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Abstract—In this paper we present analytical solutions for the cantilever beam bending problems
obtained in the non-classical electroelasticity theory with strain and electric field gradient effects. We
show that considered model allows to provide the refined analysis for the electric field distribution
around the supproted end of the cantilever taking into account the extended number of boundary
conditions, which cannot be captured in classical models.
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1. INTRODUCTION

Piezoelectric microcantilevers are the typical elements of sensor devices that are widely used in
calorimetry, chemistry, medicine etc. [1–4]. Large amount of analytical and numerical models of such
structures have been developed, which review can be found in [5–7]. In the present paper we consider
the non-classical model of piezoelectric cantilevers in the framework of second gradient electroelasticity
theory, that is the extended variant of theory of dielectrics with spatial dispersion [6, 8]. Several 2D and
3D problems in this theory were considered recently in [9–13], while its variational formulation and some
basic theorems were established in [14].

Beam theory utilized in the present study for the analysis of piezoelectric cantilevers was developed
in [15]. This theory is related to the class of gradient Euler–Bernoulli models with so-called “uniaxial
stress state” [16]. This theory was derived based on common Euler–Bernoulli hypothesis introduced
in strain-electric field gradient theory and providing the corrected variational formulation. Area of
application of this theory is related to the description of the small sized electroelastic beams, which
dimensions are comparable to the materials characteristic length. This range of dimensions in ideal
crystalline materials may have the order of interatomic distances [17, 18], however in composite
structures and in architectured metamaterials characteristic length parameters may have larger values
"— of several unit cells and more [19, 20]. From phenomenological point of view, gradient beam models
can be also used for the refined analysis of macro-sized structures in the local zones around supports
and concentrated loads [21]. In this work we show an example of such analysis of piezoelectric cantilever
beam under end point load with different type of non-classical elastic and electric boundary conditions,
which physical meaning is discussed.
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Fig. 1. Electroelastic beam.

2. ELECTROELASTIC GRADIENT BEAM MODEL

Let us consider an electroelastic beam with rectangular cross-section (Fig. 1). The beam is poled
along the thickness direction, so that it exhibits the material symmetry of a hexagonal crystal in class
6 mm—transversely isotropic about z-axis. Electric enthalpy density of the beam depends on strain,
strain gradients, electric field and electric field gradients as follows [9, 14, 15]:

H̄(εij , εij,k, Ei, Ei,j) =
1

2
Cijklεijεkl − ekijεijEk −

1

2
εijEiEj

+
1

2
Aijklmnεij,kεlm,n − 1

2
αijklEi,jEk,l, (1)

where Cijkl and Aijklmn are the fourth- and sixth-order tensors of the elastic moduli; εij = (ui,j +uj,i)/2
is an infinitesimal strain tensor; ui are the displacements; eijk is the third-order tensor of piezoelectric
moduli; εij and αijkl are the second- and the fourth-order tensors of dielectric permittivity constants;
Ei = −φ,i is the electric field vector, φ is the electric potential; the comma denotes the differentiation
with respect to spatial variables and repeated indices imply summation.

Note, that in (1) we neglect the flexoelectric and high-order coupling effects that generally can persist
in considered model. We adopt these simplifications to demonstrate the principal aspects of analytical
solutions which arise in piezoelectric gradient models.

Constitutive equations for stress, double stress, electric displacement and electric quadrupole are the
following:

τij =
∂H̄

∂εij
= Cijklεkl − ekijEk, μijk =

∂Ū

∂εij,k
= Aijklmnεlm,n, (2)

Di = − ∂H̄

∂Ei
= eijkεjk + εijEj , Qij = − ∂H̄

∂Ei,j
= αijklEk,l. (3)

Derivation of the beam model will be shortly presented here and one can find the additional discussion
in [15]. Thus, we consider the Bernoulli–Euler hypotheses for the displacements together with parabolic
low for the electric potential that allow to take into account electromechanical coupling in the case of
elementary flexure of slender beam without shear deformations [5, 6]:

u1 = −zw′(x), u2 = 0, u3 = w(x), φ = z2ϕ(x).

