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Abstract—Resonant properties of semi-infinite place and rectangular waveguides in the presence
of a thin conductive diaphragm placed near the cross-wall are investigated. The diffraction problems
of electromagnetic waves by diaphragms are reduced by the method of integral-series identities to
the infinite sets of linear algebraic equations. It is found that at some values of the frequency of the
excitatory wave there is a sharp resonant increase of the amplitude of standing waves in the area
between the diaphragm and the flange.

DOI: 10.1134/S1995080220070033

Keywords and phrases: semi-infinite waveguide, conducting diaphragm, resonant frequence.

1. INTRODUCTION

In this work, we explore the resonant properties of a semi-infinite rectangular waveguide with metal
walls in the presence of a transverse diaphragm at some distance from the flange being a transverse
metal wall (Fig. 1).

As it is known [1, 2], in a waveguide, homogeneous along the longitudinal axis and filled with a
homogeneous isotropic linear medium, any electromagnetic field can be presented as a sum of its eigen
waves propagating or damping in different directions along the waveguide axis. At the same time, there
can be only the limited number of propagating waves carrying energy.

If the cross-wall (without the diaphragm) is run by the propagating eigen wave of waveguide, which
came from infinity, then a reflected eigen wave of the same polarization and with the same number
appears, but moving in the opposite direction. This pair of waves can be considered as a single standing
wave, which can be interpreted as an eigen wave of cylindrical resonator with an open infinitely distant
section. It is easy to see that such eigen waves exist at any frequency of harmonic electromagnetic
oscillations, at which the waveguide has at least one propagating eigen wave.

I II

Fig. 1. Diaphragm in a semi-infinite rectangular waveguide.
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If there is heterogeneity inside the waveguide (in our case, it is a thin conductive diaphragm), then a
diffracted field appears, which in joint of a sum with together with the incoming wave can be considered
as eigen wave of the disturbed semi-infinite waveguide. It is clear that the frequencies of such eigen
waves form a continuous spectrum also. In single-mode case, the disturbance will be noticeable only in
the near zone (near the diaphragm).

Diaphragms in waveguides are widely used in waveguide equipment when designing mode convert-
ers, communication elements, filters and other nodes. There are approximate formulas for calculating
them in the technical reference literature. Simple models of the diffraction process of electromagnetic
waves by diaphragms and by some other heterogeneities (the theory of equivalent chains) are built in
the lectures by J. Schwinger [3]. Rigorous method of semi-conversion (the method of the Riemann–
Hilbert problem) for calculating fields in waveguides with inductive and capacitive diaphragms and the
numerical results obtained by it are presented in the books of V. P. Shestopalov [4] (Chapters IV, V), [5]
(§ 10). These books have an extensive bibliography.

In recent years, during the study of the resonant properties of diaphragms in waveguides, a method of
equivalent circuits [6] and a method of moments [7] are used, as well as more rigorous method of integral
equations [8, 9]. In the “connection of volumes through the hole” problems, the integral equations on the
hole are usually constructed using Green’s functions (see, for example, [10]). In this work, the method
of integral-series identities (ISI) is used to reduce the paired series functional equations (PSFE) of
diffraction problems by the diaphragms to regular infinite sets of linear algebraic equations (ISLAE) [11].

Comparison of numerical results with experimental data can be found in the works [12, 13]. The
works [12, 14, 15] are dedicated to diaphragms of finite thickness. Various inverse problems for
waveguides with diaphragms are also actively investigated (see, for example, [16, 17]). When solving
the problem of diffraction by the diaphragm before flange, you need to look for an electromagnetic field in
two adjacent areas: in the semi-infinite part I of the structure in the form of a series of outgoing to infinity
eigen waves and in the area II between the diaphragm and the flange in the form of a series of standing
waves that satisfy the boundary conditions on the flange. It is expected (and this is confirmed by the
computational experiment) that the amplitudes of standing waves can increase sharply at the frequency
of oscillations close to some resonant values.

Our purpose is to find frequencies (or, that is almost the same, wave numbers being the coefficients in
the Helmholtz equation) when approaching to which there is a sharp increase of modules of coefficients
of field decomposition in area II (at least, only of one of the coefficients). Such frequencies and
corresponding to them wave numbers will be called resonant. As in the work [18], the computational
experiment is based on the multiple solving of the truncated ISLAE for the frequency value of the
excitatory wave that runs on the diaphragm in the case when the frequency changes with a small step.

