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Abstract—We consider the constrained optimal control problems governed by a parabolic initial-
boundary value problem with time-fractional derivative and mixed boundary conditions. Control is
carried out on the right side of the equation and on the right side of Neumann boundary condition.
Finite element method with the quadratures is used for the approximation of the problem with respect
to the spatial variable, and L1-approximation for the time-fractional derivative taken in different
definitions. Stability estimates in L2-norm via L2-norms of the control functions are obtained for
the discrete state equation. They are used to prove the convergence and convergence rate of the
proposed iterative methods for discrete optimal control problems. The main results are generalized
to a problem with a state equation with fractional derivatives in time and space. The results of a
series of numerical tests and their analysis are presented.
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INTRODUCTION

Mathematical models involving fractional differentiation become common to describe various phe-
nomena in physics, mechanics and economics, in particular, such that thermal diffusion in fractal
domains, flow in highly heterogeneous aquifers etc. [1–5]. Recently, different generalizations and
modifications of the traditional Caputo and Riemann–Liouville fractional derivatives were used for
mathematical modeling of the aforementioned processes [6–8].

In the articles [9–12] some control problems of fractional diffusion equations have been developed.
The optimal control problems that are solved in the mentioned papers deal with the control on the right
side of the state equation with Dirichlet boundary conditions, and quadratic objective functional with
distributed in the domain observation function. For these problems the existence of the unique solutions
have been proved and first-order optimality conditions have been derived.

Considerable attention is paid to the numerical analysis of boundary value problems for partial
differential equations of fractional order (cf., e.g. [13–19] and the bibliography therein). Various
approximations of equations with fractional derivatives and error estimates under the assumption of
sufficient smoothness of the solution were proved. The convergence and rate of convergence of an
approximate solution to a regular weak solution of Dirichlet boundary value problems with Caputo
fractional derivative in time were also studied.

The study of numerical methods for the optimal control problems governed by PDEs with fractional
derivatives has only begun to attract attention. We highlight the articles [20–22] in this direction.
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In [21] finite element approximation of the unconstrained optimal control problems governed by time
fractional diffusion equations is investigated. The stability and truncation error of the fully discrete
scheme are analyzed. In [22] the numerical analysis for a distributed optimal control problem, with box
constraint on the control, governed by a subdiffusion equation which involves a fractional derivative in
time was presented. The rate of convergence for the numerical solutions of the optimal control problem
constructed by applying finite element method in space and L1-backward Euler scheme in time was
established.

In this article, we consider constrained optimal control problems governed by linear parabolic
equations with fractional time derivative in various definitions and with mixed boundary conditions.
Control is carried out on the right side of the equation and the Neumann boundary condition, an objective
functional is convex and lower semicontinuous. Specifically, it can contain a quadratical part and the
indicator functions of the set of constraints for control and state functions. The differential optimal
control problem is approximated by implicit scheme using L1-approximation in time and finite element
method with quadrature formulas in spatial variables. We prove the existence of a unique solution
of the differential and discrete optimal control problem. The investigation of the convergence of the
constructed mesh approximations is beyond the scope of our research. The main aim is to develop
the effective iterative solution methods for the discrete problems. In the investigations we rely on the
results of our research in the field of constructing iterative methods for finite-dimensional saddle point
problems with applications to mesh approximations of optimal control problems for equations with
integer derivatives [23–25].

An essential point in constructing effective iterative methods is the proof of suitable stability estimates
for mesh approximations of the state equation. In this article, we are considering a problem with an
objective function containing L2-norms of control and state functions, so, a stability estimate is required
for the solution of the state equation in the L2-norm through L2-norms of control functions. Note that
estimates known from the literature contain maximum norms in time of the right side of the equation.
To get the required estimate, we need a uniform mesh in time.

The rest of the article is organized as follows. First, we formulate the mixed boundary value problem
for the diffusion equation with fractional time derivatives in the sense of Caputo, generalized Caputo and
Caputo–Fabrizio and the optimal control problem. The existence of the unique solution of the optimal
control problem is proved.

Then, in Section 2, we construct a finite dimensional approximation of the differential problem and
investigate the properties of the constructed discrete problem. In particular, we prove the stability
estimate, which are necessary when analyzing the convergence of iterative solution methods.

In Section 3 we study iterative solution methods for the mesh optimal control problems. We
use Lagrange function for constructing iterative methods, prove the existence of its saddle point and
convergence of the iterative methods. In particular case when there are no constraints on the state of the
problem, the rate of convergence is set.

Some possible generalizations of the results, including their development to an optimal control
problem with a space-time fractional state equation are discussed in Section 4.

The results of numerical experiments are presented in Section 5.

1. PROBLEM FORMULATION

First of all, we recall the definitions of several fractional order derivatives.

• The classical Caputo fractional derivative

Dα
t y(t) =

1

Γ(1− α)

t∫

0

(t− s)−α ∂y

∂s
(s)ds, 0 < α < 1, (1)

where Γ(x) is gamma-function.
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• The generalized Caputo fractional derivative [7]

Dα,g
t y(t) =

1

Γ(1− α)

t∫

0

g(t− s)

(t− s)α
∂y

∂s
(s)ds, 0 < α < 1, (2)

with a weighting function g(t) ∈ C2[0, T ], such that g(t) > 0 and g′(t) � 0 for all t ∈ [0, T ].

