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Abstract—The viscoelastic behavior of anisotropic composite is studied in this paper. Constitutive
relations and equilibrium equations are derived for a Kirchhoff plate using general linear viscoelastic-
ity constitutive relations for the anisotropic case. The derived model parameters—plate stiffnesses—
are experimental functions. An approach to these parameters identification is given for certain cases
of material properties.
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1. INTRODUCTION

Viscoelastic properties study is one of the most dynamically developing branches of material science,
as well as composite mechanics. For applications, some simplified models like rods, plates, and shells
are significant.

This paper comes to continue papers [1–6], dedicated to the construction of composite mechanics
models of nonhomogeneous anisotropic rods and plates. Two results are presented there: following the
approach stated in [5] a plate model is derived for time-dependent material properties, as a generalization
of the elastic case; and an approach to the said model identification method.

The method of model construction is based on classical for engineering mechanics approach of
reducing three-dimensional continuum equilibrium equations into two-dimensional field equations.
The considered reduction is based on kinematical and statical hypotheses, but there are also different
methods like the power series expansion, asymptotic methods, etc, some of them are illustrated in
[7–12]. Such approaches, first arising in linear elasticity tasks, were successfully generalized for an
anisotropic, nonhomogeneous case, as well as for isotropic viscoelastic case. This paper presents a
version of anisotropic viscoelastic plates theory—an isotropic one is enough for some thin structures like
foams [16–18], but an increase of thickness leads to the significant influence of anisotropy. A noticeable
difficulty of anisotropic viscoelasticity constitutive relations usage lies in asymmetric modulus tensor
[19], which does not occur in the isotropic case, but still allows using Kirchhoff hypothesis [13]. In
accordance with an approach [20] of reducing identification problem into a least-squares one a set of
experimental tests, as well as a data processing method, were supplied by one of the authors for an
elastic plate, this paper is conscripted to suggest a solution for a linear viscoelastic plate.

A classical coordination of a plate is used; small Latin indexes i, j are supposed to ∈ [1..3], big Latin
indexes I, J ∈ [1..2], a comma represents partial spatial derivative a,j =

∂a
∂xj

, a dot is derivative with

respect to time.
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2. MECHANICAL MODEL

First of all, the mechanical models for kinematics and statics and constitutive relations for this plate
are introduced.

2.1. Kinematical and Statical Relations of Thin Plate

The thickness (h) of a plate (Π) is assumed to be significantly less than linear sizes of Π (we also
suppose Π is rectangular in a plane, so Π = a ∗ b ∗ h), h/min{a, b} < 0.1. This assumption allows to
name plate a thin one, and also to use the technique of homogenization concerning the basic plane.
Usually, the median plane, equidistant for facial surfaces, is used as a basic one; this paper also follows
this approach.

The basic idea of homogenization is tied with the kinematical assumptions method. Some kind
of physical assumption must be introduced to establish a relation between deformations (as well as
displacements) of the whole plate and its median plane, the said relation allows to compute deformations
an arbitrary point of a plate using its coordinates and information about the deformed state of the median
plane. There are various assumptions, as well as a generalization of notion “kinematical assumption” in
a formal functional way, but this paper is based on a Kirchhoff assumption. So, a deformation of a plate
in respect to neutral fiber (straight and orthogonal to the undeformed median plane)

• keeps it straight,

• may not modify its length,

• keeps it orthogonal to the deformed median plane.

As per deformation tensor, the Kirchhoff assumption may be written as εIJ = εIJ(x1, x2), εI3 =
0, ε33 = 0. For further computations a relation in terms of displacements is preferred: conditions for
deformations may be solved as a system of partial differential equations. The solution

ui = wi − δiKx3w3,K (1)

is usually called Kirchhoff plate displacement. For further computations it is necessary to define
kinematical factors: plane curvatures κIJ and plane deformations eIJ ,

εIJ = eIJ + x3κIJ =
1

2
(wI,J + wJ,I)− x3w3,IJ .

