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Abstract—In our recent work we proposed a generalization of the beta integral method for derivation
of the hypergeometric identities which can by analogy be termed “the G function integral method”.
In this paper we apply this technique to the cubic and the degenerate Miller–Paris transformations
to get several new transformation and summation formulas for the generalized hypergeometric
functions at a fixed argument. We further present an alternative approach for reducing the right
hand sides resulting from our method to a single hypergeometric function which does not require the
use of summation formulas.
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1. INTRODUCTION AND PRELIMINARIES

In our recent paper [8] we proposed a generalization of the beta integral method [11] for deriving
transformation formulas for hypergeometric functions at a fixed argument. It is based on the following
simple idea: the beta density is replaced by a density expressed in terms of Meijer–Nørlund’s function
Gp,0

p,p and the Gauss summation theorem for 2F1 is replaced by a summation theorem for p+1Fp(1) with
p ≥ 2. Here p+1Fp stands for the generalized hypergeometric function [1, (2.1.2)] and Gp,0

p,p is defined in
(5) below. It is convenient to introduce an extended definition of the generalized hypergeometric function
by

F

⎛
⎝a

b
P x

⎞
⎠ = P (0)p+mFq+m

⎛
⎝a, 1− λ

b,−λ

∣∣∣∣∣∣
x

⎞
⎠ , (1)

where a = (a1, . . . , ap), b = (b1, . . . , bq) are complex parameter vectors, (a)n = Γ(a+ n)/Γ(a) denotes
the rising factorial. We found it convenient to omit the indices of the hypergeometric functions, as
the dimensions of the parameter vectors are usually clear from the context. However, we will use the
traditional notation pFq when dealing with specific numerical values of p and q to make the formulas
more accessible to a reader not interested in further details. We will further assume throughout the
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748 CANDEZANO et al.

paper that bj does not equal a non-positive integer for all j ∈ {1, . . . , q}. The function P (n) in this paper
will always be a polynomial of a fixed degree m. It is then straightforward to check that

P (n) = P (0)
(1 − λ)n
(−λ)n

, (2)

where λ = (λ1, . . . , λm) is the vector of zeros of the polynomial P and the shorthand notation for the
product (−λ)n = (−λ1)n(−λ2)n · · · (−λm)n has been used. Hence,

F

⎛
⎝a

b
P x

⎞
⎠ = P (0)p+mFq+m

⎛
⎝a, 1− λ

b,−λ

∣∣∣∣∣∣
x

⎞
⎠ (3)

are a generalized hypergeometric functions withm unit shifts in parameters. This extended definition has
been recently used by Maier [13] and is equivalent to the concept of “hypergeometrization” introduced
a bit earlier by Blaschke [2]. We will use both ways of writing F interchangeably. Omitted argument of
the generalized hypergeometric function will signify the unit argument throughout the paper.

The standard symbols N, Z, and C will be used to denote the sets of natural, integer, and complex
numbers, respectively. Similarly to the beta integral method, our approach starts with a transformation
formula of the form

F

⎛
⎝α

β

∣∣∣∣∣∣
Mxw

⎞
⎠ = (1− x)λF

⎛
⎝δ

γ

∣∣∣∣∣∣
Dxu

(1− x)v

⎞
⎠ (4)

valid for 0 < x < 1. Here δ, γ and λ are functions of α, β; w, u ∈ N, v ∈ Z, M,D are constants.
Multiplying this formula by the Meijer–Nørlund function Gp,0

p,p, defined by the Mellin–Barnes integral
of the form

Gp,0
p,p

⎛
⎝z

∣∣∣∣∣∣
b

a

⎞
⎠ :=

1

2πi

∫

L

Γ(a+ s)

Γ(b+ s)
z−sds, (5)

and integrating term-wise we established the “master” lemma below [8, Lemma 1]. Details regarding
the choice of the contour L can be found in many standard reference books [12, section 5.2], [15, 16.17],
[16, 8.2] and our papers [4, 5], which also contain a list of properties of Gp,0

p,p.