• Caputo–Fabrizio derivative [6]

CFDα
t y(t) =

M(α)

1− α

t∫

0

exp

(
−α

t− s

1− α

)
∂y

∂s
(s)ds, 0 < α < 1, (3)

where M(α) is a smooth positive function such that M(0) = M(1) = 1.
All of these fractional differentiation operators in (1)–(3) are particular cases of the operator

Dty(t) =

t∫

0

G(t− s)
∂y

∂s
(s)ds (4)

with a kernel G(t) satisfying the following properties: function G(t) is continuous, positive, convex, and
strictly decreasing on (0,+∞),

(5)

+∞∫

0

G(t)dt < ∞. (6)

In what follows we use the notation Dt for a fractional order differential operator (4) with a kernel
satisfying the properties (5), (6).

Let Ω ⊂ R
2 be a bounded domain with Lipschitz continuous boundary ∂Ω = ΓD ∪ ΓN , measΓD > 0,

QT = Ω× (0, T ], ΣD = ΓD × (0, T ] and ΣN = ΓN × (0, T ]. We consider a parabolic initial-boundary
value problem

Dty −Δy = f in QT ,

y = 0 on ΣD,
∂y

∂n
= q on ΣN ,

y = 0 for t = 0, x ∈ Ω, (7)

where Δ is Laplace operator, functions u(x, t) and q(x, t) are defined, respectively, in QT and ΣN . In
what follows these functions play the role of control while y is a state function.

Now we briefly discuss the question of the existence of weak solutions to problem (7). Multiplying the
differential equation (7) by an infinitely differentiable function v(x, t) : v|ΣD

= 0, we obtain a variational
equation that can serve as a basis for determining a weak solution∫

QT

Dtyvdxdt+

∫

QT

∇y · ∇vdxdt =

∫

QT

fvdxdt+

∫

ΣN

qvdΓdt.

Let V = {y ∈ H1(Ω) : y = 0 a.e. x ∈ ΓD} and 0H
γ(0, T ) = {u ∈ Hγ(0, T ) : u(0) = 0} if 1/2 < γ � 1,

0H
γ(0, T ) = Hγ(0, T ) for 0 � γ < 1/2. We use also the spaces L2(0, T ;X) and Hγ(0, T ;X) with γ > 0

and a Banach space X (cf., e.g. [26, 27] for more details).
For the case of Dirichlet boundary value problem (i.e. ΓN = ∅ in our problem) and classical

Caputo derivative Dt in [28] the existence of a unique solution to problem (7) from Hα(0, T ;L2(Ω)) ∩
L2(0, T ;H1

0 (Ω) ∩H2(Ω)) is proved and the corresponding a priori estimate through the L2(QT )-
norm of the right-hand side f is given. In [29] the unique existence of a solution from Bα/2(QT ) =
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Hα/2(0, T ;L2(Ω)) ∩ L2(0, T ;V ) is substantiated for (7) with mixed boundary conditions and classical
Caputo derivative. The corresponding a priori estimate is a follows:

||y||Bα/2(QT ) � C1||f ||L2(Q) + C2||q||L2(ΣN ), C1, C2 = const.

As for the general case of the problem (7), we assume that it has a unique weak solution, and for our
future needs it suffices that the following estimate holds:

||y||L2(0,T ;V ) � C1||f ||L2(Q) + C2||q||L2(ΣN ), C1, C2 = const. (8)

Now we formulate the optimal control problem in which the function f , q are the control function,
and y is a state function. We introduce the objective functional

J(y, f, q) = J0(y, f, q) + ψ(y) + ϕf (f) + ϕq(q), (9)

where

J0(y, f, q) =
1

2

∫

QT

(y(x, t)− yd(x, t))
2dxdt +

1

2

∫

QT

f2dxdt +
1

2

∫

ΣN

q2dΓdt,

ψ : L2(QT ) → R̄, ϕf : L2(QT ) → R̄, ϕq : L
2(ΣN ) → R̄ are convex,

proper and lower semicontinuous functions (R̄ = R ∪ {+∞}). (10)

Above yd(x, t) ∈ L2(Q) is a given observation function, while functions ψ, ϕf and ϕq are “responsible”
for the control and state constraints.

The optimal control problem we solve is as follows:

find min
(y,f,q)∈W

J(y, f, q),

W = {(y, f, q) ∈ L2(QT )× L2(QT )× L2(ΣN ) satisfy state problem (7)}. (11)

Theorem 1. Let the assumptions (8), (10) be fulfilled and

K = {(y, f, q) ∈ domψ × domϕf × domϕq : equation (7) holds} 
= ∅. (12)

Then optimal control problem (11) has a unique solution.