Mechanics of rods and plates appeals to the internal force factors (instead of the stress tensor)
as a main force parameter. Force factors of a plate are defined as a homogenization of stress tensor
components with respect to thickness:

TIJ =

h/2∫

−h/2

σIJdx3, MIJ =

h/2∫

−h/2

x3σIJdx3, QI =

h/2∫

−h/2

σI3dx3. (2)

Here TIJ are in-plane forces, QI are transverse shear forces, and MIJ are bending moments. Equilib-
rium equations for force factors are a generalization of classical plate equations

TIJ,J + qI = 0, MIJ,IJ = q, (3)

qI and q are the surface loads—mass and surface forces and moments homogenization [5].
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2.2. Constitutive Equations

The material is supposed to be linear viscoelastic and orthotropic with respect to median plane.
The constitutive relations are a geometrical generalization of classical linear viscoelasticity constitutive
relations [21]

σij =

t∫

0

Rijkl(t− τ)ε̇kl(τ)dτ +Rijkl(t)εkl(0), εij =

t∫

0

Πijkl(t− τ)σ̇kl(τ)dτ +Πijkl(t)σkl(0). (4)

The relaxation and compliance functions are mutually inverse,
t∫
0

Rijkl(t− τ)dΠklmn(τ) = Δijmn,

Δ is a unit tensor.

Relations (4) are formulated for a general anisotropic linear viscoelastic body. It is essential to trans-
form these relations into special relation(-s), which should establish a correspondence between force
factors and kinematical factors of a plate. This transformation is based on force factors definition (2) and

first constitutive relation (4). It may be simplified into σij =
t∫
0

RijKL(t− τ)ε̇KL(τ)dτ +RijKL(t)εKL(0)

taking into account the kinematical assumption. So,

TIJ =

h/2∫

−h/2

t∫

0

RIJKL(t− τ)ε̇KL(τ)dτ +RIJKL(t)εKL(0)dx3,

MIJ =

h/2∫

−h/2

t∫

0

RIJKL(t− τ)ε̇KL(τ)x3dτ +RIJKL(t)εKL(0)x3dx3.

Substitution of (1) leads to

TIJ =

t∫

0

AIJKL(t− τ)ėKL(τ)dτ +AIJKL(t)eKL(0) +

t∫

0

BIJKL(t− τ)κ̇KL(τ)dτ

+BIJKL(t)κKL(0),

MIJ =

t∫

0

BIJKL(t− τ)ėKL(τ)dτ +BIJKL(t)eKL(0) +

t∫

0

DIJKL(t− τ)κ̇KL(τ)dτ

+DIJKL(t)κKL(0). (5)

A generalization of nonhomogeneous plate stiffnesses is defined there: AIJKL(t) =
h/2∫

−h/2

RIJKL(t)dx3

are compressional stiffnesses, BIJKL(t) =
h/2∫

−h/2

RIJKL(t)x3dx3 are transverse shear stiffness,

DIJKL(t) =
h/2∫

−h/2

RIJKL(t)x
2
3dx3 are bending stiffnesses. For a viscoelastic tensor RIJKL of odd with

respect to x3 components multilayer influence stiffnesses are absent: BIJKL = 0, bending deformations
and plane deformations of this plate are independent. Different components of RIJKL(t) may be different
time-functions.

In light of practical importance, only bending is considered.
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2.3. Equilibrium Equations of a Plate

Direct substitution of (5) into (3) results into equilibrium equations of a plate
( t∫

0

AIJKL(t− τ)ėKL(τ)dτ +AIJKL(t)eKL(0) +

t∫

0

BIJKL(t− τ)κ̇KL(τ)dτ

+BIJKL(t)κKL(0),J

)
= qI ,

( t∫

0

BIJKL(t− τ)ėKL(τ)dτ +BIJKL(t)eKL(0) +

t∫

0

DIJKL(t− τ)κ̇KL(τ)dτ

+DIJKL(t)κKL(0),IJ

)
= q. (6)

This representation may be shorted and transformed by introducing notations 〈f〉 = 1
h

h/2∫
−h/2

fdx3,

R[ε]IJ =
t∫
0

RIJKL(t− τ)ε̇KL(τ)dτ . The result may be called a shortened form of equilibrium equations:

(〈R[ε]IJ 〉),J = qI ; (〈R[εx3]IJ〉),IJ = q;

R is an operator in time-domain, 〈 〉 is a spatial one with respect to thickness, ,I and ,IJ are spatial with
respect to plane.

Similar to the elastic case, one needs four boundary conditions for every point of the boundary contour
to close the system. Also due to a dynamical effect, an initial condition for curvatures and deformation is
needed. Two types of boundary conditions may occur:

• kinematical conditions, wi

∣∣
∂Π

= fi(x1, x2),
dwi
dn

∣∣
∂Π

= gi(x1, x2),

• statical conditions, TIJnJ

∣∣∣
Γ
= T 0

I , (QInI +
d
ds(εKInKMIJnJ))

∣∣∣
Γ
= Q0 + (εJIM

0
I nJ),

MIJnInJ

∣∣∣
Γ
= M0

I nI [5].