Lemma 1. Assume that (4) holds for x ∈ (0, 1). Suppose further that δ or a contains a negative
integer or v = 0, D = 1, and

�(a) > 0 & �(s(a,b) + λ) > 0 & �(s(a,b) + s(γ, δ) + λ) > 0, (6)

where s(a,b) =
∑p

j=1(bj − aj) is the parametric excess. Then

F

⎛
⎝α,Δ(a, w)

β,Δ(b, w)

∣∣∣∣∣∣
M

⎞
⎠ =

∞∑
k=0

(δ)k(a)ukD
k

(γ)k(b)ukk!
F

⎛
⎝−λ+ vk,a+ uk

b+ uk

⎞
⎠ , (7)

where Δ(a,w) = (a/w, a/w + 1/w, . . . , a/w + (w − 1)/w).

In [8] we applied our method to a number of transformations with w, u, v ∈ {−1, 0, 1, 2} including
Euler–Pfaff, Miller–Paris and many quadratic transformations. The purpose of this note is threefold.
First, we apply the method to the cubic and the degenerate Miller–Paris transformations; second,
we propose an alternative way to handle the expression on the right hand side of (7); finally, we will
show how transformation formulas obtained by G function integral method can be used to derive
summation formulas for the generalized hypergeometric functions including those with with non-linearly
constrained parameters.

Before moving forward to these topics let us cite Lemma 2 from [8], whose particular cases will be
used extensively to sum the hypergeometric function on the right hand side of (7).
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Lemma 2. Suppose l ∈ N, h = (h1, . . . , hl) ∈ C
l, p = (p1, . . . , pl) ∈ N

l, p = p1 + · · ·+ pl, u ∈
N, v ∈ Z. Then for k ∈ N such that �(e+ λ− d− p− vk) > 0 or if hypergeometric function F
terminates, we have

F

⎛
⎝−λ+ vk, d + uk,h+ p+ uk

e+ uk,h+ uk

⎞
⎠

=
(−1)vkΓ(e+ λ− d)Γ(1 + d− e− λ)Γ(e+ uk)Yp(u, v; k)

(h+ uk)pΓ((u− v)k + e+ λ)Γ(vk + d− e− λ+ p+ 1)
, (8)

where (h+ uk)p = (h1 + uk)p1 · · · (hl + uk)pl and

Yp(u, v; t) =
(h− d)p
Γ(e− d)

p∑
j=0

(d− e+ 1)j
j!

F

⎛
⎝−j, 1− h+ d

1− h+ d− p

⎞
⎠

× (ut+ d)j(vt+ d− e− λ+ j + 1)p−j (9)

is a polynomial of degree p.
Remark. If p = l = 1 the polynomial Yp(u, v; t) reduces to

Y1(u, v; t) =
v(h− d)− u(e− d− 1)

Γ(e− d)
t− (h− d)λ+ (e− d− 1)h

Γ(e− d)
(10)

with the root

ξ =
(h− d)λ+ (e− d− 1)h

(h− d)v − (e− d− 1)u
. (11)

Denote Δ(z,m)k = (z/m)k((z + 1)/m)k · · · ((z +m− 1)/m)k . We will need several particular
cases of the above lemma which are easily derived from (8) using the identities

Γ(z − n) =
(−1)nΓ(z)

(1− z)n
, (z)2k = 4kΔ(z, 2)k , (z)3k = 27kΔ(z, 3)k.

For (u, v) = (1, 3) we have

F

⎛
⎝−λ+ 3k, d + k,h+ p+ k

e+ k,h+ k

⎞
⎠

=
Γ(e+ λ− d)Γ(e)(e)k(h)kΔ(1− e− λ, 2)k(−4/27)kYp(1, 3; k)

(h)pΓ(e+ λ)(1 + d− e− λ)p(h+ p)kΔ(1 + d− e− λ+ p, 3)k
. (12)

The case (u, v) = (2, 3) takes the form

F

⎛
⎝−λ+ 3k, d+ 2k,h+ p+ 2k

e+ 2k,h+ 2k

⎞
⎠

=
Γ(e+ λ− d)Γ(e)Δ(e, 2)kΔ(h, 2)k(1− e− λ)k(4/27)

kYp(2, 3; k)

(h)pΓ(e+ λ)(1 + d− e− λ)pΔ(h+ p, 2)kΔ(1 + d− e− λ+ p, 3)k
. (13)

The case (u, v) = (3, 2) is given by

F

⎛
⎝−λ+ 2k, d+ 3k,h+ p+ 3k

e+ 3k,h+ 3k

⎞
⎠

=
Γ(e+ λ− d)Γ(e)Δ(e, 3)kΔ(h, 3)k(27/4)

kYp(3, 2; k)

(h)pΓ(e+ λ)(1 + d− e− λ)pΔ(h+ p, 3)k(e+ λ)kΔ(1 + d− e− λ+ p, 2)k
. (14)
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750 CANDEZANO et al.

