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Abstract—The time-dependent Maxwell system describing electromagnetic wave propagation in
inhomogeneous isotropic media in the one-dimensional case reduces to a Vekua-type equation for
bicomplex-valued functions of a hyperbolic variable, see [7]. In [5] using this reduction a represen-
tation of a general solution of the system was obtained in terms of a couple of Darboux-associated
transmutation operators [8]. In [6] a Fourier–Legendre expansion of transmutation integral kernels
was obtained. This expansion is used in the present work for obtaining an exact solution of the
problem of the transmission of a normally incident electromagnetic time-dependent plane wave
through an arbitrary inhomogeneous layer. The result can be used for efficient computation of the
transmitted modulated signals. In particular, it is shown that in the classical situation of a signal
represented in terms of a trigonometric Fourier series the solution of the problem can be written
in the form of Neumann series of Bessel functions with exact formulas for the coefficients. The
representation lends itself to numerical computation.

DOI: 10.1134/S1995080220050054

Keywords and phrases: Maxwell system, inhomogeneous media, bicomplex numbers, hyper-
bolic Vekua equation, transmutation operator, Neumann series of Bessel functions.

1. INTRODUCTION
In the present work, the 1 + 1 Maxwell system for isotropic inhomogeneous media is considered.

In [5] a representation for its general solution was obtained in terms of a couple of Darboux-associated
transmutation (transformation) integral operators (for a recent overview of transmutation operator
theory and applications we refer to [4] and [14]). Here we develop further this representation applying
a recent result from [6] where a Fourier–Legendre expansion of the transmutation integral kernels was
obtained with explicit formulas for the coefficients. The main result of the present work is an exact
solution of the classical problem of time-dependent one-dimensional electromagnetic wave propagation
through an inhomogeneous medium of an arbitrary profile. The solution has a form of a series, the
coefficients of which are computed recursively. In particular, if the incoming signal is represented in
terms of a Fourier series the solution of the problem acquires the form of a Neumann series of Bessel
functions. An important feature of this solution representation consists in the fact that its truncated
version approximates the exact solution equally well for small and for large values of the frequency which
means that even when the partial sums of the Fourier series contain a large number of members and
independently of the largeness of the carrier frequency the approximation of the solution presented here
does not deteriorate.
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2. THE 1 + 1 MAXWELL SYSTEM AND THE HYPERBOLIC VEKUA EQUATION

The Maxwell system for an isotropic inhomogeneous sourceless medium has the form

div(μH) = 0, rotH = ε∂tE, div(εE) = 0, rotE = −μ∂tH,

where ε and μ are real-valued functions of spatial coordinates, E and H are real-valued vector fields
depending on t and on spatial variables. In the case when all the magnitudes involved are independent
of two spatial coordinates, say, x2 and x3, ε = ε(x1) and μ = Const, the resulting 1 + 1 Maxwell system
for a stratified medium can be written in the form

ε(x)∂tE = i∂xH, i∂xE = −μ∂tH, (1)

where E = E2 + iE3, H = H2 + iH3, x = x1. Denote c(x) = 1/
√

ε(x)μ. It is assumed nonvanishing.
In [7] it was shown that system (1) can be transformed into the following Vekua-type hyperbolic

equation

∂zW − f ′

2f
W = 0, (2)

where ∂z =
1
2(∂ξ − j∂t), j is a hyperbolic imaginary unit, j2 = 1 commuting with i, W is a bicomplex-

valued function of the real variables ξ and t, W = u+ vj and u, v are complex valued (containing the
imaginary unit i). The function f is real valued and depends on ξ only. The conjugation with respect to
j is denoted by the bar, W = u− vj.