3. MODEL IDENTIFICATION

One of the important focuses of any mechanical model is the identification problem. For a static
loading of an orthotropic Kirchhoff plate, it becomes the problem of experimental stiffness computation.
This problem has some well-known solutions for an elastic isotropic plate as well as some solutions
for the non-isotropic case using different computation methods. It is necessary to note an approach of
minimization of the error on constitutive law [15]. Viscoelastic and even linear viscoelastic cases differ
significantly: the identification object is a set of time-functions instead of a set of constant values; as
it was mentioned above, one of moduli symmetry conditions is absent: CIJKL �= CKLIJ [19], different
components of C are different time-functions. However, we are also going to follow the approach, stated
in [15], by rewriting the constitutive equations into a state-space form [22] and solving a linear system.

It is necessary to propose a set of experiments and a data processing algorithm, which allows
computing the relaxation function of the investigated material. One of the favorable features of the
identification problem is the possibility to choose the most convenient for further computations loading
program. A loading, which makes possible an analytical solution of the equation of moments (3), will
be called a simple one. The identification problem is stated and studied there for any simple loading for
a plate. The particular character of loading is supposed to be predetermined, as well as any necessary
loading parameters, that allow concluding MIJ = MIJ(x1, x2) are known.
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Some restriction on material properties is introduced to simplify the task. Let us assume R to
have in-plane areas of constant material properties with a surface, sufficient for at least 5 curvatures
measurements. The practical boundaries of these areas are equipment-dependent. Otherwise, a
facial plane Σ0 may be covered by a set of Ui, i ∈ (1..n), Σ0 = ∪Ui, Ui ∩ Uj ⊂ ∂Ui ∩ ∂Uj , RIJKL

∣∣
Ui

=

RIJKL(t). Further analysis is processed on a fixed Ui.

The momentum equilibrium equation (6) for a fixed Ui transforms into
( t∫

0

BIJKL(t− τ)ėKL(τ)dτ +BIJKL(t)eKL(0) +

t∫

0

DIJKL(t− τ)κ̇KL(τ)dτ

+DIJKL(t)κKL(0)

)

,IJ

= q(t).

For a simple loading identification problem may be solved using the constitutive relations
t∫

0

BIJKL(t− τ)ėKL(τ, x1, x2)dτ +BIJKL(t)eKL(0, x1, x2)

+

t∫

0

DIJKL(t− τ)κ̇KL(τ, x1, x2)dτ +DIJKL(t)κKL(0, x1, x2) = MIJ(t, x1, x2),

t∫

0

AIJKL(t− τ)ėKL(τ, x1, x2)dτ +AIJKL(t)eKL(0, x1, x2)

+

t∫

0

BIJKL(t− τ)κ̇KL(τ, x1, x2)dτ +BIJKL(t)κKL(0, x1, x2) = TIJ(t, x1, x2),

where M and κ are measured. Continuous-time representation should be replaced by a discrete-time
one using a unit-step discretization:

l∑
0

AIJKL(l − k)(eKL(k + 1, x1, x2)− eKL(k, x1, x2)) +AIJKL(l)eKL(0, x1, x2)

+

l∑
0

BIJKL(l − k)(κKL(k + 1, x1, x2)− κKL(k, x1, x2)) +BIJKL(l)κKL(0, x1, x2)

= TIJ(l, x1, x2). (7)

l∑
0

BIJKL(l − k)(eKL(k + 1, x1, x2)− eKL(k, x1, x2)) +BIJKL(l)eKL(0, x1, x2)

+

l∑
0

DIJKL(l − k)(κKL(k + 1, x1, x2)− κKL(k, x1, x2)) +DIJKL(l)κKL(0, x1, x2)

= MIJ(l, x1, x2). (8)

The goal is to identify stiffnesses, using eIJ and κIJ measurements, as well as information about
loading (MIJ and TIJ are supposed to be known). For a fixed l there are two approaches to compute
A,B,D(l): one may use previous values A,B,D(l − 1) . . . A,B,D(0) and interpret (7) and (8) as
equations on variables A,B,D(l− 1) or to recalculate all the stifness values for every new measurement
and post-process the array of results.
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3.1. State-Space Form of Equilibrium Equations