Strain, electric field and their gradients are the following:

ε11 = −zw′′, ε11,1 = −zw′′′, ε11,3 = −w′′,

E1 = −z2ϕ′, E3 = −2zϕ, E1,1 = −z2ϕ′′, E1,3 = E3,1 = −2zϕ′, E3,3 = −2ϕ. (4)

Cauchy stress, double stress, electric displacement and electric quadrupole follow from (4), (2), (3):

τ11 = C1111ε11 − e311E3 = −Ezw′′ + 2e31zϕ,

μ111 = A111111ε11,1 = −	2Ezw′′′, μ113 = A113113ε11,3 = −	2Ew′′, (5)

D1 = ε11E1 = −ε1z
2ϕ′, D3 = e311ε11 + ε33E3 = −e31zw

′′ − 2ε3zϕ,

Q11 = α1111E1,1 = −	2ε1z
2ϕ′′, Q13 = Q31 = α1313E1,3 = −2	2ε1zϕ

′,

Q33 = α3333E3,3 = −2	2ε3ϕ, (6)
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where we use Voigt notations e311 = e31, ε11 = ε1, ε33 = ε3, take into account that C1111 = E,
A111113 = A113111 = 0, α1113 = α1131 = α1311 = α3111 = 0 in the theory of orthotropic gradient beam
and assume for simplicity that A111111 = A113113 = 	2E, α1111 = α1313 = α3131 = 	2ε1 and α3333 =
	2ε3; 	 is the materials characterstic length, which is assumed to be the same in the elastic and electric
parts of the problem.

Based on (1), (4)–(6) the total electric enthalpy of the beam can be expressed in the form

H =
b

2

L∫

0

h∫

−h

(τ11ε11 + μ111ε11,1 + μ113ε11,3 +D1E1 +D3E3

+Q11E1,1 + 2Q13E1,3 +Q33E3,3)dzdx. (7)

Using appropriate simplifications and taking into account boundary conditions on the top and bottom
surfaces of the beam [15], variation of (7) can be presented as

δH = b

L∫

0

h∫

−h

(τ11δε11 + μ111δε11,1 + (D1 − 2Q13,3)δE1 +D3δE3 +Q11δE1,1)dzdx. (8)

Substitution of (4), (5), (6) into (8) and definition of mechanical and electric resultants provide us the
representation

δH =

L∫

0

(−Mδw′′ −Mhδw
′′′ − P1δϕ

′ − P3δϕ− Phδϕ
′′)dx,

where we introduce the bending moment M , gradient bending moment Mh, axial polarization resultant
P1, through-thickness polarization resultant P3 and resultant for gradient of axial polarization Ph
(resultant for quadrupole) as follows:

M = b

h∫

−h

zτ11dz = −EIw′′ + 2e31Iϕ, Mh = b

h∫

−h

zμ111dz = −	2EIw′′′,

P1 = b

h∫

−h

z2 (D1 − 2Q13,3) dz = −ε1(J + 4	2I)ϕ′,

P3 = 2b

h∫

−h

zD3dz = −2e31Iw
′′ − 4ε3Iϕ, Ph = b

h∫

−h

z2Q11dz = −	2ε1Jϕ
′′, (9)

where I = 2bh3/3 and J = 2bh5/5 are the classical and high order cross section moments of inertia.
In the case of mechanical loading, the work done by the external distributed transversal load q(x) is

given by

W = b

L∫

0

q(x)w(x)dx.

Boundary value problem statement can be derived from the following variational equation:

δL = δW − δH = 0, L = W −H.

As result, one can obtain the following system of governing equations{
M ′′ −M ′′′

h + q = 0,

P ′
1 − P ′′

h − P3 = 0,
x ∈ (0, L), (10)
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and natural and essential boundary conditions that should be defined at the beam ends x = 0, L with
respect to {

Mh or w′′, M −M ′
h or w′, M ′ −M ′′

h or w,

Ph or ϕ′, P1 − P ′
h or ϕ.

(11)

One can see that in presented high-order theory there exist an extended set of boundary conditions,
that allow to prescribe, e.g. the curvature of the beam (w′′) at its end, or the electric field (−ϕ′). These
additional boundary conditions should not be treated as some artifact of gradient model, but can be used
for the refined analysis of the beams state around supports and loaded areas [21].

Governing equations in terms of deflections and electric potential can be derived by substituting (9)
into (10): {

	2EIwV I − EIwIV + 2e31Iϕ
′′ = 0,

	2ε1Jϕ
IV − ε1(J + 4	2I)ϕ′′ + 4ε3Iϕ+ 2e31Iw

′′ = 0.
(12)

From the second equation in (12) we can find the representation for the second gradient of deflections

w′′ = −	2
ε1J

2e31I
ϕIV +

ε1(J + 4	2I)

2e31I
ϕ′′ − 2ε3

e31
ϕ (13)

and from the first equation in (12) we by obtain then

	4ϕV III − 2	2
(
1 +

10

3

	2

h2

)
ϕV I +

(
1 +

20

3

	2

h2
(1 + ε̄)

)
ϕIV − 20

3h2
(ε̄+K2)ϕ′′ = 0,

where K = e231/(ε1E) is the electromechanical coupling factor of the beam and ε̄ = ε3/ε1. As result,
general solution for the electric potential can be found in the following form

ϕ =
3∑

i=1

Cie
x
√
λi +

6∑
i=4

Cie
−x

√
λi +C7 + C8x, (14)

where Ci (i = 1...8) are the unknown constants to be determined from boundary conditions and λi are
the roots of the following third-order polynomial equation

20

h2	4
(ε̄+K2)−

(
3

	4
+

20

h2	2
(ε̄+ 1)

)
λ+

(
10

h2
+

3

	2

)
λ2 − 3λ3 = 0.