Area II is a resonator with a hole in the metal wall. Therefore, for small sizes of holes in the
diaphragm, we should expect that the resonant frequencies we are looking for will be close to the real
eigen frequencies of the closed resonator. But if there is a hole in its wall, the values of eigen resonator
frequencies become complex (if the energy of the electromagnetic field goes through the hole).

Resonators with holes in the walls are often considered in the theory of wave diffraction as “trap-like”
areas. A. A. Arsenyev’s work notes that “from a physical point of view it is clear” that the characteristics
of the field within the “trap-like” will be great if the frequency of the excitatory wave is close to eigen
resonator frequencies. The resonant nature of the problem of scattering on the body with the “trap-like”
is explained (it is a hypothesis) by the presence of poles in the scattering matrix or at the Green function
in the vicinity of their eigen frequencies [20, 21]. Similar effects are observed in the study of scattering of
acoustic waves. Resonant scattering of waves on acoustic resonators with a hole is studied in the works
R.A. Gadylshin [22, 23].

In this work, a two-dimensional case that is the problem of diffraction of TE-wave by the diaphragm
before stub in a place waveguide is studied in detail. The results of computing experiments are presented.
Various resonant effects are discussed when the frequency of the excitatory wave changes. The three-
dimensional problem of the electromagnetic wave diffraction by the diaphragm in the rectangular
waveguide is then considered. It is shown that the problem-solving algorithm is simplified when the
diaphragm is inductive or capacitive.
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2. TWO-DIMENSIONAL DIFFRACTION PROBLEM

Let us consider the two-dimensional problem of diffraction of TE-polarized wave by the diaphragm
before flange in a semi-infinite place waveguide 0 < x < a, z < c. The diaphragm is located in a plane
z = 0 (see Fig. 2). Let’s denote by N = (α, β) a part of the segment [0, a], corresponding to a hole, and
by M the rest of the segment.

It is assumed that there are no free currents and charges, the medium is homogeneous and isotropic,
the electromagnetic field harmonically depends on time, this dependence has the form of e−iωt, and does
not depend on the coordinates of y. Potential functions of TE-polarized eigen waves have the form

ϕn(x)e
±iγnz, ϕn(x) =

√
2/a sin

πnx

a
, γn =

√
κ2 − (πn/a)2, n = 1, 2, . . . ,

where Reγn > 0 or Imγn > 0. The sign + corresponds to waves of positive orientation (propagating
to the right or damping to the right), and the sign − corresponds to waves of negative orientation
(propagating to the left or damping to the left). The wave number κ is directly proportional to the
frequency of electromagnetic oscillations.

For the brevity of the speech, let’s say “wave” instead of “potential function”.

Let eigen TE-wave u0(x, z) = ϕl(x)e
iγlz run from the z < 0 area to the diaphragm. We will look for

the wave reflected to the left in the form u1(x, z) =
∑+∞

n=1 anϕn(x)e
−iγnz, and we will look for the wave

reflected to the right in the form u2(x, z) =
∑+∞

n=1 bnϕn(x)
(
eiγnz − e2iγnce−iγnz

)
. For such a wave, a

boundary condition on the flange is fulfilled, and this potential function is limited at n → +∞.
Let’s write down the boundary conditions on the metal M = {0 < x < α} ∪ {β < x < a}:

ϕl(x) +
+∞∑

n=1

anϕn(x) = 0, (1)

+∞∑

n=1

bn
(
1− e2iγnc

)
ϕn(x) = 0, (2)

and the conjugation conditions on the hole N = {α < x < β}:

ϕl(x) +

+∞∑

n=1

anϕn(x) =

+∞∑

n=1

bn
(
1− e2iγnc

)
ϕn(x), (3)

γlϕl(x)−
+∞∑

n=1

anγnϕn(x) =

+∞∑

n=1

bnγn
(
1 + e2iγnc

)
ϕn(x). (4)

We denote by

Inm =

∫

M

ϕn(t)ϕm(t)dt, Jnm =

∫

N

ϕn(t)ϕm(t)dt.

All these integrals are easy to calculate.