The relation between (1) and (2) involves the change of the independent variable ξ(x) =√
μ
∫ x
0

√
ε(s)ds. The function f in (2) is related to ε and μ by the equality f(ξ) =

√
c̃(0)/

√
c̃(ξ)

where and below the tilde means that a function of x is written as a function of ξ, c̃(ξ(x)) = c(x).
The bicomplex-valued function W is written in terms of E and H as follows

W (ξ, t) =
√

c̃(ξ)
(√

ε̃(ξ)Ẽ(ξ, t) + ij
√
μH̃(ξ, t)

)
. (3)

For the scalar components of a bicomplex-valued function w = u+ vj the following notations will
be used

R(w) = u =
1

2
(w + w), I(w) = v =

1

2j
(w − w)

and
w± := R (w)± I(w). (4)

Then from (3) we have

Ẽ(ξ, t) = 1
√
c̃(ξ)ε̃(ξ)

R(W (ξ, t)) (5)

and

H̃(ξ, t) = − i
√
c̃(ξ)μ

I(W (ξ, t)). (6)

3. A GENERAL SOLUTION OF THE HYPERBOLIC VEKUA EQUATION

Together with the Vekua equation (2) consider its special case, the hyperbolic Cauchy–Riemann
system

∂zw = 0 (7)

which was studied in several publications (see, e.g., [10, 11, 16] and more recent [9]). Its general solution
can be written in the form

w(ξ, t) = P+Φ(t+ ξ) + P−Ψ(t− ξ),

where Φ and Ψ are arbitrary continuously differentiable scalar functions (complex valued containing the
imaginary unit i) and P± = 1

2 (1± j).
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In [9] there was established a relation between solutions of (7) and (2). Any solution of (2) can be
represented in the form

W (ξ, t) = Tf [R (w(ξ, t))] + jT1/f [I (w(ξ, t))] , (8)

where w is a solution of (7), Tf and T1/f are Darboux-associated transmutation operators defined in [8],
see also [2] and [9]. The operators Tf and T1/f are applied with respect to the variable ξ and have the
form of second-kind Volterra integral operators,

Tfu(ξ) = u(ξ) +

ξ∫

−ξ

Kf (ξ, τ)u(τ)dτ

and

T1/fu(ξ) = u(ξ) +

ξ∫

−ξ

K1/f (ξ, τ)u(τ)dτ

with continuously differentiable kernels Kf and K1/f .

In [6] a representation of the transmutation kernels in the form of Fourier–Legendre series was
obtained. Namely, the transmutation kernels Kf and K1/f have the form

Kf (ξ, τ) =

∞∑

n=0

an(ξ)

ξ
Pn

(
τ

ξ

)
(9)

and

K1/f (ξ, τ) =
∞∑

n=0

bn(ξ)

ξ
Pn

(
τ

ξ

)
, (10)

where Pn stands for the Legendre polynomial of order n, for every ξ > 0 the series converge uniformly
with respect to τ ∈ [−ξ, ξ], and for the coefficients an and bn, n = 0, 1, 2, . . . explicit formulas are
obtained. In order to write them down we introduce the systems of functions {ϕk}∞k=0 and {ψk}∞k=0
defined as follows.

Consider two sequences of recursive integrals

X(0) ≡ 1, X(n)(ξ) = n

ξ∫

0

X(n−1)(s)
(
f2(s)

)(−1)n
ds, n = 1, 2, . . . (11)

and

X̃(0) ≡ 1, X̃(n)(ξ) = n

ξ∫

0

X̃(n−1)(s)
(
f2(s)

)(−1)n−1

ds, n = 1, 2, . . . . (12)

The two families of functions {ϕk}∞k=0 and {ψk}∞k=0 are constructed according to the rules

ϕk(ξ) =

{
f(ξ)X(k)(ξ), k odd,

f(ξ)X̃(k)(ξ), k even,
(13)

and

ψk(ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

X̃(k)(ξ)

f(ξ)
, k odd,

X(k)(ξ)

f(ξ)
, k even.

(14)
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The coefficients an and bn in (9) and (10) admit the following representation [6]

an(ξ) =
2n+ 1

2

(
n∑

k=0

lk,nϕk(ξ)

ξk
− 1

)

and

bn(ξ) =
2n+ 1

2

(
n∑

k=0

lk,nψk(ξ)

ξk
− 1

)

,

where lk,n is k-th power’s coefficient of the Legendre polynomial of order n, that is Pn(x) =
∑n

k=0 lk,nx
k.

Besides these direct formulas for the coefficients an and bn, in [6] a recurrent integration procedure
for their computation was proposed, convenient for numerical applications.

Substitution of (9) and (10) into (8) leads to the following representation of a general solution of (2)

W (ξ, t) = w(ξ, t) +
∞∑

n=0

an(ξ)

ξ

ξ∫

−ξ

Pn

(
τ

ξ

)
R (w(τ, t)) dτ + j

∞∑

n=0

bn(ξ)

ξ

ξ∫

−ξ

Pn

(
τ

ξ

)
I (w(τ, t)) dτ,

where w is a general solution of (7).

