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Abstract—The present work is devoted to accelerating the NOISEtte code and lowering its memory
consumption. This code for scale-resolving supercomputer simulations of compressible turbulent
flows is based on higher-accuracy methods for unstructured mixed-element meshes and hierarchical
MPI + OpenMP parallelization for cluster systems with manycore processors. We demonstrate
modifications of the underlying numerical method and its parallel implementation, which consist, in
particular, in using a simplified approximation method for viscous fluxes and mixed floating-point
precision. The modified version has been tested on several representative cases. The performance
measurements and validation results are presented.
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1. INTRODUCTION

The numerical solution of computational fluid dynamics (CFD) problems usually imposes rather
high computing demands, especially in the case of scale-resolving supercomputer simulations. Such
simulations, among other things, allow obtaining unsteady aerodynamic and aeroacoustic properties,
as well as more accurately predict integral characteristics (lift, drag). A fine enough spatial mesh, a
sufficiently small time step and a long enough time integration period (for accumulation of flow statistics)
are required to resolve dynamics of turbulent structures correctly. All this leads to high computational
costs.

The scientific computing community spends a lot of effort on accelerating and cheapening CFD
simulations. The development of mathematical models and simulation approaches is aimed at obtaining
accurate results on increasingly coarse meshes. For instance, hybrid approaches that efficiently combine
Reynolds-averaged Navier–Stokes (RANS) and Large Eddy Simulation (LES) methods allow to
significantly reduce mesh resolution requirements. Among such approaches, the non-zonal Detached
Eddy Simulation (DES) methods are widely used, comprehensively investigated and validated. The
most advanced versions of this method are formulated in [1, 2].

Another direction that leads to significant acceleration is the use of massively parallel computing
accelerators, such as graphics processing units (GPUs). Representative examples of porting codes
to the GPU architecture can be found, for instance, in [3, 4]. In [3], a rather mature and advanced
GPU implementation for scale-resolving simulations using high-order schemes is compared with CPU
implementations of well-known commercial CFD codes in terms of computing cost and accuracy. In [4],
a GPU code for simulations of flows at high Mach numbers is presented.
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Another important direction of acceleration is the development of faster solvers for sparse systems of
linear equations (SLAE), which often arise in CFD applications and in many cases consume most of the
computing time (as in the case of the present work). An example of thereof can be found in [5], where
a GPU implementation of a multigrid-based SLAE solver is connected to the OpenFOAM platform to
speed up simulations.

Significant acceleration can be achieved by taking care of the data locality in memory. In [6], the
so-called locally recursive non-locally asynchronous algorithm is used for the explicit discontinuous
Galerkin method on structured grids in order to speed up computations by increasing the reuse of data
in cache.

Other relevant examples of acceleration can be found in the following works. In [7], combined
distributed and shared memory parallelization is implemented to accelerate simulations on cluster
systems with Intel Xeon Phi manycore devices. The benefits of architecture-specific optimizations in a
CFD code for scale-resolving simulations are demonstrated in [8] on the example of the Elbrus multicore
processor architecture. Significant speedup can achieved by improving a time integration method and
its parallel implementation, as it was shown, for instance, in [9] for a Lower-Upper Symmetric Gauss–
Seidel method.

In the present article, we accelerate the NOISEtte code for scale-resolving simulations of compress-
ible turbulent flows. This code is based on higher-accuracy edge-based schemes [10, 11] for unstruc-
tured mixed-element meshes. It has multilevel MPI + OpenMP parallelization [13] for supercomputers
based on manycore processors. Details about the data structure implementation that focuses on both
performance and reliability are presented in [14].

The proposed modifications aimed at reducing computing cost and memory consumption consist,
first, in a simplified approximation method for viscous fluxes and, second, in the use of mixed single and
double floating-point precision. The changes mainly affect the part of the numerical algorithm that is
associated with the computation of viscous fluxes, as well as the SLAE solver inside the Newton iterative
process.