ZcO

a
x

u0

u1
u2

�

�

Fig. 2. Diaphragm in a semi-infinite place waveguide.
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Theorem 1. The two-dimensional problem of diffraction of TE-polarized electromagnetic
wave by the diaphragm in a semi-infinite waveguide is reduced to ISLAE

bkγk −
+∞∑

n=1

bn
(
1− e2iγnc

) +∞∑

m=1

γm
1− e2iγmc

JnmImk = γlJlk, k = 1, 2, . . . . (5)

Proof. It follows from (1), (2) and (3) that equality (2) is fulfilled on both N , and M. Then

1 + al = bl
(
1− e2iγlc

)
, an = bn

(
1− e2iγnc

)
, n �= l. (6)

We exclude the unknown an from (4) and then we get on N
+∞∑

n=1

bnγnϕn(x) = γlϕl(x). (7)

To regularize the PSFE (2), (7), we use an integral-series identity (ISI)
a∫

0

(+∞∑

n=1

bn
(
1− e2iγnc

)
ϕn(t)

)
K(t, x)dt =

+∞∑

n=1

bnγnϕn(x), 0 < x < a,

here K(t, x) =
∑+∞

m=1
γm

1−e2iγmcϕm(t)ϕm(x) (it is assumed that γmc �= πj). From ISI, with the account
(2), we will get on M

+∞∑

n=1

bnγnϕn(x) =

+∞∑

n=1

bn
(
1− e2iγnc

) +∞∑

m=1

γm
1− e2iγmc

ϕm(x)Jnm. (8)

Finally, we will project (7) and (8) on ϕk(x) and get ISLAE (5). �

3. COMPUTING EXPERIMENT

We will look for approximate solutions of ISLAE (5) by the truncation method. Let us replace (5) by
the set of linear algebraic equations (SLAE)

γkbk −
N∑

n=1

bn
(
1− e2iγnc

) M∑

m=1

γm
1− e2iγmc

JnmImk = γlIlk, k = 1, . . . , N. (9)

Let’s limit ourselves to the case when the truncation parameters are equal, letM = N . As the computing
experiment has shown, it is enough to take N = 30 for the internal convergence of the truncation
method. As a wave incoming on the diaphragm, we will consider the first mode of the waveguide (l = 1).

Let’s choose the following parameters of the waveguide and of the diaphragm: a = 1.1, c = 1.3,
α = 0.5, β = 0.6 (in dimensionless amounts). We will look for solutions SLAE (9) by Gauss method
with the selection of the lead element on the column with double accuracy (double) of arithmetic of real
numbers. The dependence of modules of coefficients b1 and b3 on the spectral parameter of κ is shown
in Fig. 3.

This dependency has a resonant nature, or more precisely, the coefficient module b1 has three
local extremes at a segment [3.5, 8.5], which correspond to the wave numbers ≈3.7355, ≈5.5985,
and ≈7.7645. These values are close to the eigen wave numbers κ1,1 ≈ 3.7412, κ1,2 ≈ 5.6140, and
κ1,3 ≈ 7.7921 of a two-dimensional rectangular resonator without a hole.

With the hole in the diaphragm which is symmetrical relative to the axis of waveguide, the following
phenomenon is observed: bn with the odd numbers are zeros for the even number of the running wave
(bn with the even numbers are zeros for the odd numbers). This is not the case if the diaphragm hole is
asymmetrical.

As the size of the hole in the diaphragm increases, the resonant frequency values decrease (Fig. 4)
and the resonant curve becomes more stretched.
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Fig. 3. The dependence of the coefficient modules b1 and b3 on the parameter κ.
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Fig. 4. Resonant frequency dependency on hole sizes.
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Fig. 5. Modules of coefficients a1 and a3 in the neighborhood κ1,1.

The coefficients an are calculated by the coefficients bn by the formulas (6). The dependence of the
modules of the coefficients a1 and a3 on the parameter k in the neighborhood of eigen frequency κ1,1 is
presented in Fig. 5. We note that an ≈ bn for n ≥ 3.

In one-mode case (only one eigen wave of waveguide transfers energy) the first reflected mode should
bring back all the energy of the wave that came from infinity. Therefore, at any value of k, the exact
value |a1| = 1. When debugging a computer program, it is advisable to check two other limit cases.
If the diaphragm completely overlaps the waveguide, then it follows from (1), (2) that a1 = −1, all
other coefficients are zero. If there is no diaphragm (α = 0, β = a), then it follows from (3), (4) that
b1 = 1, a1 = −e2iγ1c, and all other coefficients are zeros. In the neighborhood of other eigen frequencies,
the dependence of the desired values on the frequency of oscillations is also resonant (Fig. 6).