4. NORMALLY INCIDENT PLANE WAVE PROPAGATION THROUGH
AN INHOMOGENEOUS MEDIUM

In this section we study the classical problem of a normally incident plane wave propagation through
an inhomogeneous medium (see, e.g., [12, Chapter 8]). The electromagnetic field E and H satisfying (1)
is supposed to be known at x = 0,

E(0, t) = E0(t) and H(0, t) = H0(t), t ∈ [α, β]. (15)

We assume E0 and H0 to be continuously differentiable functions.
Problem (1), (15) can be reformulated in terms of the function (3). Find a solution of (2) satisfying

the condition

W (0, t) = W0(t), (16)

where

W0 =
√

c(0)ε(0)E0 + ij
√

c(0)μH0 (17)

is a given continuously differentiable function. Then the following statement is valid.
Theorem 1. The unique solution of Problem (2), (16) has the form

W (ξ, t) =
1

2

(
W+

0 (t+ ξ) +W−
0 (t− ξ)

)
+

1

2

∞∑

n=0

an(ξ)

ξ

ξ∫

−ξ

Pn

(
τ

ξ

)
(
W+

0 (t+ τ) +W−
0 (t− τ)

)
dτ

+
j

2

(
W+

0 (t+ ξ)−W−
0 (t− ξ)

)
+

j

2

∞∑

n=0

bn(ξ)

ξ

ξ∫

−ξ

Pn

(
τ

ξ

)
(
W+

0 (t+ τ)−W−
0 (t− τ)

)
dτ

= P+W+
0 (t+ ξ) + P−W−

0 (t− ξ) +
1

2ξ

∞∑

n=0

(an(ξ) + jbn(ξ))

ξ∫

−ξ

Pn

(
τ

ξ

)
W+

0 (t+ τ)dτ

+
1

2ξ

∞∑

n=0

(an(ξ)− jbn(ξ))

ξ∫

−ξ

Pn

(
τ

ξ

)
W−

0 (t− τ)dτ, (18)
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from which the unique solution of Problem (1), (15) is obtained by means of (5), (6) and an
inverse change of the variable ξ → x.

Proof. The unique solution of Problem (2), (16) has the form [5]

W (ξ, t) =
1

2
Tf

[
W+

0 (t+ ξ) +W−
0 (t− ξ)

]
+

j

2
T1/f

[
W+

0 (t+ ξ)−W−
0 (t− ξ)

]
. (19)

Due to (9) and (10) this can be written in the form (18). �
For some practically interesting initial data the integrals in (18) can be evaluated in a closed form. Let

us consider one such example corresponding to modulated electromagnetic waves which are represented
as partial sums of Fourier series

E0(t) =
M∑

m=−M

αmei(ω0+mω)t and H0(t) =
M∑

m=−M

βmei(ω0+mω)t. (20)

This leads to a similar form for the initial data W0 in (16),

W0(t) =

M∑

m=−M

cmei(ω0+mω)t, (21)

where the bicomplex numbers cm are related to αm, βm ∈ C as follows

cm =
√

c(0)
(√

ε(0)αm + ij
√
μβm

)
.

Note that W±
0 (t± ξ) =

∑M
m=−M c±mei(ω0+mω)(t±ξ) and due to (18), the solution of Problem (2), (16)

with the initial data (21) is given by the formula

W (ξ, t) = P+
M∑

m=−M

c+mei(ω0+mω)(t+ξ) + P−
M∑

m=−M

c−mei(ω0+mω)(t−ξ)

+
1

2ξ

∞∑

n=0

(an(ξ) + jbn(ξ))

ξ∫

−ξ

Pn

(
τ

ξ

) M∑

m=−M

c+mei(ω0+mω)(t+τ)dτ

+
1

2ξ

∞∑

n=0

(an(ξ)− jbn(ξ))

ξ∫

−ξ

Pn

(
τ

ξ

) M∑

m=−M

c−mei(ω0+mω)(t−τ)dτ. (22)

