrent’ev–Bitsadze equation,” Sib. Zh. Chist. Prikl. Mat. 17 (3),
52–57 (2017).

6. A. B. Okboeb, “Tricomy problem for second kind parabolic-hyperbolic type equation,” Lobachevskii J. Math.
41, 58–70 (2020).

7. O. A. Repin and S. K. Kumykova, “A nonlocal problem for degenerate hyperbolic equation,” Russ. Math. (Iz.
VUZ) 61 (7), 43–48 (2017).

8. K. B. Sabitov, “On the theory of the Frankl problem for equations of mixed type,” Russ. Math. (Iz. VUZ) 81
(1), 99–136 (2017).

9. K. B. Sabitov and V. A. Novikova, “Nonlocal A. A. Dezin’s problem for Lavrent’ev–Bitsadze equation,” Russ.
Math. (Iz. VUZ) 60 (6), 52–62 (2016).

10. K. B. Sabitov and I. A. Khadzhi, “The boundary-value problem for the Lavrent’ev-Bitsadze equation with
unknown right-hand side,” Russ. Math. (Iz. VUZ) 55 (5), 35–42 (2011).

11. M. S. Salakhitdinov and B. Islomov, “Boundary value problems for an equation of mixed type with two inner
lines of degeneracy,” Dokl. Math. 43, 235–238 (1991).

12. M. S. Salakhitdinov and M. Mirsaburov, “The Bitsadze-Samarskii problem for a class of degenerate
hyperbolic equations,” Differ. Equat. 38), 288–293 (2002).

13. M. S. Salakhitdinov and A. K. Urinov, “Eigenvalue problems for a mixed-type equation with two singular
coefficients,” Sib. Math. J. 48, 707–717 (2007).

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 42 No. 3 2021



ON SOLVABILITY OF A POINCARE–TRICOMI TYPE PROBLEM 675

14. M. S. Salakhitdinov and M. Mirsaburov, “A problem with a nonlocal boundary condition on the characteristic
for a class of equations of mixed type,” Math. Notes 86, 704–715 (2009).

15. M. S. Salakhitdinov and B. I. Islomov, “A nonlocal boundary-value problem with conormal derivative for a
mixed-type equation with two inner degeneration lines and various orders of degeneracy,” Russ. Math. (Iz.
VUZ) 55 (1), 42–49 (2011).

16. M. S. Salakhitdinov and N. B. Islamov, “Nonlocal boundary-value problem with Bitsadze–Samarskii
condition for equation of parabolic-hyperbolic type of the second kind,” Russ. Math. (Iz. VUZ) 59 (6), 34–42
(2015).

17. F. G. Tricomi, Lezioni sulle equazioni a derivate parziali (Gheroni, Torino, 1954).
18. A. V. Bitsadze, Some Classes of Partial Differential Equations (Nauka, Moscow, 1981) [in Russian].
19. M. M. Smirnov, Equations of a Mixed Type (Nauka, Moscow, 1970) [in Russian].
20. I. L. Karol, “On a boundary value problem for an equation of mixed elliptic-hyperbolic type,” Dokl. Akad.

Nauk SSSR 88, 197–200 (1953).
21. N. K. Mamadaliev, “On representation of solution of the modified Cauchy problem,” Sib. Math. J. 41, 889–

899 (2000).
22. S. A. Tersenov, “On the theory of hyperbolic equations with data on lines of degeneration type,” Sib. Mat. Zh.

2, 931–935 (1961).
23. S. S. Isamuhamedov and Zh. Oromov, “On boundary value problems for a mixed type equation of the second

kind with a nonsmooth line of degeneration,” Differ. Uravn. 18, 324–334 (1982).
24. N. K. Mamadaliev, “Tricomi problem for strongly degenerate equations of parabolic-hyperbolic type,” Math

Notes 66, 310–315 (1999).
25. R. S. Khairullin, The Tricomi Problem for an Equation of the Second Kind with Strong Degeneracy

(Kazan. Gos. Univ., Kazan, 2015) [in Russian].
26. M. S. Salakhitdinov and N. B. Islamov, “A nonlocal boundary-value problem with the Bitsadze–Samarskii

conditon for a parabolic-hyperbolic equation of the second kind,” Russ. Math. (Iz. VUZ) 59 (6), 34–42
(2015).

27. K. B. Sabitov and I. P. Egorova, “On the correctness of boundary value problems with periodicity conditions
for an equation of mixed type of the second kind,” Vestn. Samar. Tekh. Univ., Ser. Fiz.-Mat. Nauki 23, 430–
451 (2019).

28. A. M. Nakhushev, “Loaded equations and their applications,” Differ. Uravn. 19, 86–94 (1983).
29. A. A. Samarsky, “On some problems of the theory of differential equations,” Differ. Uravn. 16, 1925–1935

(1980).
30. M. S. Salakhitdinov and T. G. Ergashev, “Integral representation of a generalized solution of the Cauchy

problem in the class for one equation of hyperbolic type of the second kind,” Uzb. Mat. Zh., No. 1, 67–75
(1995).

31. K. B. Sabitov and A. K. Suleimanova, “The Dirichlet problem for a mixed-type equation of the second kind in
a rectangular domain,” Russ. Math. (Iz. VUZ) 51 (4), 42–50 (2007).

32. K. B. Sabitov and A. K. Suleimanova, “The Dirichlet problem for a mixed-type equation with characteristic
degeneration in a rectangular domain,” Russ. Math. (Iz. VUZ) 53 (11), 37–45 (2009).

33. T. K. Yuldashev, “Nonlocal inverse problem for a pseudohyperbolic-pseudoelliptic type integro-differential
equations,” Axioms 9 (2), 45-1–21 (2020).

34. T. K. Yuldashev and B. J. Kadirkulov, “Boundary value problem for weak nonlinear partial differential
equations of mixed type with fractional Hilfer operator,” Axioms 9 (2), 68-1–19 (2020).

35. B. I. Islomov and A. A. Abdullayev, “On a problem for an elliptic type equation of the second kind with a
conormal and integral condition,” J. Nanosyst.: Phys. Chem. Math. 9, 307–318 (2018).

36. M. S. Salakhitdinov and A. A. Abdullaev, “Nonlocal boundary value problem for a mixed type equation of the
second kind,” Dokl. Akad. Nauk Uzb., No. 1, 3–5 (2013).

37. M. M. Smirnov, Equations of a Mixed Type (Vysshaya Shkola, Moscow, 1985) [in Russian].
38. N. I. Muskhelishvili, Singular Integral Equations (Nauka, Moscow, 1968).

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 42 No. 3 2021


		2021-04-18T20:34:34+0300
	Preflight Ticket Signature