The rest of the paper is organized as follows. The mathematical model and numerical method are
outlined in Section 2. Section 3 is devoted to the modification of viscous fluxes calculations. The
changes in software implementation are presented in Section 4. The resulting performance gain is
presented in Section 5. Validation of the proposed changes is demonstrated in Section 6 using several
representative cases. Finally, conclusions are summarized in Section 7.

2. SUMMARY OF MATHEMATICAL MODEL AND NUMERICAL METHOD
2.1. Mathematical Model

The modeling of a turbulent, compressible flow is considered. The Navier–Stokes equations for a
compressible ideal gas are used as a basic mathematical model:

∂ρ

∂t
+∇j(ρuj) = 0;

∂ρui
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+∇j(ρuiuj + δijp− τij) = 0;
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We assume the Einstein summation rule. The tension tensor τ = {τij} and the heat flux q = {qj} are
defined as
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Turbulence is modeled using one of the following approaches: Direct Numerical Simulation (DNS),
Reynolds-Averaged Navier–Stokes (RANS), including the basic ones [15, 16]; Large Eddy Simula-
tion (LES), including [17, 18]; hybrid RANS-LES approaches, such as Detached Eddy Simulation
(DES) [1].
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2.2. Numerical Method

The set of higher-accuracy vertex-centered schemes [10, 11] based on quasi-one-dimensional
reconstruction is used for finite-volume spatial discretization of the governing equations on an unstruc-
tured mesh. The extension to mixed-element meshes, which can contain tetrahedrons, quadrangular
pyramids, triangular prisms and hexahedrons, is achieved by using direct control volumes [12]. The
numerical flux through a face between two control volumes is computed using one of several Riemann
problem solvers [19], depending on the flow conditions (the Roe scheme for subsonic flows, the HLLC
for supersonic flows, among others).

Explicit Runge–Kutta schemes up to fourth order and the classical backward differentiation formula
schemes BDF1 and BDF2 are used for discretization in time. Denote by Qn the set of all conservative
variables on the timestep tn, then the scheme BDF1 can be represented in the form (Qn+1 −Qn)/τ +
Φ(Qn+1) = 0, where Φ is a mesh approximation of the divergence of fluxes. To solve this system, the
simplified Newton method is used:

Δ(0) = 0, Δ(s+1) = Δ(s) −
(
I +

dΦ

dQ
(Qn)

)−1
(
Δ(s)

τ
+Φ

(
Qn +Δ(s)

))
,

Qn+1 = Qn +Δ(s). (2)

To solve the systems of linear algebraic equations (SLAE) with the Jacobi matrix, I + dΦ
dQ(Qn), the

preconditioned Bi-CGSTAB [20] method is used. The scheme BDF2 is treated similarly.
The set of boundary conditions for exterior faces consists of no-slip conditions for impermeable solid

walls (isothermal, adiabatic, constant heat flux), Dirichlet’s conditions, characteristic inflow/outflow
conditions [21].

3. MODIFICATION OF THE NUMERICAL ALGORITHM

3.1. Calculation of Viscous Fluxes

The viscous and heat terms in Navier–Stokes equations (1) can be represented in a general form
Diju = ∇i(μ∇ju), where μ is a scalar coefficient, which can be dynamic viscosity or heat conductivity.
For the vertex-centered schemes the most robust and popular method to approximate Diju is the P1-
Galerkin method.

Consider an unstructured mixed-element mesh. Let E be the set of mesh elements, N be the set of
mesh nodes, Ω = ∪e∈Ee be the computational domain, ∂Ω be its boundary. Define the basis functions
{φG(r)}, where r is a radius vector and G ∈ N such that the following properties hold.

1. φG is a continuous function on Ω.

2. The support of φG coincide with the set of elements containing vertex G.

3. φG(rG) = 1; φG(rK) = 0 for G �= K.

4. Any linear function can be exactly represented by a linear combination of the basis functions.

For a simplicial mesh these properties define the basis functions uniquely, otherwise it is possible to
use different sets. To proceed, we do not need the exact specification.