Let’s examine how the spectral parameter κ depends on the conditioned number of the matrix A of
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Fig. 6. Modules of coefficients a1 and a3 in the neighborhood κ1,2.

SLAE coefficients (9)

condA = ||A|| · ||A−1||, ||A|| =

√√√
√

N∑

k=1

N∑

j=1

|Akj|2

(the norm of Frobenius is used). This dependence is also resonant. For example, in the neighborhood of
the resonant value of parameter 3.7355 (diaphragm hole is [0.5, 0.6]) the maximum value cond A exceeds
22000.

Let’s balance the equations in SLAE (9). Let us divide each equation by the largest in-module
coefficient for unknowns. Then the conditioned number will be significantly reduced, but the solution
of the SLAE does not change. But after balancing, it becomes possible to study the dependence on the
parameter κ of the values of the determinant of the matrix of the SLAE coefficients, now the modules
of these values in the neighborhood of the resonant point are no more than one. Before balancing, they
had an order of 1045 or more. When approaching the resonant values of κ, the determinant of coefficients
matrix sharply tends to zero. Thus, the resonant values of the parameter κ can be found: 1) when solving
the SLAE (9); 2) when calculating the conditioned number of the matrix of its coefficients; 3) when
analyzing the values of the determinant of this matrix.

The third method is consistent with the fact that resonant (complex) eigen resonator frequencies
with a hole in the wall should be the roots of the characteristic equation detA = 0. When formulating a
problem on eigen frequencies of such a resonator, you need to formulate physically correctly a boundary
condition on the hole. In our case, this condition is reduced to the fact that the energy goes away through
the hole in the flat waveguide attached to the resonator. Then non-zero solutions of the homogeneous
diffraction problem are the eigen waves of structure consisting of the resonator and the waveguide.

Another effect of resonant nature is observed in an exceptional case, when γn0c = πj for some n0

and j. In this case κ2 = κ2n0,j
= (πn0/a)

2 + (πj/c)2 are eigen wave number values of resonator without
a hole. The resonance is observed only for values of condA and of detA, the solution of SLAE (9) remains
stable. For example, if κ = κ1,1, that is γ1c = π, then e2iγ1c = 1. The PSFE (7), (8) has an obvious
solution b1 = 1, bn = 0, n �= 1. Therefore, a1 = −1. The interesting thing is that in this exceptional
case, this solution does not depend on the size of the hole in the diaphragm.

The resonance of the values of condA and of detA is based on the fact that in an exceptional case,
in the ISLAE (5) and in its truncation (9) the denominator of one of the terms 1− e2iγmc in the internal
sum turns to zero. This effect does not appear for the second version of ISLAE

dk
(
1− e2iγkc

)
−

+∞∑

n=1

dnγn

+∞∑

m=1

1− e2iγmc

γm
InmJmk =

(
e2iγlc − 1

)
Ilk, k = 1, 2, . . . (10)
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relatively unknown dl = bl − 1, dn = bn, n �= l. ISLAE (10) is obtained from PSFE (7), (8) by the
second ISI

a∫

0

(+∞∑

n=1

dnγnϕn(t)

)(+∞∑

m=1

1− e2iγmc

γm
ϕm(t)ϕm(x)

)
dt =

+∞∑

n=1

dn
(
1− e2iγnc

)
ϕn(x).

4. THREE-DIMENSIONAL DIFFRACTION PROBLEM

The three-dimensional problem of diffraction of the electromagnetic wave by the diaphragm before
flange in a rectangular waveguide is explored in a similar way.

Let the diaphragm with a hole N and M = S\N be located in the cross-section of the waveguide
S = [0, a] × [0, b] on the plane z = 0 (Fig. 7). The flange lies in the plane z = c.

Let an electromagnetic wave with longitudinal components (potential functions) run from the left
on a hole E0

z = e0e
iγm0n0zsam0

(x)sbn0
(y), H0

z = h0e
iγm0n0zcam0

(x)cbn0
(y). Here and beyond the following

designations are used: γmn =
√
κ2 − δmn is a longitudinal propagation constant, κ is a wave number,

δmn = (πm/a)2 + (πn/b)2,

sam(x) =
√

2/a sin
πm

a
x, sbn(y) =

√
2/b sin

πn

b
y, m, n = 1, 2, . . . ,

cam(x) =
√

2/a cos
πm

a
x, cbn(y) =

√
2/b cos

πn

b
y, m, n = 0, 1, . . .