For a full asymmetry of the plate analysis of the RIJKL identification problem is more efficient in
comparison with A,B,D identification. The identification procedure, based on plate equations, may be
more efficient only for symmetry, which results into B = 0, at least ∀Ui (this condition does not affect
D1122 �= D2211). So (7) and (8) simplify into the uncoupled equations

l∑
0

AIJKL(l − k)(eKL(k + 1, x1, x2)− eKL(k, x1, x2)) +AIJKL(l)eKL(0, x1, x2) = TIJ(l, x1, x2),

l∑
0

DIJKL(l − k)(κKL(k + 1, x1, x2)− κKL(k, x1, x2)) +DIJKL(l)κKL(0, x1, x2)

= MIJ(l, x1, x2). (9)

Let

−→a =

⎛
⎜⎜⎜⎜⎜⎜⎝

A1111

A1122

A2211

A2222

⎞
⎟⎟⎟⎟⎟⎟⎠

;
−→
d =

⎛
⎜⎜⎜⎜⎜⎜⎝

D1111

D1122

D2211

D2222

⎞
⎟⎟⎟⎟⎟⎟⎠

;
−→
T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T 1
11

T 1
22
...

T n
11

T n
22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;
−→
M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1
11

M1
22
...

Mn
11

Mn
22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

here 1 . . . n are dots of measurements, located in Ui. The said notation allows rewriting (9) into a system
of ordinary linear equations

E(1)−→a (l) +

l∑
k=1

(E(k + 1)− E(k))−→a (l − k) =
−→
T ;

K(1)
−→
d (l) +

l∑
k=1

(K(k + 1)−K(k))
−→
d (l − k) =

−→
M, (10)

E(t) and K(t) are matrixes of plane deformation and curvatures:

E(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e111(t) e122(t) 0 0

0 0 e111(t) e122(t)
...

...
...

...

en11(t) en22(t) 0 0

0 0 en11(t) en22(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; K(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κ
1
11(t) κ

1
22(t) 0 0

0 0 κ
1
11(t) κ

1
22(t)

...
...

...
...

κ
n
11(t) κ

n
22(t) 0 0

0 0 κ
n
11(t) κ

n
22(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

So (10) becomes an overdetermined system of linear algebraic equations on −→a and
−→
d .

3.2. Solution

The said system (10) is overdetermined in general case of dependance MIJ = MIJ(x1, x2), TIJ =
TIJ(x1, x2). For example, the case of pure bending corresponds to MIJ = const, and system (10) be-
comes underdetermined due to a linear dependance between strings of E and K. However, components
of these matrixes are a result of noisy measurements and numerical spatial differentiation, so in practical
tasks the system (10) may be considered as overdetermined. As usual, an overdetermined system may
be solved by a least-squares method, but model data testing shows the necessity of a large number
of measurements (over 100 spatial measurements) for acceptable accuracy of the method (5% error).
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This phenomenon occurs due to the erroneous calculation of deformations and curvatures caused by
numerical differentiation of measured displacements.

A solution of an overdetermined system with additive noise in the matrix may be found using the
total least squares [23] approach, so d̃(l), ã(l) may be calculated using a singular value decomposition
procedure [25].

Practical testing show low accuracy of the method (for some combinations of model properties,
estimated stiffnesses are even negative). This error may be corrected by including a set-type restriction
[27] on d̃: d̃ components are a result of relaxation function integration, so d̃(t) must be positive ∀t and
must not increase in time: d̃(l) � d̃(k)∀k < l, the same for a. Finally

ã = argmin
||E(1)x(l) +

∑l
k=1(E(k + 1)− E(k))ã(l − k)−−→

T ||2
1 + ||x||2 , 0 < ã(l) � ã(l − k),

d̃ = argmin
||K(1)x(l) +

∑l
k=1(K(k + 1)−K(k))d̃(l − k)−−→

M ||2
1 + ||x||2 , 0 < d̃(l) � d̃(l − k),

here ||a||2 is a standard Euclidean vector norm and Frobenius matrix norm.

4. CONCLUSION

To sum up, this paper presents an approach to the identification of an anisotropic viscoelastic
plate model. A simple version of model derivation, based on Kirchhoff’s kinematical assumption
was considered there. To supply an identification procedure we have also introduced some additional
assumptions on material properties symmetries. However, even this case became nontrivial to consider:
the state-space form of identification problem is an overdetermined system of linear equations with noisy
matrix, for particular cases of loading columns of this matrix are close to linear dependency. That does
not allow us to apply the classical least-squares approach: one needs to use some modified total least-
squares approach. The suggested approach is step-by-step in time, so the further goal is to derive a
simultaneous one (to reduce error accumulation). Also, an analysis of estimation quality is planned.
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