Average Diju over space with the weight φG:

(Diju)G ≈ 1∫
Ω

φGdV

∫
Ω

∇i(μ(r)∇ju)φGdV

=
1∫

Ω

φGdV

⎡
⎣∫
∂Ω

niμ(r)(∇ju)φGdS −
∫
Ω

μ(r)(∇ju)(∇iφG)dV

⎤
⎦ ,
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where ni are the components of the unit outward normal to the computational domain. Then substitute
u(r) = uG +

∑
(uK − uG)φK(r). We get

(Diju)G ≈ 1∫
Ω

φGdV

⎡
⎣BG −

∑
K

(uK − uG)

∫
Ω

μ(r)(∇jφK)(∇iφG)dV

⎤
⎦ ,

where

BG =
∑
K

(uK − uG)

∫
∂Ω

niμ(r)(∇jφK)φGdS.

The approximation we get is the mass-lumped Galerkin approximation of Diju. The terms in sums are
nonzero only if there is an element containing nodes K and G. BG is nonzero only if G is a boundary
node. The approximation of BG depends on the boundary conditions imposed, so we will not consider it
later.

In solving Navier–Stokes equations the coefficient μ(r) in (4) is also a mesh function so the integrals
need to be approximated. We can approximate μ(r) by a constant inside each mesh element, which is
equal to the average of the nodal values at the vertices of the element. Then

(Diju)G ≈ 1∫
Ω

φGdV

⎡
⎣BG −

∑
K∈N

(uK − uG)
∑

e�G,K

μeκ
G,K,e
i,j

⎤
⎦ , (3)

where the inner sum is over mesh elements e containing nodes G and K, and

κ
G,K,e
i,j =

∫
e

(∇jφK)(∇iφG)dV.

Obviously, κG,K,e
i,j = κ

K,G,e
j,i . The coefficients κ

G,K,e
i,j can be computed once and then stored in memory.

In 3D calculation the storage of the coefficients κ
G,K,e
i,j takes a lot of memory and a lot of time to get

them from memory at each time step. We can write the simplified approximation:

(Diju)G ≈ 1∫
Ω

φGdV

[
BG −

∑
K

(uK − uG)
μG + μK

2
mG,K

i,j

]
, (4)

where

mG,K
i,j =

∑
e�K,L

μe =

∫
Ω

(∇jφK)(∇iφG)dV.

In this case there are only 9 coefficients for one pair of nodes belonging to one element (obviously,
mG,K

i,j = mK,G
j,i ). Moreover, if K and G do not belong to the domain boundary, then

mG,K
i,j =

∫
Ω

(∇jφK)(∇iφG)dV = −
∫
Ω

(∇i∇jφK)(φG)dV =

∫
Ω

(∇iφK)(∇jφG)dV = mG,K
j,i

so we can store only 6 coefficients exploiting this symmetry. The test cases for the low-Reynolds
problems shows that this method can provide a wrong solution if μ varies in space (for example, shock
wave profile with the constant kinematic viscosity). However, for convection-dominant problems with
moderate Mach numbers the solution is admissible. This will be shown in Section 6.

In summary, the transition from the original P1-Galerkin method to the simplified formula (4)
eliminates the double summation in (3), which results in at least 3 times lower memory requirements
and computing costs in the three-dimensional case.
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4. MODIFICATION OF THE SOFTWARE IMPLEMENTATION

4.1. Using Mixed Floating-Point Precision for Viscous Fluxes

We use an adjacency graph to deal with the coefficients κG,K,e
i,j or mG,K

i,j needed to compute (3) or (4),
respectively. The vertices of this graph correspond to mesh nodes. A pair of vertices is connected by an
edge if there is a mesh element that includes the two corresponding nodes. We store the coefficients in
blocks for each edge of this adjacency graph. The block size is variable in the original version, because
for each edge it depends on the number of mesh elements that include its pair of nodes. In the modified
version, the block size is fixed, 6 real values per edge.