The longitudinal components of the wave reflected in the z < 0 area will be searched in the form of

EI
z =

+∞∑

m,n=1

amne
−iγmnzsam(x)sbn(y), HI

z =

+∞∑

m,n=(0)

cmne
−iγmnzcam(x)cbn(y),

expression m,n = (0) means that the summation indices do not turn to zero at the same time. The
longitudinal components of the standing wave in the domain 0 < z < c will be searched in the form of

EII
z =

+∞∑

m,n=1

bmns
a
m(x)sbn(y)

(
e2iγmnce−iγmnz + eiγmnz

)
,

HII
z =

+∞∑

m,n=(0)

dmnc
a
m(x)cbn(y)

(
eiγmnz − e2iγmnce−iγmnz

)
,

these functions, as in the two-dimensional case, are limited when m,n → +∞.
We will record the boundary conditions and the conjugation conditions when z = 0. On M should

be turned to zero limit values ∂Ez/∂z and Hz:

e0γm0n0s
a
m0

(x)sbn0
(y)−

+∞∑

m,n=1

amnγmns
a
m(x)sbn(y) = 0, (11)

O

a

x

b
y

Fig. 7. Diaphragm in a rectangular waveguide.
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h0c
a
m0

(x)cbn0
(y) +

+∞∑

m,n=(0)

cmnc
a
m(x)cbn(y) = 0, (12)

+∞∑

m,n=1

bmnγmn

(
1− e2iγmnc

)
sam(x)sbn(y) = 0, (13)

+∞∑

m,n=(0)

dmn

(
1− e2iγmnc

)
cam(x)cbn(y) = 0. (14)

On N the values ∂Ez/∂z,Hz , ∂Hz/∂z and Ez should be continuous:

e0γm0n0s
a
m0

(x)sbn0
(y)−

+∞∑

m,n=1

amnγmns
a
m(x)sbn(y)

=

+∞∑

m,n=1

bmnγmn

(
1− e2iγmnc

)
sam(x)sbn(y), (15)

h0c
a
m0

(x)cbn0
(y) +

+∞∑

m,n=(0)

cmnc
a
m(x)cbn(y) =

+∞∑

m,n=(0)

dmn

(
1− e2iγmnc

)
cam(x)cbn(y), (16)

h0γm0n0c
a
m0

(x)cbn0
(y)−

+∞∑

m,n=(0)

cmnγmnc
a
m(x)cbn(y)

=

+∞∑

m,n=(0)

dmnγmn

(
1 + e2iγmnc

)
cam(x)cbn(y), (17)

e0s
a
m0

(x)sbn0
(y) +

+∞∑

m,n=1

amns
a
m(x)sbn(y) =

+∞∑

m,n=1

bmn

(
1 + e2iγmnc

)
sam(x)sbn(y). (18)

Theorem 2. The problem of diffraction of the electromagnetic wave on the diaphragm in a
semi-infinite rectangular waveguide is reduced to two independent ISLAE

bjk −
+∞∑

m,n=1

bmnγmn

(
1− e2iγmnc

) +∞∑

p,q=1

1

γpq
(
1− e2iγpqc

)Jsasb
mpnqI

sasb
pjqk

= e0J
sasb
m0jn0k, j, k = 1, 2, . . . (19)

γjkdjk −
+∞∑

m,n=(0)

dmn

(
1− e2iγmnc

) +∞∑

p,q=(0)

γpq
1− e2iγpqc

Jcacb
mpnqI

cacb
pjqk

= h0γm0n0J
cacb
m0jn0k, j, k = (0), 1, . . . (20)

where

Jsasb
mpnq =

∫

N

sam(x1)s
a
p(x1)s

b
n(y1)s

b
q(y1)dx1dy1, Isasbmpnq =

∫

M

sam(x1)s
a
p(x1)s

b
n(y1)s

b
q(y1)dx1dy1,

Jcacb
mpnq =

∫

N

cam(x1)c
a
p(x1)c

b
n(y1)c

b
q(y1)dx1dy1, Icacbmpnq =

∫

M

cam(x1)c
a
p(x1)c

b
n(y1)c

b
q(y1)dx1dy1.
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Proof. It is easy to see that the boundary conditions and the conjugation conditions form two
independent groups of equations: (11), (13), (15) and (18) for TM-polarized waves and (12), (14), (16)
and (17) for TE-polarized waves. We convert these equations into ISLAE by integral-series identities.