Finally, for (u, v) = (1,−2) we obtain

F

⎛
⎝−λ− 2k, d + k,h+ p+ k

e+ k,h+ k

⎞
⎠

=
Γ(e+ λ− d)Γ(e)(e)k(h)k(4/27)

kΔ(e+ λ− d− p, 2)kYp(1,−2; k)

(h)pΓ(e+ λ)(1 + d− e− λ)p(h+ p)kΔ(e+ λ, 3)k
. (15)

2. CUBIC TRANSFORMATIONS

The following lemma based on the Gessel–Stanton identity [3, (1.9)] yields one more summation
formula for the case (u, v) = (1, 3).

Lemma 3. For any n, k ∈ N, k ≤ n, we have

3F2

⎛
⎝−λ+ 3k,−(λ+ 1)/3 + k,−n+ k

(5− λ)/3 + k, 2n + 2− λ+ k

⎞
⎠

=
(2− λ)(n + 1)(3n + 2)!(−1/2 − n)k(2− λ+ 2n)k((5 − λ)/3)k(−4/27)k

(2− λ+ 3n)(2n + 2)!(2 − λ+ 2n)n(−2/3− n)k(−1/3− n)k((2− λ)/3)k
. (16)

Proof. According to s = −3 case of [3, (1.9)] (see also [10, (8.12)]), we have

3F2

⎛
⎝−λ+ 3k,−(λ+ 1)/3 + k,−n+ k

(5− λ)/3 + k, 2n + 2− λ+ k

⎞
⎠ =

(−2− 3(n − k))n−k((2 − λ)/3 + k)(n − k + 1)

(−1 + λ− 3n))n−k(2− λ)/3 + n)
.

Next, apply the easily verifiable identities

(−2− 3n + 3k)n−k = (−1)n
(3n + 2)!(−1 − n)k(−1/2 − n)k4

k

(2n+ 2)!(−2/3 − n)k(−1/3− n)k(−n)k27k
,

(−1 + λ− 3n)n−k = (−1)n+k (2− λ+ 2n)n
(2− λ+ 2n)k

to get (16). �

Combining Lemma 1 with Lemma 3 and summation formulas (12)–(15) we obtain a number of
transformation formulas for terminating generalized hypergeometric functions, none of which could be
immediately located in the literature. We will present each formula in a separate theorem. Recall that
Δ(z,m) = (z/m, z/m + 1/m, . . . , z/m+ (m− 1)/m) and bottom parameters are always assumed to
satisfy the restriction of not being equal to non-positive integers.

Theorem 1. For n ∈ N we have

5F4

⎛
⎝α, 2β − α− 1, α+ 2− 2β, (α − 1)/3,−n

β, α − β + 3/2, (α + 5)/3, 2n + α+ 2

∣∣∣∣∣∣
1

4

⎞
⎠

=
(α+ 2)Γ(3n + 4)Γ(2n + α+ 2)

3Γ(2n + 3)Γ(3n + α+ 3)
5F4

⎛
⎝ Δ(α− 1, 3),−1/2 − n,−n

β, α − β + 3/2,−1/3 − n,−2/3− n

⎞
⎠ . (17)

Proof. According to [1, p. 185] the following cubic transformation due to Bailey holds true for
0 < x < 1:

3F2

⎛
⎝α, 2β − α− 1, α+ 2− 2β

β, α+ 3/2 − β

∣∣∣∣∣∣
x

4

⎞
⎠
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= (1− x)−α
3F2

⎛
⎝α/3, (α + 1)/3, (α + 2)/3

β, α+ 3/2− β

∣∣∣∣∣∣
−27x

4(1− x)3

⎞
⎠ . (18)