Proof. The functional J(y, f, q) can attain its finite minimum only on the set K ⊂ W , so we will
prove the existence of a unique solution to problem

min
(y,f,q)∈K

J(y, f, q). (13)

Next, the assumptions (10) ensure that the functional J(y, f, q) is convex and lower semicontinuous
on the space L2(QT )× L2(QT )× L2(ΣN ). The quadratical functional J0(y, f, q) is coercive, so, the
functional J(y, f, q) is also coercive. Since the sets domψ, domϕf and domϕq are convex and state
equation (7) is linear, then the set K is also convex. Due to the closeness of these sets and to stability
inequality (8) the set K is closed. The listed properties of K and J(y, f, q) ensure (cf., e.g., [30], p. 44)
the existence of a solution to problem (13), which is equivalent to (11). Moreover, because of the strict
convexity of J(y, f, q) with respect to f and q and the linearity of the state equation (7), it is strictly
convex with respect to y. Thus, the solution of the problem is unique. �

An example of the constraint functions are the indicator functions of the closed and convex sets:

ϕf (f) = IUad
, Uad = {f ∈ L2(QT ) : |f(x, t)| � f̄ in QT },

ψ(y) = IYad
, Yad = {y ∈ L2(QT ) : ymin � y(x, t) � ymax in QT }. (14)

If −∞ � ymin < 0 < ymax � +∞, then the condition (12) is satisfied, because the null function
(0, 0, 0) ∈ domψ × domϕf × domϕq satisfies the state equation (7).
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2. APPROXIMATION

2.1. Approximation of the State Equation

First, we approximate a time fractional derivative. Let ωτ = {tj = jτ, j = 0, 1, . . . M ; Mτ = T} be
a uniform mesh on the segment [0, T ] and yj = y(tj) for a continuous function y(t). The approximation

of the derivative Dty(t) =

t∫

0

G(t− s)
∂y

∂s
(s)ds of a continuous function y(t), y(0) = 0, at a point tk =

kτ ∈ ωτ of uniform mesh ωτ = {tj = jτ, j = 0, 1, . . . M ; Mτ = T} is as follows:

Dty(tk) ≈ ∂ty(tk) = d1y
k +

k−1∑
j=1

(dj+1 − dj)y
k−j, dj =

1

τ

tk−j+1∫

tk−j

G(tk − s)ds =
1

τ

jτ∫

(j−1)τ

G(u)du.

Due to (5) the coefficients satisfy the inequalities

d1 > d2 > · · · > dM > 0. (15)

We emphases one important property for further research, namely, the independence of the coefficients
dj from the number k of the time level. This is a consequence of using a uniform mesh in time variable.

The semidiscrete implicit scheme approximating problem (7) is as follows: find (y(x, t1), y(x, t2), . . . ,
y(x, tM )) with y(x, tk) ∈ V and y(x, 0) = 0, such that for all k and all v ∈ V∫

Ω

∂ty(x, tk)v(x)dx +

∫

Ω

∇y(x, tk) · ∇v(x)dx =

∫

Ω

f(x, tk)v(x)dx+

∫

ΓN

q(x, tk)v(x)dΓ. (16)

Since ∂ty(x, tk) = d1y(x, tk) +
k−1∑
j=1

(dj+1 − dj)y(x, tk−j), then a k-th equation of system (16) is a

variational equation

ak(y, v) =

∫

Ω

d1y(x, tk)v(x)dx +

∫

Ω

∇y(x, tk) · ∇v(x)dx = Fk(v),

Fk(v) =

∫

Ω

f(x, tk)v(x)dx +

∫

ΓN

q(x, tk)v(x)dΓ −
k−1∑
j=1

(dj+1 − dj)

∫

Ω

∇y(x, tk−j) · ∇v(x)dx (17)

with bounded and coercive bilinear form ak : V × V → R and linear functional Fk ∈ V ∗. From Lax–
Milgram theorem we deduce the existence of a unique solution to (17).

A fully discrete approximation of problem (7) is constructed using the approximation with respect to
the spatial variables of the elliptic problem (17). For definiteness, we construct a finite element scheme
with first-order finite elements in the polygonal domain Ω and simple quadrature formulas on triangles
and their sides. When solving test problems, we also consider the case of a rectangular domain Ω, and
approximate (7) using the bilinear elements and trapezoidal quadrature formulas.

Let Th be a family of non-overlapping closed triangles e (finite elements) with maximal diameter h.
We suppose that Th is a conforming and regular triangulation Ω =

⋃
e∈Th

e of Ω ([31], p. 124) and Th

generates the triangulation ∂Th of ΓN , i.e. ΓN consists of integer number of sides ∂e of elements e ∈ Th.
We define the finite element space Vh ⊂ V of the continuous and piecewise linear functions (linear on
each e) that vanish on the boundary ΓD and the finite element space Qh of the piecewise linear functions
on ΓN (linear on each ∂e ∈ ΓN ), which are the traces on ΓN of the functions from Vh. We denote by
yh with subscript h a mesh function from the space Vh or Qh. Let Vhτ be the linear space of the mesh
functions yh(t) : ωτ → Vh, and Qhτ be the linear space of the mesh functions qh(t) : ωτ → Qh. By ykh
we mean the value of mesh function from Vhτ or Qhτ at a time level tk ∈ ωt.
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We use quadrature formulas approximating the integrals of the continuous function g(x):
∫

e

g(x)dx ≈ Se(g) =
meas(e)

3

3∑
α=1

g(xα),

∫

∂e

g(x)dΓ ≈ S∂e(g) =
meas(∂e)

2

2∑
α=1

g(xα),

where xα are the vertices of e and ∂e, respectively, and the composite quadrature formulas SΩ(g) =∑
e∈Th

Se(g) and SΓ(g) =
∑

∂e∈∂Th

S∂e(g) approximating the integrals over the domain Ω and the boundary

Γ, respectively.
The fully discrete scheme approximating problem (7) has the following form:

find yh(t) ∈ Vhτ such that y0h = 0 and

SΩ

(
∂ty

k
hvh

)
+ SΩ

(
∇ykh · ∇vh

)
= SΩ

(
fk
h vh

)
+ SΓ

(
qkh vh

)
∀vh ∈ Vh for k = 1, 2, . . . ,M. (18)

Similar to (17), problem (18) has a unique solution.