In the case of TM-polarized waves, from (11), (13) and (15) it follows that (15) fulfills at S.
Then am0n0 = −bm0n0

(
1− e2iγm0n0c

)
+ e0, amn = −bmn

(
1− e2iγmnc

)
,m, n �= m0, n0. We eliminate

amn from the equation (18) and we get
+∞∑

m,n=1

bmns
a
m(x)sbn(y) = e0s

a
m0

(x)sbn0
(y), (x, y) ∈ N . (21)

For (x, y) ∈ S, there is an integral-series identity (ISI)
∫

S

( +∞∑

m,n=1

bmnγmn

(
1− e2iγmnc

)
sam(x1)s

b
n(y1)

)
K−1(x1, y1, x, y)dx1dy1 =

+∞∑

m,n=1

bmns
a
m(x)sbn(y),

where

K−1(x1, y1, x, y) =
+∞∑

p,q=1

1

γpq
(
1− e2iγpqc

)sap(x1)s
b
q(y1)s

a
p(x)s

b
q(y).

From the ISI, by (13) it follows that on M
+∞∑

m,n=1

bmns
a
m(x)sbn(y) =

+∞∑

m,n=1

bmnγmn

(
1− e2iγmnc

) +∞∑

p,q=1

1

γpq
(
1− e2iγpqc

)Jsasb
mpnqs

a
p(x)s

b
q(y). (22)

We project a paired equation (21) (on the hole) and (22) (on the metal) on saj (x)s
b
k(y) and get

ISLAE (19).
Similarly, in the case of TM-polarized waves from (12), (14) and (16) it follows that (16) fulfills at S.

Then cm0n0 = dm0n0

(
1− e2iγm0n0c

)
− h0, cmn = dmn

(
1− e2iγmnc

)
,m, n �= m0, n0. We exclude cmn out

of the equation and then we get
+∞∑

m,n=(0)

dmnγmnc
a
m(x)cbn(y) = h0γm0n0c

a
m0

(x)cbn0
(y), (x, y) ∈ N . (23)

For (x, y) ∈ S, there is an integral-series identity
∫

S

( +∞∑

m,n=(0)

dmn

(
1− e2iγmnc

)
cam(x1)c

b
n(y1)

)
K1(x1, y1, x, y)dx1dy1 =

+∞∑

m,n=(0)

dmnγmnc
a
m(x)cbn(y),

where K1(x1, y1, x, y) =
∑+∞

p,q=(0)
γpq

1−e2iγpqc
cap(x1)c

b
q(y1)c

a
p(x)c

b
q(y). From the ISI, by (14) we get on M

+∞∑

m,n=(0)

dmnγmnc
a
m(x)cbn(y) =

+∞∑

m,n=(0)

dmn

(
1− e2iγmnc

) +∞∑

p,q=(0)

γpq
1− e2iγpqc

Jcacb
mpnqc

a
p(x)c

b
q(y). (24)

We project a paired equation (23) (on the hole) and (24) (on the metal) on caj (x)c
b
k(y) and get

ISLAE (20). �

Note that functions sam(x)sbn(y), c
a
m(x)cbn(y) form orthonormal function sets on S. So Isasbmpnq =

δmpδnq − Jsasb
mpnq, Icacbmpnq = δmpδnq − Jcacb

mpnq, here δjk is Kronecker symbol.
If the diaphragm hole has a rectangular shape, N = [α0, α1]× [β0, β1], then all integrals over N and

over M in ISLAE (19), (20) can be easily expressed through integrals

Jsa
mp =

α1∫

α0

sam(x1)s
a
p(x1)dx1, Jsb

nq =

β1∫

β0

sbn(y1)s
b
q(y1)dy1,
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Fig. 8. Inductive and capacitive diaphragms in a rectangular waveguide.

Jca
mp =

α1∫

α0

cam(x1)c
a
p(x1)dx1, Jcb

nq =

β1∫

β0

cbn(y1)c
b
q(y1)dy1.

Let, for example, b > a. Then the diaphragm in the Fig. 8 a) is inductive and diaphragm in the Fig. 8
b) is capacitive. In these two particular cases, ISLAE (19) and (20) become significantly easier.