Then we can apply Lemma 1 with M = 1/4, u = 1, v = 3, λ = −α and D = −27/4. This yields

F

⎛
⎝α, 2β − α− 1, α + 2− 2β,a

β, α+ 3/2 − β,b

∣∣∣∣∣∣
1

4

⎞
⎠ =

∞∑
k=0

Δ(α, 3)k(a)k(−27/4)k

(β)k(α+ 3/2 − β)k(b)kk!
F

⎛
⎝α+ 3k,a+ k

b+ k

⎞
⎠ . (19)

By choosing a1 = (1− α)/3, a2 = −n, n ∈ N, b1 = (5 + α)/3, b2 = 2n+ 2 + α we are in the position
to apply Lemma 3 which, after some cancelations, leads to (17). �

Theorem 2. For −d ∈ N we have

F

⎛
⎝α, 2β − α− 1, α + 2− 2β, d,h + p

β, α − β + 3/2, e,h

∣∣∣∣∣∣
1

4

⎞
⎠

=
Γ(e− α− d)Γ(e)

(h)pΓ(e− α)(1 + d+ α− e)p
F

⎛
⎝ Δ(α, 3),Δ(1 + α− e, 2), d

β, α− β + 3/2,Δ(1 + d+ α− e+ p, 3)
Yp(1, 3)

⎞
⎠ , (20)

where Yp(1, 3) is defined in (9) with λ = −α.
Proof. Follow the proof of Theorem 1 up to formula (19). Then choose a1 = d, a[1] = h+ p,

b1 = e, b[1] = h and apply formula (12). Here a[1] is a shorthand notation for the vector a with the
first component removed. �

Theorem 3. For n ∈ N we have

4F3

⎛
⎝ 1, (α − 1)/3, α − 2β,−n

β + 1, (α + 5)/3, 2n + α+ 2

⎞
⎠

=
(α+ 2)Γ(3n + 4)Γ(2n + α+ 2)

3Γ(2n + 3)Γ(3n + α+ 3)
6F5

⎛
⎝ Δ(α− 1, 3), β,−1/2 − n,−n

Δ(α, 2), β + 1,−1/3 − n,−2/3− n

⎞
⎠ . (21)

The function 6F5 on the right hand side is Saalschützian (or 1-balanced).
Proof. According to [3, (5.13)] we have

2F1

⎛
⎝1, α− 2β

β + 1

∣∣∣∣∣∣
x

⎞
⎠ = (1− x)−α

4F3

⎛
⎝α/3, (α + 1)/3, (α + 2)/3, β

α/2, (α + 1)/2, β + 1

∣∣∣∣∣∣
−27x

4(1 − x)3

⎞
⎠ . (22)

Then we can apply Lemma 1 with M = 1, u = 1, v = 3, λ = −α and D = −27/4. Then setting
a1 = (1− α)/3, a2 = −n, n ∈ N, b1 = (5 + α)/3, b2 = 2n + 2 + α we can apply Lemma 3 to sum the
hypergeometric function of the right hand side. This leads immediately to (21). �

Theorem 4. For −d ∈ N we have

F

⎛
⎝1, α − 2β, d,h + p

β + 1, e,h

⎞
⎠

=
Γ(e− α− d)Γ(e)

(h)pΓ(e− α)(1 + d+ α− e)p
F

⎛
⎝ Δ(α, 3), β,Δ(1 + α− e, 2), d

Δ(α, 2), β + 1,Δ(1 + d+ α− e+ p, 3)
Yp(1, 3)

⎞
⎠ , (23)

where Yp(1, 3) is defined in (9) with λ = α.
Proof. Use (22) in Lemma 1 similarly to the proof of Theorem 3. Then apply formula (12) to sum the

hypergeometric function on the right hand side. �
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Theorem 5. For −d ∈ N we have

F

⎛
⎝α, β − 1/2, α − β + 1, d,h + p

2β, 2α − 2β + 2, e,h

∣∣∣∣∣∣
4

⎞
⎠ =

Γ(e− α− d)Γ(e)

(h)pΓ(e− α)(1 + d+ α− e)p

× F

⎛
⎝ Δ(α, 3),Δ(e, 2),Δ(h, 2), 1 + α− e, d,h + p

β, α− β + 3/2, e,h,Δ(h + p, 2),Δ(1 + d+ α− e+ p, 3)
Yp(2, 3)