2.2. Stability Estimate

Let us introduce lower triangle Toeplitz M ×M matrix

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 0 0 0 · · · 0 0

d2 − d1 d1 0 0 · · · 0 0

d3 − d2 d2 − d1 d1 0 · · · 0 0

... ... ... ... · · · ... ...

dM − dM−1 dM−1 − dM−2 dM−2 − dM−3 ... · · · d2 − d1 d1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

where dj are the coefficients of the approximation ∂ty of Caputo derivative. Using this matrix, this

approximation at a point tk = kτ ∈ ωτ can be written as ∂ty(tk) =
(
By(t)

)k
.

Lemma 1. The matrix 1
2(B +BT ) is positive definite:(

1

2
(B +BT )z, z

)
t

� χ0||z||2t ∀z ∈ R
M , (20)

where
(
., .
)
t

and ||.||t are the inner product and Euclidian norm in R
M , and χ0 = G(T/2).

Proof. The basic properties of the matrix B follow from the properties (15):

• B has positive diagonal elements and non-positive off-diagonal elements,

• B is strictly diagonally dominant both in rows and columns.

Based on these properties, the article [32] proves the positive definiteness of the matrix, as well as the
inequality (1

2
(B +BT )z, z

)
t
� min

1�k�M

1

2
(dk + dM−k+1)||z||2t .

The estimate

min
1�k�M

1

2
(dk + dM−k+1) � min

0�t�T

1

2

(
G(t) +G(T − t)

)
= G(T/2)

can be proved by direct calculations using the property of strict monotonicity and convexity of the kernel
function G(t). �
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Below we use following notations for the scalar products and norms in the spaces of mesh functions
Vh and Qh:

(vh, zh)0,Ω = SΩ(vhzh), ||vh||0,Ω = (vh, vh)
1/2
0,Ω,

||vh||1,Ω = ||∇vh||0,Ω, ||vh||−1,Ω = sup
zh �=0

(vh, zh)0,Ω
||zh||1,Ω

,

(vh, zh)0,Γ = SΓ(vhzh), ||vh||0,Γ = (vh, vh)
1/2
0,Γ , ||vh||−1/2,Γ = sup

zh �=0

(vh, zh)0,Γ
||zh||1,Ω

.

The following analogs of embedding and trace inequalities are well-known (cf., e.g. [31]):

||vh||0,Ω � cΩ||vh||1,Ω, ||vh||0,Γ � cΓ||vh||1,Ω ∀vh ∈ Vh. (21)

Theorem 2. For the solution of problem (18) the following stability estimate holds:
M∑
k=1

(
χ0,Ω||yh||20,Ω +

1

2
||yh||21,Ω

)
�

M∑
k=1

(
||fk

h ||2−1,Ω + ||qkh||2−1/2,Γ

)
. (22)

Proof. Taking vh = ykh in (18), after summation over k we get

M∑
k=1

SΩ

(
∂ty

k
h ykh

)
+

M∑
k=1

SΩ

(
∇ykh · ∇ykh

)
=

M∑
k=1

(
SΩ

(
fk
h ykh

)
+ SΓ

(
qkh ykh

))
.

Due to Lemma 1
M∑
k=1

SΩ

(
∂ty

k
h ykh

)
= SΩ

(
(By, y)t

)
� χ0

M∑
k=1

SΩ

(
(ykh)

2
)
= χ0

M∑
k=1

||yh||20,Ω,

then
M∑
k=1

(
χ0||yh||20,Ω + ||yh||21,Ω

)
�

M∑
k=1

∣∣∣
(
fk
h , y

k
h

)
0,Ω

∣∣∣+
∣∣∣
(
qkh, y

k
h

)
0,Γ

∣∣∣.
Using the inequalities∣∣∣

(
fk
h , y

k
h

)
0,Ω

∣∣∣ � ||fk
h ||−1,Ω||ykh||1,Ω,

∣∣∣
(
qkh, y

k
h

)
0,Γ

∣∣∣ � ||qkh||−1/2,Γ||ykh||1,Ω,

to evaluate the right-hand side, we easily get the estimate (22). �

Corollary 1. The stability estimate in the norm of mesh space L2(ωt;L
2(ωx)) for the solution

of state equation through the corresponding L2-norms of the control functions is true:
M∑
k=1

τ ||yh||20,Ω � C0

(
M∑
k=1

τ ||fk
h ||20 +

M∑
k=1

τ ||qkh||20,Γ

)
(23)

with a constant C0 which does not depend on the mesh parameters. To prove (23), it suffices
to use (21) and the following inequalities arising from (21): ||vh||−1,Ω � cΩ||vh||0, ||vh||−1/2,Γ �
cΓ||vh||0,Γ.

2.3. Approximation of Optimal Control Problem

Let a function ydh(t) ∈ Vhτ be an approximation of the observation function yd(x, t). The approxi-
mation of the quadratical functional J0(y, f, q) has the following form:

J0h(yh, fh, qh) =
τ

2

M∑
k=1

(
||ykh − ykdh||20,Ω + ||fk

h ||20,Ω + ||qkh||20,Γ
)
, (24)
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Let also ψh : Vhτ → R̄, ϕfh : Vhτ → R̄ and ϕqh : Qhτ → R̄ are convex, proper and lower semicontinuous
functions, approximating in some sense the corresponding functions ψ, ϕf and ϕq.