We use special containers for block data [14], which have a plain pointer in the backend and provide
an access interface similar to a two-dimensional array. In the case of a variable block size, the pointer
is supplemented with a compressed sparse row (CSR) representation for positioning. In a loop over the
set of graph’s edges, the contribution of each edge is computed and added into its two incident nodes in
order to obtain values of (3) or (4) in each node.

The coefficients κ
G,K,e
i,j or mG,K

i,j can be downshifted to the single-precision floating-point format
without significant loss of accuracy, which will be proved in Section 6. By doing so, the memory
consumption and memory traffic are reduced by almost half.

Let us summarize memory costs. In the case of an unstructured tetrahedral mesh, the array of
coefficient κG,K,e

i,j for the original version (3) consumes 2.5 KB per mesh node. The simplified version

(4) needs about 0.34 KB per mesh node to store mG,K
i,j , 7.5 times less. In the case of a hexahedral mesh,

the original version consumes 2 KB per node, while the modified version needs about 0.62 KB per node
(3.2 times less). The above memory costs correspond to the double-precision floating-point format. If
we use the single-precision format for these coefficients, the memory size is accordingly halved. Further
details about memory consumption can be found in the following section in Table 2.

Finally, it should be noted that the modified version (4) is much better suited for the GPU architecture
for the reason explained below. In the CPU version, the viscous fluxes are computed in a loop over
the edges of the corresponding adjacency graph. Therefore, processing one edge can be an elementary
task in the stream processing paradigm. The GPU computing subroutine (the so-called kernel) for the
viscous fluxes calculates the contribution of a given edge and adds it to its nodes. In order to eliminate the
data dependency (race condition) when summing into nodes, we can either use an intermediate storage
for subsequent summation (as explained in [22], subsection 4.3.1), or graph coloring that splits the set
of edges into subsets that have no edges with a common node.

In the original version, the second sum in (3) leads to the presence of a variable-sized loop inside
the kernel, which significantly slows down the computations. This loop causes divergence of threads
running simultaneously in one stream multiprocessor. There is no such a loop in the modified version,
therefore, it is not only less computationally expensive, but also more efficient on the GPU.

4.2. Using the Single-Precision Floating-Point Format for the Jacobi System

In the case of a Newton-based implicit scheme, the tensor coefficients for viscous fluxes become
the second biggest memory consumer, while the Jacobi matrix takes the first place. The solution of the
SLAE with the Jacobi matrix at each iteration is needed to direct Newton’s process towards convergence
by finding the correction Δ(s) in (2) to the mesh functions of the conservative variables. To solve
this system, we use an iterative method (the preconditioned Bi-CGSTAB [20]) with a relatively coarse
residual criterion. In our practical applications, the solver tolerance (the ratio of the residual vector norm
to the norm of the right-hand side vector) is usually in the range from about 10−3 to 10−2. This level of
accuracy is sufficient, which means that a further increase in accuracy does not affect the convergence of
Newton’s process. Taking this into account, we can expect that solving the Jacobi system using single
precision is sufficient. In this case, the correction obtained in single precision is converted into double
precision and applied to the mesh functions. By doing so, Newton’s process remains unchanged and is
carried out in double precision. Therefore, using single precision in the SLAE solver should not affect
the results of the numerical simulation if the following conditions are satisfied: 1) the solver succeeds to
find the solution with the requested accuracy; 2) the convergence of Newton’s process is not broken.
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Table 1. Timing results (per one time step) for the original (3) and reduced-cost (4) versions of viscous fluxes using
DNS approach, the EBR5 scheme [10], the explicit 4-th order Runge-Kutta and implicit 2-nd order Newton-
based integration schemes, mixed (single precision for the “viscous” coefficients κ

G,K,e
i,j , mG,K

i,j and the Jacobi
matrix) and double floating-point precision, a hexahedral mesh of 1.5 million nodes and a tetrahedral one of
1 million nodes