Using formula 2.17.5(1) from [13] the integrals here can be evaluated,
ξ∫

−ξ

Pn

(
τ

ξ

)
ei(ω0+mω)τdτ = 2ξe

nπi
2 jn ((ω0 +mω)ξ)

and
ξ∫

−ξ

Pn

(
τ

ξ

)
e−i(ω0+mω)τdτ = (−1)n 2ξe

nπi
2 jn ((ω0 +mω)ξ) ,

where jn stands for the spherical Bessel function of order n. Thus, the bicomplex-valued function W
from (22) takes the form

W (ξ, t) =

M∑

m=−M

ei(ω0+mω)t

(

P+c+mei(ω0+mω)ξ + P−c−me−i(ω0+mω)ξ

+ c+m

∞∑

n=0

(an(ξ) + jbn(ξ)) e
nπi
2 jn ((ω0 +mω)ξ)
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+ c−m

∞∑

n=0

(−1)n (an(ξ)− jbn(ξ)) e
nπi
2 jn ((ω0 +mω)ξ)

)

.

In order to obtain the corresponding formula for the solution of Problem (1), (15) with the initial data
of the form (20), we notice that

R (W (ξ, t)) =

M∑

m=−M

ei(ω0+mω)t

(
c+m
2
ei(ω0+mω)ξ +

c−m
2
e−i(ω0+mω)ξ

+ c+m

∞∑

n=0

an(ξ)e
nπi
2 jn ((ω0 +mω)ξ) + c−m

∞∑

n=0

(−1)n an(ξ)e
nπi
2 jn ((ω0 +mω)ξ)

)

and

I (W (ξ, t)) =

M∑

m=−M

ei(ω0+mω)t

(
c+m
2
ei(ω0+mω)ξ − c−m

2
e−i(ω0+mω)ξ

+ c+m

∞∑

n=0

bn(ξ)e
nπi
2 jn ((ω0 +mω)ξ)− c−m

∞∑

n=0

(−1)n bn(ξ)e
nπi
2 jn ((ω0 +mω)ξ)

)

.

Hence due to (5) and (6) we obtain the following result.
Theorem 2. The unique solution of Problem (1), (15) with the initial data of the form (20)

written in terms of coordinates ξ and t has the form

Ẽ(ξ, t) = 1
√
c̃(ξ)ε̃(ξ)

M∑

m=−M

ei(ω0+mω)t

(
c+m
2
ei(ω0+mω)ξ +

c−m
2
e−i(ω0+mω)ξ

+ c+m

∞∑

n=0

an(ξ)e
nπi
2 jn ((ω0 +mω)ξ) + c−m

∞∑

n=0

(−1)n an(ξ)e
nπi
2 jn ((ω0 +mω)ξ)

)

(23)

and

H̃(ξ, t) = − i
√

c̃(ξ)μ

M∑

m=−M

ei(ω0+mω)t

(
c+m
2
ei(ω0+mω)ξ − c−m

2
e−i(ω0+mω)ξ

+ c+m

∞∑

n=0

bn(ξ)e
nπi
2 jn ((ω0 +mω)ξ)− c−m

∞∑

n=0

(−1)n bn(ξ)e
nπi
2 jn ((ω0 +mω)ξ)

)

. (24)

Thus, the solution of Problem (1), (15) with the initial data of the form (20) is obtained in the form
of a Neumann series of Bessel functions (see, e.g., [15, 17] and a recent publication on the subject [1]
and references therein). Let us discuss an important feature of this solution representation. Namely, for
practical computation one needs to consider the truncated series in (23) and (24). Thus, together with
the exact solution (23), (24) consider its approximation

ẼN (ξ, t) :=
1

√
c̃(ξ)ε̃(ξ)

M∑

m=−M

ei(ω0+mω)t

(
c+m
2
ei(ω0+mω)ξ +

c−m
2
e−i(ω0+mω)ξ

+ c+m

N∑

n=0

an(ξ)e
nπi
2 jn ((ω0 +mω)ξ) + c−m

N∑

n=0

(−1)n an(ξ)e
nπi
2 jn ((ω0 +mω)ξ)

)

(25)

and

H̃N (ξ, t) = − i
√

c̃(ξ)μ

M∑

m=−M

ei(ω0+mω)t

(
c+m
2
ei(ω0+mω)ξ − c−m

2
e−i(ω0+mω)ξ
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+ c+m

N∑

n=0

bn(ξ)e
nπi
2 jn ((ω0 +mω)ξ)− c−m

N∑

n=0

(−1)n bn(ξ)e
nπi
2 jn ((ω0 +mω)ξ)