General solution for the displacements can be found then by using (13), taking into account that
integration results in additional two constants, such that total number of needed boundary conditions
will be 10.

3. BENDING OF PIEZOELECTRIC CANTILEVER BEAM

Let us consider now the problem of cantilever beam bending by introducing the appropriate boundary
conditions for the clamped end at x = 0 and vertical end point force end at x = L. In this case the
following sets of boundary conditions (11) can be used:

1. Left end—clamped with zero curvature and grounded with zero axial electric field; right end—
unelectroded with prescribed end point force conditions:{

x = 0 : w′′ = 0, w′ = 0, w = 0, ϕ′ = 0, ϕ = 0;

x = L : Mh = 0, M −M ′
h = 0, M ′ −M ′′

h = F, Ph = 0, P1 − P ′
h = 0.

(15)

This type of boundary conditions can be specified if the left end of the beam is fixed in the rigid metallic
grips, which are grounded and provide the constraints for the beams deflections, rotations and change
of curvature. Note that conditions for the curvature and electric field are non-classical and cannot be
specified in classical models of electroelastic beams, while the large enough fixed zone in real supportes
of the cantilevers may provide such a state described by (15).
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Fig. 2. Deflections and electric field components in the beams with different boundary conditions: (a) Eq. (15),
(b) Eq. (16), (c) Eq. (17). Solid lines—gradient solution (�/h = 0.5), dotted lines—classical solution (� = 0).

2. Left end—clamped without curvature constraints and unelectroded, right end—grounded with
prescribed mechanical force:{

x = 0 : Mh = 0, w′ = 0, w = 0, Ph = 0, P1 − P ′
h = 0,

x = L : Mh = 0, M −M ′
h = 0, M ′ −M ′′

h = F, Ph = 0, ϕ = 0.
(16)

This type of boundary conditions can be specified if the left end of the beam is fixed in the unelectroded
grips, which provide the constraints for the beams deflections and rotations only. The difference with
previous conditions here is that the constrained zone is rather small and curvature of the beam can
change under loading even inside the grips. On the right end, the beam is contacted, e.g., with grounded
substrate.

3. Left end—clamped with zero curvature and unelectroded, right end—grounded with prescribed
force: {

x = 0 : w′′ = 0, w′ = 0, w = 0, Ph = 0, P1 − P ′
h = 0;

x = L : Mh = 0, M −M ′
h = 0, M ′ −M ′′

h = F, Ph = 0, ϕ = 0.
(17)

This type of boundary conditions is intermediate between previous two. Here we have large fixed zone
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at the left end of the beam (thought it is modeled as a point condition) and grounded and mechanically
loaded right end.

Each of three presented cases of boundary conditions can be used to determine the unknown ten
constants in general solutions (14) and (13) by their substitution into (15), (16) or (17) and solution
of resulting systems of ten algebraic equations. Resulting solutions can be found analytically, however,
they have rather complicated form and do not presented here.

4. NUMERICAL EXAMPLES

Examples are given for the beams made of piezoelectric ceramics PZT-7A with material constants
E = 140 GPa, e31 = −2.1 C/m2, ε1 = 460ε0, ε3 = 235ε0, where ε0 = 8.885 × 10−12 F/m. Point force
equals to F = 0.1 mN. Beams dimensions are L = 20μm, b = h = 1μm. Numerical solutions were
found by using Wolfram Mathematica package and presented in Fig. 2.

One can see that the variants of boundary conditions (15) and (17) (Fig. 2a,c) with restricted electric
field and curvature conditions results in rather complicated state of the beam polarization near its
supported left end. In these cases gradient effects play significant role and change the length of zone
affected by the boundary constraints in electric field and even slightly change the deflections of the beam.
Solution with “soft” elastic and unelectroded electric support (16) results in almost classical behavior
of the beam without strong gradient effects evenfor rather large ratio between characteristic length and
thickness of the beam 	/h = 0.5 (see Fig. 2b).

5. CONCLUSIONS

Presented solutions shown the main features that arise in the static problems in the theory of gradient
electroelastic beams. This theory can describe the influence of non-classical effects that arise near the
constrained areas of the beam, and, generally say, in the areas of strain and electric field concentration.
These effects may be important in the case of precise measurements, when even the small noises from
supports may affected the quality of the obtained results and should be avoided in the analysis.
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