Version Precision Mesh,
nodes

Overall time, s Viscosity time, s Solver time, s

explicit implicit explicit implicit implicit

Basic Double hexa, 1.5× 106 0.742 2.62 0.287 0.457 1.70

Reduced Double hexa, 1.5× 106 0.567 2.53 0.126 0.367 1.71

Basic Mixed hexa, 1.5× 106 0.739 1.69 0.281 0. 380 0.90

Reduced Mixed hexa, 1.5× 106 0.563 1.59 0.123 0.283 0.90

Basic Double tetra, 106 0.839 1.85 0.305 0.297 1.10

Reduced Double tetra, 106 0.568 1.71 0.075 0.166 1.11

Basic Mixed tetra, 106 0.806 1.29 0.269 0.251 0.61

Reduced Mixed tetra, 106 0.566 1.15 0.071 0.136 0.62

To verify this, we tested the use of the single-precision floating-point format for the Jacobi matrix
(stored in a specialized CSR-based block format) and the SLAE solver in various representative
simulations. It appeared that there is no affect on the convergence of the Newton process in our target
applications, which are scale-resolving simulations with a time step limited by the necessary resolution
of turbulent dynamics. The choice of the floating-point precision for the solver is implemented at compile
time with a preprocessor definition. This modification halved the memory requirements for the Jacobi
system and significantly accelerated the solver.

5. PERFORMANCE BENEFITS

Since there have been no changes in MPI parallelization, performance is measured on a single
computing node. The node has two 16-core Intel Xeon E5-2683 v4 CPUs (2.1 GHz, 77 GB/s in 4
DDR4 channels, 40 MB L3 cache). Detailed information on the parallel performance of the NOISEtte
code on various supercomputers can be found in [1], where scalability of up to 10 thousand cores is
demonstrated.

Two test cases have been studied: a round jet flow using a hexahedral mesh of 1.5 million nodes
(described in the following section) and flow around a sphere using a tetrahedral mesh of 1 million nodes.
The parallel execution configuration used in both cases is two MPI processes (one per CPU) with 16
threads each. Performance results are presented in Table 1 in terms of wall clock time. Comparison in
terms of memory consumption is given in Table 2.

The viscous fluxes calculation subroutine differs for explicit and implicit time integration schemes.
The latter includes the calculation of the coefficients of the Jacobi matrix (two diagonal blocks and two
off-diagonal blocks of size 5x5 per edge). Therefore, execution times have been measured for both the
explicit 4th order Runge–Kutta and 2nd order Newton-based implicit schemes. Timing results for the
basic (3) and reduced-cost (4) versions are given for mixed and double floating-point precision. In the
mixed-precision version, the single-precision format is used only for the “viscous” coefficients κ

G,K,e
i,j ,

mG,K
i,j and the Jacobi matrix.

The results in Table 1 show that the arithmetic intensity of the viscous fluxes calculation is sufficient
to hide the memory traffic when reading the coefficients in the case of an explicit scheme, since there is
almost no difference in time between the mixed and double precision versions. Comparison of results
for tetrahedral and hexahedral meshes shows that the new version gives bigger benefits in tetrahedral
zones.
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Table 2. Memory consumption for the basic (3) and reduced-cost (4) versions of viscous fluxes using DNS
approach, the EBR5 scheme [10], the explicit 4th order Runge–Kutta and implicit 2nd order Newton-based time
integration schemes, mixed (single precision for the “viscous” coefficients κ

G,K,e
i,j , mG,K

i,j and the Jacobi matrix)
and double floating-point precision, a hexahedral mesh of 1.5 million nodes and a tetrahedral one of 1 million nodes