Corollary 1. The problem of diffraction of the electromagnetic wave on the inductive di-
aphragm is reduced to two independent ISLAE

bm0k −
∞∑

n=1

bm0nγm0n

(
1− e2iγm0nc

) ∞∑

q=1

1

γm0q

(
1− e2iγm0qc

)Jsb
nqI

sb
qk = e0J

sb
n0k, k = 1, 2, . . .

γm0kdm0k −
∞∑

n=(0)

dm0n

(
1− e2iγm0nc

) ∞∑

q=(0)

γm0q

1− e2iγm0qc
Jcb
nqI

cb
qk = h0γm0n0J

cb
n0k, k = (0), 1, . . .

If the lower limit of the index change is (0), then it is zero if m0 �= 0 and is a unit if m0 = 0. Really, in
the case of the inductive diaphragm, the equations (21) and (22) (and ones considered above, including
ISI) should be fulfilled when x ∈ [0, a]. Due to the orthonormality of the functions saj (x) on [0, a], these
equations split into independent pairs of equations, which are obtained as equalities of the coefficients at
saj (x). Only a pair of equations with the number j = m0 has a non-trivial solution, and the first ISLAE
corresponds to it in the statement of the Corollary 1.

The second ISLAE is obtained from the equations (23) and (24) on the basis of the orthonormality of
the functions caj (x) on [0, a].

A similar statement takes place in the case of a capacitive diaphragm.
Corollary 2. The problem of diffraction of the electromagnetic wave by the capacitive di-

aphragm is reduced to two independent ISLAE

bjn0 −
∞∑

m=1

bmn0γmn0

(
1− e2iγmn0 c

) ∞∑

p=1

1

γpn0

(
1− e2iγpn0 c

)Jsa
mpI

sa
pj = e0J

sa
m0j , j = 1, 2, . . .

γjn0djn0 −
∞∑

m=(0)

dmn0

(
1− e2iγmn0 c

) ∞∑

p=(0)

γpn0

1− e2iγpn0 c
Jca
mpI

ca
pj = h0γm0n0J

ca
m0j , j = (0), 1, . . .

5. RESONANT FREQUENCIES IN THE 3D CASE

We will look for an approximate solution of ISLAE (19) by the truncation method. Consider SLAE

bjk −
N∑

m,n=1

bmnγmn

(
1− e2iγmnc

) N∑

p,q=1

1

γpq
(
1− e2iγpqc

)Jsa
mpJ

sb
nqI

sa
pj I

sb
qk = e0J

sa
m0jJ

sb
n0k,

j, k = 1, 2, . . . , N, (25)

where N is a truncation parameter. As the computing experiment has shown, it’s enough to set N = 40.
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Fig. 9. Resonant curves for coefficients b1,1 and b1,3.

Let’s choose the following values of the original data: the number of the running wave m0 = 1,
n0 = 1, the amplitude e0 = 1, the waveguide size a = 1.1, b = 1.8, c = 1.3 and diaphragm windows
α0 = 0.4, α1 = 0.5, β0 = 0.4, β1 = 0.5 (square resonant window).

As the computing experiment has shown, the dependence of standing wave decomposition modules
in area II on the spectral parameter of κ (frequency of the running wave) has a resonant nature.
Resonances are observed at the frequency of the running wave, close to eigen frequencies of the
rectangular resonator without a hole in the wall.

Resonant curves for coefficients b1,1 and b1,3 are presented on the Fig. 9. The three extremes for
the b1,1 coefficient correspond to frequencies close to eigen frequencies κ1,1,1 ≈ 4.128, κ1,1,2 ≈ 5.879,
κ1,1,3 ≈ 7.985 of the resonator without a hole, and extremes for b1,3 coefficient are observed at frequencies
close to κ1,2,1 ≈ 5.116, κ1,2,2 ≈ 6.610, κ1,2,3 ≈ 8.538.

Similar results were obtained in the case of TM-polarization of the field.

6. CONCLUSION

In the work the diffraction problems of the electromagnetic wave by the diaphragm in a semi-infinite
place waveguide and rectangular waveguides are reduced to infinite sets of linear algebraic equations
relative to decomposition coefficients by eigen field waves in the region between the diaphragm and the
flange. The computing experiment has shown that the dependence of the desired coefficients on the
frequency of the excitatory wave is resonant. At small diaphragm size, resonant frequencies are close to
eigen frequencies of rectangular resonators without a hole.
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