In the particular case when ψ and ϕ are the indicator functions of the sets defined by (14), ϕfh,
ϕqh, and ψh are the indicator functions of the sets Uh

ad = {|fk
h (x)| � f̄ ∀x ∈ Ω, k = 1, 2, . . . ,M},

Qh
ad = {|qkh(x)| � q̄ ∀x ∈ ΓN , k = 1, 2, . . . ,M} and Y h

ad = {ykh(x) : ymin � ykh(x) � ymax, ∀x ∈ Ω, k =
1, 2, . . . ,M}.

Now, the mesh optimal control problem is as follows:

find min
(yh,fh,qh)∈Wh

{Jh(yh, fh, qh) = J0h(yh, fh, qh) + ψh(yh) + ϕfh(fh) + ϕqh(qh)}

Wh = {(yh, fh, qh) ∈ Vhτ × Vhτ ×Qhτ satisfy state equation (18)}. (25)

Theorem 3. Let the set
Kh = {(yh, fh, qh) ∈ domψh × domϕfh × domϕqh satisfy state equation (18)}

is not empty. Then mesh optimal control problem (25) has a unique solution (yh, fh).
Proof. Since mesh state equation is linear and stability estimate (23) holds, then the set Kh is convex

and closed. Next, mesh objective function Jh is strictly convex, lower semicontinuous and coercive. The
listed properties of Kh and Jh ensure the existence of a unique solution to problem

min
(yh,fh,qh)∈Kh

Jh(yh, fh, qh) = min
(yh,fh,qh)∈Wh

Jh(yh, fh, qh).

�

3. ITERATIVE SOLUTION METHOD

In what follows, we will use algebraic forms of mesh problems, namely discrete problems for vectors
of nodal values of mesh functions..

We denote by y ∈ R
Nx the vector of nodal values of a function yh ∈ Vh (Nx = dimVh). Then we

get the “onto” correspondence y ⇔ yh. By (., .)x and ||.||x we mean the inner product and Euclidian
norm in R

Nx . Similarly, a vector q ∈ R
Nq corresponds to qh ∈ Qh (Nq = dimQh), and (., .)q and ||.||q

are the inner product and Euclidian norm in R
Nq . The dimensions of Vhτ and Qhτ equal NxM and

NqM , respectively. By (., .)xt and ||.||xt we denote the inner product and Euclidian norm in R
NxM . The

notations (., .)qt and ||.||qt have the similar meaning for the space R
NqM .

Define the stiffness matrix A ∈ R
Nx×Nx , diagonal mass matrices Mx ∈ R

Nx×Nx and Mq ∈ R
Nq×Nq ,

and rectangular matrix Sq ∈ R
Nx×Nq , by the following equalities:

(Ay, z)x = SΩ (∇yh · ∇zh) , (Mxy, z)x =
(
yh, zh

)
0,Ω

,

(Mqq, p)q =
(
qh, ph

)
0,Γ

, (Sqq, z)x =
(
qh, zh

)
0,Γ

.

Below we omit the index h and use the same notations for the mesh functions and for the vectors of their
nodal values with a chosen ordering. In this regard, the notation yk means a value y(x, tk) ∈ Vh of a
mesh function from the space Vhτ on a time level tk ∈ ωτ , as well as corresponding vector yk ∈ R

Nx .
Similar sense has qk = q(x, tk) ∈ R

Nq .
Using the introduced notations we can write mesh state equations (18) as the following system of

linear algebraic equations:

y0 = 0, Mx(By)k +Ayk = Mxf
k + Sqq

k, k = 1, 2, . . . ,M. (26)

Let It be M ×M unit matrix and ⊗ denotes Kronekker (tensor) product of the matrices. We define the
matrices

L = B ⊗Mx + It ⊗A, M = It ⊗Mx, S = It ⊗ Sq, R = It ⊗Mq.

Then the system of the equations (26) can be written in a brief form

Ly = Mf + Sq.
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The stability estimate (23) written in terms of nodal vectors becomes:

(My, y)xt � C0

(
(Mf, f)xt + (Rq, q)qt

)
. (27)

The algebraic form of mesh objective function (24) is as follows:

I0(y, f, q) =
τ

2
(M(y − yd), y − yd)xt +

τ

2
(Mf, f)xt +

τ

2
(Rq, q)qt.

Let us define the functions ϕf : R
NxM → R̄, ϕq : R

NqM → R̄ and ψ : R
NxM → R̄ by the equalities:

ϕf (f) = ϕh(fh) for f ⇔ fh, ϕq(q) = ϕh(qh) for q ⇔ qh, ψ(y) = ψh(yh) for y ⇔ yh.