Version Precision Mesh,
nodes

Total memory, GB Storage for

explicit implicit coefficients, GB

Basic Double hexa, 1.5× 106 9.8 18.0 3.03

Reduced Double hexa, 1.5× 106 7.7 15.9 0.94

Basic Mixed hexa, 1.5× 106 8.6 12.4 1.52

Reduced Mixed hexa, 1.5× 106 7.6 11.4 0.47

Basic Double tetra, 106 5.8 8.6 2.5

Reduced Double tetra, 106 3.6 6.4 0.33

Basic Mixed tetra, 106 4.6 5.9 1.25

Reduced Mixed tetra, 106 3.5 4.8 0.17

Table 3. of drag and lift coefficients for NACA0012 case

Cd,p Cd,visc Cl,p Cl,visc

Basic version 0.00625 0.0061626 1.0883 9.32e-5

Reduced-cost version 0.00625 0.0061676 1.0894 9.33e-5

Difference, % 0 0.08 0.10 0.11

In summary, in the case of an explicit scheme, the accelerated version of the viscous fluxes calculation
outperforms the baseline version by a factor of ×2.3 for the hexahedral mesh and ×4.3 for the tetrahedral
mesh. In the “implicit” case, these factors are smaller, ×1.6 and ×2.2, respectively, because filling in
the Jacobi matrix takes a significant fraction of time. In terms of memory costs, the storage for the
coefficients in the new version consumes 6.4 and 15 times less for tetrahedral and hexahedral meshes,
respectively.

6. VALIDATION OF MODIFICATIONS, APPLICATION EXAMPLES

6.1. RANS Simulations of Flow Around the Model NACA0012 Profile

Firstly we study a subsonic flow around a model airfoil section. In the experimental conditions, the
infinite NACA0012 profile with the chord length c was placed inside the free stream fully turbulent
flow characterized by Mach number M = 0.15 and Reynolds number Rec = 6× 106 at the angle of
attack (AOA) 10◦ [23]. The two-dimensional computational domain (Fig. 1) is represented by the
square with −500 < x/c, y/c < 500. The corresponding mixed-element mesh consists of 83 thousand
nodes (442 nodes at the body surface) and is formed by quadrilaterals near airfoil surrounded by
an unstructured triangular region. At the body surface, no-slip adiabatic boundary conditions were
employed. Hereinafter, we use the Spalart–Allmaras turbulence model as the closure for the RANS
approach. The results shown in Fig. 2 and Table 3 confirm that the results of the baseline and modified
versions are identical.

6.2. RANS Simulations of Flow Around the Model RAE2822 Profile

Next, we study a transonic flow with the presence of shocks, namely, the fully turbulent flow at
M = 0.729 and Rec = 6.5× 106 around the RAE2822 profile with the chord length c at AOA 2.31◦ [24].

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 41 No. 8 2020
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Fig. 1. Scheme of the computational domain (not in scale) for NACA0012 (left) and RAE2822 (right) model problems,
rendered using numerical solution (pressure field and streamlines).
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Fig. 2. Comparison of pressure and friction coefficients for NACA0012 case.
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Fig. 3. Comparison of pressure and friction coefficients for RAE2822 case.

The corresponding two-dimensional computational domain (Fig. 1) is defined by the structured mesh
of 24 thousand nodes (369 × 65) in the −20 < x/c, y/c < 20 area. As in previous case, we use no-slip
adiabatic boundary conditions at the solid surface. The results shown in Fig. 3 and Table 4 lead us to the
same conclusion, as in the previous case.
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Fig. 4. View of the instantaneous flow field (vorticity magnitude) with indication of profile lines (top). Averaged
distributions of the streamwise velocity and its root mean square (rms) values over the jet centerline (middle) and
resolved Reynolds stresses over the lip line downstream the nozzle edge (bottom) obtained with the basic and reduced-
cost versions.

6.3. Scale-Resolving Simulations

Finally, we take on three-dimensional problems. The immersed unheated turbulent jet exiting from a
conical nozzle at Mjet = 0.9 and ReD = 1.1× 106 (based on the jet diameter D and the jet exit velocity
Ujet) is considered. The flow dynamics is similar to the jets which had been investigated experimentally
by several authors in the literature [25–28]. The computational setup, including the mesh and boundary
conditions, is inherited from the study carried out by Shur et al. [29]. This case was used in various
numerical studies by those [1, 30] and another authors [31, 32]. The simulation of the jet follows the
two-stages approach [33]. The nozzle and jet-plume simulation is performed using RANS at the first
stage. Then, only the jet-plume region is considered at the second stage, imposing at the nozzle exit the
profiles obtained at the first stage. These profiles of gas-dynamic and turbulence model variables were
provided by M. Shur and M. Strelets from Peter the Great St. Petersburg Polytechnic University. The
structured hexahedral Grid 1 of 1.52 million nodes (64 cells in the azimuthal direction) from [29, 32],
the coarser one, has been used in the present work. A more detailed description of this numerical study,
including demonstration of mesh convergence, can be found in [32].