)

. (26)

It is important to note that for real ω0 and ω the difference between the exact solution and the approximate
one is independent of the largeness of ω0 and ω. More precisely, consider

∣∣
∣Ẽ(ξ, t)− ẼN (ξ, t)

∣∣
∣ =

∣
∣∣
∣∣

1
√

c̃(ξ)ε̃(ξ)

M∑

m=−M

ei(ω0+mω)t
(
c+mA1;N (ω, ξ) + c−mA2;N (ω, ξ)

)
∣
∣∣
∣∣
,

where A1;N (ω, ξ) :=
∑∞

n=N+1 an(ξ)e
nπi
2 jn ((ω0 +mω)ξ) and A2;N (ω, ξ) :=

∑∞
n=N+1 (−1)n an(ξ)e

nπi
2

×jn ((ω0 +mω)ξ). Due to [6, Theorem 4.1] one has |A1,2;N (ω, ξ)| ≤ εN (ξ) where εN is a positive
function which can be made arbitrarily small choosing a sufficiently large N . Thus,

∣
∣∣Ẽ(ξ, t)− ẼN (ξ, t)

∣
∣∣ ≤

εN (ξ)
√

c̃(ξ)ε̃(ξ)

M∑

m=−M

(∣∣c+m
∣∣+

∣∣c−m
∣∣) . (27)

A similar reasoning is applicable to (24) and (26). One obtains an estimate of the form

∣
∣∣H̃(ξ, t)− H̃N (ξ, t)

∣
∣∣ ≤

εN (ξ)
√

c̃(ξ)μ

M∑

m=−M

(∣∣c+m
∣
∣+

∣
∣c−m

∣
∣) . (28)

The estimates (27) and (28) imply that the approximations (25) and (26) perform equally well for small
and for large values of ω0 and |mω|.

Example 3. As an illustration let us consider a situation when the transmutation kernels Kf and
K1/f admit finite sum representations of the form (9) and (10) and hence the solution (23), (24) admits
a closed form expression. As was observed in [8], when

f(ξ) =
1

(1 + ξ)2
(29)

the integral kernels of the transmutation operators Tf and T1/f are given by

Kf (ξ, t) =
(3t− 1)(ξ + 1)2 − 3(t− 1)2(t+ 1)

4(ξ + 1)2
and K1/f (ξ, t) =

3ξ2 + 6ξ + 4− 3t2 + 2t

4(ξ + 1)
.

They are polynomials with respect to the variable t and hence admit a representation in the form of a finite
linear combination of the Legendre polynomials. Simple calculation gives us the following formulas for
the coefficients {an} and {bn} in (9) and (10). We have

a0(ξ) = − ξ (ξ + 2)

2 (ξ + 1)2
, a1(ξ) =

3ξ2
(
ξ2 + 5ξ + 5

)

10 (ξ + 1)2
, a2(ξ) =

ξ3

2 (ξ + 1)2
, a3(ξ) = − 3ξ4

10 (ξ + 1)2
,

an ≡ 0, n = 4, 5, . . . and

b0(ξ) =
ξ (ξ + 2)

2
, b1(ξ) =

ξ2

2 (ξ + 1)
, b2(ξ) = − ξ3

2 (ξ + 1)
, bn ≡ 0, n = 3, 4, . . . .

As was shown in [5] this example is associated with the following electromagnetic system. Consider
system (1) with the permittivity of the form ε(x) = (αx+ β)−2+2� where � �= 0 and α, β ∈ R are

such that αx+ β > 0 on the interval of interest. Then ξ(x) =
√
μ
∫ x
0

√
ε(s)ds =

√
μ

α�

(
(αx+ β)� − β�

)
.

Hence

x =
β

α

((
1 +

α�ξ
√
μβ�

)1/�

− 1

)

, c̃(ξ) =
1
√
μ

(
α�ξ
√
μ
+ β�

)(1−�)/�

and f(ξ) =
1

(
1 + α�√

μβ� ξ
) 1−�

2�

.