Now, after introducing all these notations, we can formulate the algebraic form of the mesh optimal
control problem (25):

min
Ly=Mf+Sq

{
1

2
(M(y − yd), y − yd)xt +

1

2
(Mf, f)xt

+
1

2
(Rq, q)qt + ψ(y) + ϕf (f) + ϕq(q)

}
. (28)

To construct the iterative methods for solving problem (28), we introduce the Lagrange function

L(y, f, q, λ) =
1

2
(M(y − yd), y − yd)xt +

1

2
(Mf, f)xt

+
1

2
(Rq, q)qt + ψ(y) + ϕf (f) + ϕq(q) + (λ,Ly −Mf − Sq)xt. (29)

Using well-known results on the Lagrange functions (cf. [30], p. 169) we obtain that a saddle point
of (29) satisfies the following saddle point problem:⎛

⎜⎜⎜⎜⎜⎜⎝

M 0 0 LT

0 M 0 −M

0 0 R −ST

L −M −S 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

y

f

q

λ

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ψ(y)

∂ϕf (f)

∂ϕq(q)

0

⎞
⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎝

Myd

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎠

(30)

where ∂ψ, ∂ϕf and ∂ϕq are the subdifferentials of the corresponding functions. Using the nota-

tions z = (y, f, q)T , f = (Myd, 0, 0, )
T , Ψ(z) = ψ(y) +ϕf (f)+ϕq(q), A = diag

(
M M R

)
and B =(

L −M −S
)
, problem (30) can be rewritten in a compact form

⎛
⎝A BT

B 0

⎞
⎠

⎛
⎝z

λ

⎞
⎠+

⎛
⎝∂Ψ(z)

0

⎞
⎠ �

⎛
⎝f

0

⎞
⎠ .

To solve this saddle point problem we apply a preconditioned Uzawa-type iterative method: for a given
initial guess λ(0) solve for s = 0, 1, . . .

Az(s+1) + ∂Ψ(z(s+1)) � BTλ(s) + f,
1

ρ
D(λ(s+1) − λ(s)) + Bz(s+1) = 0, (31)

where D is a symmetric and positive definite matrix (preconditioner), ρ > 0 is an iterative parameter.
Lemma 2. Matrix D = LM−1LT is spectrally equivalent to BA−1BT :

D � BA−1BT � (1 + 2C0)D (32)

with constant C0 from (27).
Proof. Direct calculations give:

BA−1BT = LM−1LT +M+ SR−1ST .
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Left inequality of (32) is obvious because of positive definiteness of M and SR−1ST . Let us prove the
right one.

Taking in account equality Ly = Mf + Sq, stability estimate (27) can be written as

||M1/2L−1(Mf + Sq)||2xt � C0

(
||M1/2f ||2xt + ||R1/2q||2qt

)
. (33)

We estimate the right-hand side of the equality

(BA−1BTλ, λ)xt = ||M−1/2LTλ||2xt + ||M1/2λ||2xt + ||R−1/2STλ||2qt (34)

by ||M−1/2LTλ||2xt.
We use (33) in the following chain of the inequalities:

||M−1/2LTλ||xt = sup
v

(M−1/2LTλ, v)xt
||v||xt

= sup
y

(λ,Ly)xt
||M1/2y||xt

� sup
f,q

(λ,Mf + Sq)xt
||M1/2L−1(Mf + Sq)||xt

� 1

C
1/2
0

sup
f,q

(λ,Mf + Sq)xt(
||M1/2f ||2xt + ||R1/2q||2qt

)1/2
.

Choosing subsequently q = 0 and f = 0 in this inequality we have

||M−1/2LTλ||xt �
1

C
1/2
0

sup
f

(λ,Mf)xt

||M1/2f ||xt
=

1

C
1/2
0

||M1/2λ||xt,

||M−1/2LTλ||xt �
1

C
1/2
0

sup
q

(λ,Sq)xt
||R1/2q||xt

=
1

C
1/2
0

||R−1/2STλ||qt. (35)

Estimates (34) and (35) yield (32). �

Theorem 4.

1. Problem (30) has a solution (y, f, q, λ) with unique y, f , q, which coincide with the solution
of problem (28).

2. Iterative method (31) with the preconditioner D = LM−1LT applied to solving saddle
point problem (30), converges if 0 < ρ < 2/(1 + 2C0).

3. If the optimal control problem does not contain a state constraint, i.e. ψ = 0, then

• the Lagrange multiplier λ is uniquely determined;

• iterative method (31) with the preconditioner D = LM−1LT and the iterative param-

eter ρ =
1

1 + C0
has the rate of convergence defined by the following estimate:

||λk+1 − λ||2D � C0

1 + C0
||λk − λ||2D ∀k.

The proof of this theorem is based on the general results from [23, 25] and Lemma 2, so, we omit it.
When implementing method (31) with the preconditioner D = LM−1LT for problem (30) it is

reasonable to change the variable λ by η = LTλ and to write the resulting system for finding s+ 1-th
iteration in the following form:⎧⎪⎨

⎪⎩
y(s+1) +M−1∂ψ(y(s+1)) � yd −M−1λs,

f (s+1) +M−1∂ϕf (f
(s+1)) � L−Tλs,

q(s+1) +R−1∂ϕq(q
(s+1)) � R−1STL−Tλs,

λs+1 − λs

ρ
= My(s+1) −ML−1

(
Mf (s+1) + Sq(s+1)

)
.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 41 No. 12 2020



ITERATIVE METHODS FOR MESH APPROXIMATIONS 2697

On every step of the iterative method we have to solve three inclusions with diagonal operators
I +M−1∂ψ, I +M−1∂ϕf and I +R−1∂ϕq , where I is the identity matrix. The solution of these
inclusions is reduced to a simple procedure of point projections (for all coordinates of nodal vectors
at each time level) on the corresponding sets of constraints. The most time-consuming part of the
implementation consists of solving two mesh parabolic equations, namely, state problem with the matrix
L and adjoint problem with the matrix LT .