The results of the jet case computed using both the baseline and modified (new viscous fluxes with
single-precision coefficients) versions are presented in Fig. 4. It contains distributions of streamwise
velocity and resolved Reynolds stresses over the jet axis (centerline) and lip line downstream the nozzle
exit, respectively. Figure 4 demonstrates that the new realization does not lead to any perceptible
discrepancy of the solution compared to the baseline. The differences between the two versions that
can only be observed in the far region (beyond x/D = 10), are related with the finite time integration

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 41 No. 8 2020



1472 GOROBETS et al.

Exp.

Basic

Reduced

�0.5

0

0.5

u/
U
�

0 2 4 6

�0.3 0.3 0.9

Y
X

Z
|��|

u/U�:

8 10

Fig. 5. Supersonic flow behind the cylinder base: an instantaneous view using isosufaces of Q criterion and numerical
Schlieren in the transverse section (left), and averaged distributions of the streamwise velocity over the cylinder axis
(centerline) starting from its base (right) obtained with the basic and reduced-cost versions.

period (250D/Ujet). The results fit reasonably well with the experimental data for such a coarse mesh
used for the sake of saving computing time (our results on finer meshes are presented in [32]).

The second problem is supersonic turbulent flow at M∞ = 2.46 over the cylinder base which was
investigated experimentally by Herrin&Dutton [34]. Reynolds number based on the cylinder radius R is
ReR = 1.63 × 106.

The mesh of 3.55 million nodes (128 cells in the azimuthal direction) covers the region around
the cylinder −4 ≤ x/R < 12 (x/R = 0 corresponds to the cylinder base) in the streamwise direction
and −9 ≤ y/R, z/R < 9 in the azimuthal direction. The pre-computed profiles of gas-dynamic and
turbulent characteristics were imposed at the inflow surface (x/R = −4) to reach the same boundary
layer thickness at x/R = −0.0315, as in the experiment. The recent version of the DDES approach [1]
and the hybrid adapting numerical scheme [32] were used for the simulations. An instantaneous view of
the flow is shown in Fig. 5 (left). It is characterized by the shocks, which interfere with the shear layer
developing from the cylinder edges.

The results of simulations shown in Fig. 5 for both the basic and reduced-cost algorithms are in good
agreement with each other and with the corresponding experimental data.

Table 4. Components of drag and lift coefficients for RAE2822 case

Cd,p Cd,visc Cl,p Cl,visc

Basic version 0.00670 0.00623 0.7197 2.2e-5

Reduced-cost version 0.00672 0.00623 0.7206 2.2e-5

Difference, % 0.30 0 0.13 0
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7. CONCLUSIONS

Modifications of the CFD algorithm and its parallel implementation for supercomputer simulations
of compressible turbulent flows have been presented. The changes consist in reducing computational
costs and memory requirements at the stage of calculation of viscous fluxes by using a simplified
approximation method and mixed floating-point precision. In the case of an implicit scheme, the solution
stage of the Jacobi system has been accelerated as well. The resulting acceleration of the viscous fluxes
calculation stage ranges from 2 to 4 times, depending on the mesh kind. The overall acceleration up to
×1.6 has been achieved. In terms of memory costs, the size of the storage for the coefficients needed to
compute viscous fluxes has been reduced by 6 and 15 times for tetrahedral and hexahedral mesh zones,
respectively. The modified version has been validated in several representative cases, and no differences
in the accuracy of results have been observed compared to the original version.
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