Thus, take � = 1/5, α = 5, β = 1 and μ = 1. Then f has the form (29), and solution (23) and (24) of
Problem (1), (15) with the initial data of the form (20) admits a finite sum representation obtained from
(23) and (24) by substituting the coefficients {an} and {bn} from this example.
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When neither the integrals in (18) can be evaluated in the closed form, nor initial data E0 and H0

can be sufficiently closely approximated by partial sums of Fourier series (20), one faces the problem
of efficient numerical evaluation of the integrals in (18) for all required pairs of t and ξ. One of the
possibilities is to proceed as follows. Denote by WN (ξ, t) the truncated expression (18). We use the
explicit representation of the Legendre polynomial, Pn(x) =

∑n
k=0 lk,nx

k to obtain that

WN (ξ, t) = P+W+
0 (t+ ξ) + P−W−

0 (t− ξ) +
1

2ξ

N∑

n=0

(
an(ξ) + jbn(ξ)

) n∑

k=0

lk,n
ξk

ξ∫

−ξ

τkW+
0 (t+ τ)dτ

+
1

2ξ

N∑

n=0

(
an(ξ)− jbn(ξ)

) n∑

k=0

lk,n
ξk

ξ∫

−ξ

τkW−
0 (t− τ)dτ.

Now we proceed analogously to the derivation of formula (5.2) from [5],
ξ∫

−ξ

τkW+
0 (t+ τ)dτ =

k∑

l=0

(
k

l

)
(−1)k−ltk−l

t+ξ∫

t−ξ

zlW+
0 (z)dz,

and similarly for the second integral. Hence

WN (ξ, t) = P+W+
0 (t+ ξ) +

N∑

l=0

⎛

⎜
⎝

t+ξ∫

t−ξ

zlW+
0 (z)dz

⎞

⎟
⎠

N∑

k=l

c+k,N (ξ)

(
k

l

)
(−t)k−l

+ P−W−
0 (t− ξ) +

N∑

l=0

(−1)l

⎛

⎜
⎝

t+ξ∫

t−ξ

zlW−
0 (z)dz

⎞

⎟
⎠

N∑

k=l

c−k,N (ξ)

(
k

l

)
tk−l, (30)

where

c±k,N(ξ) =
1

ξk+1

N∑

n=k

lk,n
2

(
an(ξ)± jbn(ξ)

)
.

By such rearrangement we replace the problem of evaluation of the integrals in (18), where for each
pair of t and ξ one needs to integrate different functions Pn

( ·
ξ

)
W±

0 (t± ·), by the problem of evaluation

of the integrals of the same functions zkW±
0 (z) over different segments. Taking into account that

the indefinite integrals
∫ x
0 zkW±

0 (z)dz, k = 0, . . . , N , can be efficiently computed numerically via, e.g.,
piece-wise polynomial interpolation of the integrands (see, e.g., [3, Section 2.13]), formula (30) may
significantly reduce the computational cost. However, one may expect the loss of precision due to
multiplication by large coefficients lk,n

(k
l

)
and near ξ = 0 due to division by ξk+1.

Example 4. For the numerical test we consider the problem from Example 6.2 [5]. It consists in the
system (1) with the permittivity of the form

ε(x) = (αx+ β)−2, (31)

where α and β are some real numbers, such that αx+ β does not vanish on the interval of interest. Then
ξ =

√
μ
∫ x
0

√
ε(s)ds =

√
μ
α log αx+β

β . Hence

x =
β

α

(
e

αξ√
μ − 1

)
and ε̃(ξ) =

1

β2
e
− 2αξ√

μ , c̃(ξ) =
β
√
μ
e

αξ√
μ , f(ξ) = e

− αξ
2
√

μ .

In this case the Vekua equation (2) has the form

∂zW + γW = 0, (32)
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Fig. 1. Graphs of the permittivity ε(x) (on the left) and the initial data W±
0 (t) (on the right, real part in solid line,

imaginary part in dashed line) from Example 4.

where the coefficient γ is constant, γ = α/
(
4
√
μ
)
.

The Vekua equation (32) possesses an exact solution of the form [5]

W (ξ, t) = AeiΩt

(
eDξ +

D + C

D − C
e−Dξ +

2ijΩ

D − C
sinhDξ

)
, (33)

here A and Ω are arbitrary constants, C = α
2
√
μ , D = i

√
Ω2 − C2.