4. THE SPACE-TIME FRACTIONAL DERIVATIVE PROBLEM

In previous sections we constructed easily implemented iterative methods that converge for pa-
rameters that are independent of the mesh steps h and τ . This was achieved by creating suitable
preconditioners. In particular, stability estimates for the state equation in the corresponding norms
play a fundamental role. In the considered examples, the stability estimate (23) in the L2 -norm through
the L2-norms of the control functions was sufficient for this aim. Since the matrix B is positive definite,
to obtain this stability estimate, it is sufficient that the matrix A be positive semidefinite. This means
that all the previous results on the convergence of the iterative methods for the mesh optimal control
problems can be extended to the case when Laplace operator is replaced by another positive definite (or
positive semidefinite) elliptic operator.

Below we briefly discuss the numerical solution of the problem with fractional derivatives in both time
and space. For simplicity, we consider a problem in which the state function satisfies a homogeneous
initial-boundary-value Dirichlet problem in QT = Ω× (0, T ] and approximate it by a finite difference
scheme on a uniform mesh.

First, let us define the Riemann–Liouville space-fractional derivatives of order β ∈ (1, 2) with respect
to variable x:

∂βy

∂xβ
=

1

Γ(2− β)

∂2

∂x2

x∫

0

y(ξ, t)

(x− ξ)β−1
dξ,

∂βy

∂(−x)β
=

1

Γ(2− β)

∂2

∂x2

x∫

1

y(ξ, t)

(ξ − x)β−1
dξ. (36)

Next, define the state problem as follows:

Dty −
1 + γ1

2

∂β1y

∂xβ1
1

− 1− γ1
2

∂β1y

∂(−x1)β1
− 1 + γ2

2

∂β2y

∂xβ2
2

− 1− γ2
2

∂β2y

∂(−x2)β2
= f in QT ,

y = 0 on ∂Ω, y = 0 for t = 0, x ∈ Ω. (37)

Above Dty is a fractional derivative, defined in (4), (5), and the constants βi ∈ (1, 2), γi ∈ [−1, 1].
We approximate equation (37) by a finite difference scheme on the uniform time-space mesh with

steps h and τ . The approximation of the time-fractional derivative Dty is the same as in the previous

sections. To approximate the space fractional derivatives
∂βy

∂xβ
and

∂βy

∂(−x)β
at a mesh point xj we use

its so-called flux representation and Grunwald–Letnikov approach to approximation (see [33]. This
approach leads to the following formulas:

∂βy

∂xβ
(xj) =

∂

∂x

(
∂β−1y

∂xβ−1

)
(xj) ≈

1

h
(+βFj+1/2 − +βFj−1/2),

∂βy

∂(−x)β
(xj) =

∂

∂x

( ∂β−1y

∂(−x)β−1

)
(xj) ≈

1

h
(−βFj+1/2 − −βFj−1/2),

where

+βFj+1/2 =

{
Δβ−1y

Δxβ−1

}
j+1

=
1

hβ−1

[(x)/h]∑
k=0

θ̃ky(xj+1 − kh),

−βFj+1/2 =

{
Δβ−1y

(−Δx)β−1

}
j

=
−1

hβ−1

[(1−x)/h]∑
k=0

θ̃ky(xj + kh)
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and the constants in the approximations of the fractional derivatives are defined by the recurrent

formulas: θ̃0 = 1, θ̃k+1 =
−θ̃k(β − k − 1)

k + 1
.

Let N be the number of mesh points in the directions x1 and x2. Define for i = 1, 2 the matrices

Li =
1

hβi

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θi1 −1 0 . . . . . . 0 0

θi2 θi1 −1 . . . . . . 0 0

θi3 θi2 θi1 . . . . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

θi,N−1 θi,N−2 θi,N−3 . . . . . . θi1 −1

θi,N θi,N−1 θi,N−2 . . . . . . θi2 θi1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where θi1 = βi, θi,k+1 = −θik · (βi − k)

k + 1
for k = 1, 2, . . . N − 1. Note that the entries of the matrices

Li, i = 1, 2, satisfy the following properties:

• diagonal elements are positive, while off-diagonal elements are non-positive;

• Li is strictly diagonally dominant Toeplitz matrix.

These properties ensure that the matrices
1

2
(Li +LT

i ) are positive definite (compare with Lemma 1). Let

now Ix be N ×N unit matrix and

A1 = Ix ⊗
(
1 + γ1

2
L1 +

1− γ1
2

LT
1

)
, A2 =

(
1 + γ2

2
L2 +

1− γ2
2

LT
2

)
⊗ Ix, A = A1 +A2.

Then the constructed mesh equation can be written as follows:

y0 = 0, (By)k +Ayk = fk, k = 1, 2, . . . ,M. (38)

Due to the properties of Li the matrix As =
1

2
(A+AT ) is positive definite. Since the matrix

Bs =
1

2
(B +BT ) is also positive definite with the constant of positive definiteness χ0, then the following

stability estimate holds for the mesh equation (38): ||y||xt � χ
−1/2
0 ||f ||xt. It can be used when estimating

the equivalence constants of the corresponding matrices in Lemma 2, and the results of Theorem 4
remain valid up to constants in the estimates.