Hence (returning to the variable x)

E(x, t) = A 4
√
μ
√

αx+ βeiΩt

⎛

⎝
(
αx+ β

β

)D
√
μ

α

+
D + C

D − C

(
αx+ β

β

)−D
√
μ

α

⎞

⎠

and

H(x, t) =
A

D − C

ΩeiΩt

4
√
μ
√
αx+ β

⎛

⎝
(
αx+ β

β

)D
√
μ

α

−
(
αx+ β

β

)−D
√
μ

α

⎞

⎠

satisfy the Maxwell system (1) with the permittivity (31) and the initial conditions

E(0, t) = 2AD

D − C
4
√
μ
√

βeiΩt and H(0, t) = 0.

For the numerical calculation we considered an interval [0, 6] for both x and t and took α = 2, β = 1,
μ = 1. For the initial condition we took the sum of four terms, each of the form (33) having Ω1 = −Ω2 =

C + 1, Ω3 = −Ω4 = C + 2. Since the expression (33) for ξ = 0 reduces to W (0, t) = 2AD
D−C e

iΩt, we took

Ai =
Di−C
Di

, i = 1, . . . , 4 and obtained the initial data W±
0 (t) = 4 cos(C + 1)t+ 4cos(C + 2)t.

We compared solutions computed by (18) and (30). All calculations were performed using Matlab
2017 in the machine precision. The exact expressions were used only for the function ε(x) and its
derivatives, all other functions involved were computed numerically.

The permittivity ε(x) was approximated on uniform mesh of 5001 points. The new variable ξ was
obtained by the modified 6 point Newton–Cottes integration formula, see [6] for details. The same
integration formula was used for calculation of the coefficients an and bn and the integrals in (18).
Note that the integration with respect to the variable ξ requires integration over a non-uniform mesh,
however such inconvenience can be easily avoided observing that

∫ ξ(x)
0 g̃(ξ)dξ =

∫ x
0 g(s)ξ′(s)ds =

∫ x
0 g(s)

√
με(s)ds for any function g(x) = g̃(ξ(x)). To evaluate the indefinite integrals

∫
zkW±

0 (z)dz,
k = 0, . . . , N we approximated the integrands as splines and used the function fnint from Matlab. The
main reason for such choice is that the set of values taken by t− ξ and t+ ξ may be rather large and
needs not to be uniformly spaced and so some kind of interpolation is necessary, we opted for splines.
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Fig. 2. Graphs of the exact solutions E(x, t) (on the left) and H(x, t) (on the right, imaginary part) from Example 4.
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Fig. 3. Graphs of the absolute errors of E(x, t) (on the left) and H(x, t) (on the right) computed using formula (18)
truncated to N = 13.

On Figure 1 we show the permittivity (on the left) and the initial data W±
0 (t) (on the right).

On Figure 2 we show the graphs of the solutions E(x, t) (on the left) and H(x, t) (on the right,
imaginary part). Note that for the chosen initial data the values of E(x, t) are real (so that E coincides
with the component E2), while the values of H(x, t) are purely imaginary (so that the imaginary part of
H coincides with the component H3)

The developed program found the optimal value of N for the approximation of the transmutation
operators to be N = 13 (see [6] for related details). On Figure 3 we show the graphs of the absolute
errors of the computed E(x, t) and H(x, t) using directly formula (18). One can appreciate excellent
accuracy, however the computation time of the solutions on the mesh of 201 × 101 points (x, t) was
about 4 minutes.

The computation time required by formula (30) was only 4 seconds, and most of this time was spent
for the construction of splines. On Figure 4 (top graphs) we show the graphs of the absolute errors of
the computed E(x, t) and H(x, t). As one can see, the error is close to machine precision limit away
from x = 0, however rapidly increasing as x approaches 0 due to division by large powers of ξ in the
coefficients c±k,N .

The situation can be improved by taking smaller value of N for this region. For example, for N = 6
the maximum absolute error reduces to 7 · 10−8, however the errors for values of x distant from 0 growth.
See Figure 4 (bottom row).
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Fig. 4. Graphs of the absolute errors of E(x, t) (on the left) and H(x, t) (on the right) computed using formula (30).
Top graphs: using N = 13, bottom graphs: using N = 6.
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