5. NUMERICAL RESULTS

The main goal of computational experiments was to check estimates for the iterative parameters
and convergence rate in the mesh problems without state constraints. We performed calculations
for a 1D problem, taking the space-time fractional equation with Dirichlet boundary condition as a
state equation, and approximated the problem by a finite-difference scheme on a uniform mesh. The
control function was right-hand side f . In the absence of constraints on y, the iterative method can be
considered not with respect to the dual variables λ, but with respect to direct variables, in our case f . In
this case, the theoretical estimates of the optimal iterative parameters and the convergence rate remain
unchanged.

For the simplicity the the domain was QT = (0, 1)× (0, 1). We varied the mesh steps and the indices
of fractional operators α ∈ (0, 1] and β ∈ [1, 2]. As follows from theoretical estimates of the rate of
convergence of iterative methods in the absence of the state constraints, it depends on the constant
C0 in the stability inequality. In turn, C0 = (ξ0 + χ0)

−1, where χ0 = χ0(α, τ) and ξ0 = ξ0(β, h) are the
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Fig. 1. Minimum eigenvalues χ0(α) of the matrix Bs (left) and ξ0(β) of the matrix As (right) for h = τ = 0.01.

minimum eigenvalues of the matrices Bs and As, respectively. Figure 1 shows the dependencies χ0 on
α and ξ0 on β for the fixed mesh steps. Note that for α = 1, the fractional-time finite-difference operator
turns into a classical first-order operator that is positive definite with χ0 = O(τ). Correspondingly, for
β = 1, the fractional-spatial finite-difference operator turns into a mesh diffusion operator with the factor
h and the constant of definite definiteness ξ0 = O(h).

The iterative method was implemented with the theoretically optimal parameter ρopt and arbitrary
accepted values ρ = 0.1, ρ = 0.5 and ρ = 0.9. Stopping criterion for iterative process was ||f (k) −
fopt|| < ε = 10−6, where fopt was «exact» solution obtained by performing a large number of iterations,
and ||.|| was the mesh analog of L2(QT )-norm.

Table 1 contains the calculated results for the limit case of the parameters α = 1 and β = 1; the
observation function yd = t1/2 sin(0.5πxNx). Numerical results demonstrate the dependence of the
number of iterations to achieve a given fixed accuracy on the mesh parameters h and τ .

The dependence of the number of iterations to achieve a given fixed accuracy on the indices α and
β is demonstrated in Table 2. The input data were as follows: τ = h = 0.01, observation function
yd = t sin(πx), stopping criterion ||f (k) − fopt|| < ε = 10−6. The calculations were performed for a
problem with no constraints and for a problem with control constraint Uad = {f ∈ R

Nx : |fi| � 0.006}.
A small obstacle value 0.006 provides a large number of mesh points at which the constraint is active.
We denote by Nit the number of the iterations for the unconstrained problem and by Ñit the number
of the iterations for the constrained problem. We see that a large number of mesh points at which the
constraint is active significantly reduces the number of iterations.

We included in the article only some of the results of computational experiments. It should be noted
that the number of iterations to achieve a given accuracy was almost insensitive to the observation

Table 1. Number of iterations Nit to achieve accuracy ||f (k) − fopt|| < ε = 10−6; unconstrained optimization
problem; α = 1, β = 1, yd = t1/2 sin(0.5πxNx)

Nx = h−1 C0 for τ = 0.05 Nit for τ = 0.05 C0 for τ = h Nit for τ = h

Nx = 20 2.4561 12 2.4561 12

Nx = 50 3.3922 15 5.4811 23

Nx = 100 3.9841 15 10.5423 57

Nx = 200 4.3906 15 20.6720 70

Nx = 500 4.6869 15 51.0669 157

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 41 No. 12 2020



2700 LAPIN, ROMANENKO

Table 2. Dependence of the number of iterations on the parameters α, β and the iterative parameter ρ

α = 1, β = 1, ρopt ≈ 0.1591 α = 0.5, β = 1, ρopt ≈ 0.6706 α = 0.5, β = 1.5, ρopt ≈ 0.8921

ρ Ñit Nit Ñit Nit Ñit Nit

ρopt 29 102 5 41 3 5

ρ = 0.1 48 168 50 283 44 93

ρ = 0.5 8 29 8 56 7 15

ρ = 0.9 3 14 3 29 3 6

function yd. This is quite expected, since in calculations it appears in the form L−T yd on the right side
of the corresponding equation (or variational inequality in the control constraint problem).

The results of computational experiments generally confirmed the theoretical estimates. Unexpected
was the high rate of convergence of iterations with an iterative parameter that significantly exceeded the
theoretically optimal one for the case α = β = 1.

6. CONCLUSIONS

We investigated the convergence of iterative methods for solving mesh approximations of optimal
control problems controlled by parabolic equations with fractional derivatives. Convergence and
estimates of the convergence rate of iterative methods are obtained on the basis of stability estimates
for mesh state equations. In deriving these estimates, an essential property was the positive definiteness
of the mesh operator of fractional time differentiation. This property is possessed by mesh operators
on a time-uniform mesh for various definitions of the fractional derivative. We limited ourselves to
the consideration of objective functionals with L2-norms of state and control functions. The presented
results can be generalized in various directions, including for more general linear state equations, other
quadratic objective functionals, and other constraints on the control and state functions.
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