⎞
⎠ , (24)

where Yp(2, 3) is defined in (9) with λ = α.
Proof. According to [1, p. 185] the following cubic transformation due to Bailey holds true for

0 < x < 1:

3F2

⎛
⎝α, β − 1/2, α + 1− β

2β, 2α + 2− 2β

∣∣∣∣∣∣
4x

⎞
⎠ = (1− x)−α

3F2

⎛
⎝ Δ(α, 3)

β, α+ 3/2− β

∣∣∣∣∣∣
27x2

4(1− x)3

⎞
⎠ . (25)

Application of Lemma 1 and formula (13) completes the proof. �

Remark. Bailey’s cubic transformation (25) has been recently extended by Maier in [13, Theo-
rems 3.3, 3.6, 3.9]. These extensions can be used in place of (25) to derive generalizations of (24).

Theorem 6. For −d ∈ N we have

F

⎛
⎝3α, 3α + 1/2, d,h + p

6α+ 1, e,h

∣∣∣∣∣∣
4

3

⎞
⎠ =

Γ(e− 2α− d)Γ(e)

(h)pΓ(e− 2α)(1 + d+ 2α− e)p

× F

⎛
⎝ α,α + 1/2,Δ(d, 3)

2α + 1, e − 2α,Δ(1 + d+ 2α− e+ p, 2)
Yp(3, 2)

⎞
⎠ , (26)

where Yp(3, 2) is defined in (9) with λ = 2α.
Proof. According to [3, (5.20)] we have

2F1

⎛
⎝3α, 3α + 1/2

6α+ 1

∣∣∣∣∣∣
4x

3

⎞
⎠ = (1− x)−2α

2F1

⎛
⎝α,α + 1/2

2α+ 1

∣∣∣∣∣∣
4x3

27(1 − x)2

⎞
⎠ .

Application of Lemma 1 and formula (14) completes the proof. �

For p = 1 formula (26) takes the form

4F3

⎛
⎝3α, 3α + 1/2, d, h + 1

6α+ 1, e, h

∣∣∣∣∣∣
4

3

⎞
⎠ =

Γ(e− 2α− d)Γ(e)(2α(h − d)− (e− d− 1)h)

hΓ(e− d)Γ(e− 2α)(1 + d+ 2α− e)

× 6F5

⎛
⎝ α,α+ 1/2,Δ(d, 3), ξ + 1

2α+ 1, e− 2α,Δ(2 + d+ 2α − e, 2), ξ

⎞
⎠ ,

where

ξ =
2α(h − d)− (e− d− 1)h

2(h − d)− 3(e − d− 1)
.

Theorem 7. Suppose α or d is a negative integer. Then

F

⎛
⎝3α,−3α, d,h + p

1/2, e,h

∣∣∣∣∣∣
3

4

⎞
⎠ =

Γ(e− d)

(h)p(1 + d− e)p
F

⎛
⎝α,−α, d,Δ(e − d− p, 2)

1/2,Δ(e, 3)
Yp(1,−2)

⎞
⎠ , (27)

where Yp(1,−2) is defined in (9) with λ = 0.
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Proof. We start with the transformation [3, (5.18)]

2F1

⎛
⎝3α,−3α

1/2

∣∣∣∣∣∣
3x

4

⎞
⎠ = 2F1

⎛
⎝α,−α

1/2

∣∣∣∣∣∣
27x(1 − x)2

4

⎞
⎠

playing the role of (4) in Lemma 1. Then use formula (15) to sum the hypergeometric function on the
right hand side. �

In view of (10) and (11), transformation (27) takes a particularly simple form for p = 1:

4F3

⎛
⎝3α,−3α, d, h + 1

1/2, e, h

∣∣∣∣∣∣
3

4

⎞
⎠ = 6F5

⎛
⎝α,−α, d,Δ(e − d− 1, 2), ξ + 1

1/2,Δ(e, 3), ξ

⎞
⎠ ,

where ξ = (e− d− 1)h/(2h+ e− 3d− 1) is the negated root of Y1(1,−2). Further, setting e = d+1+ ε
and letting ε → 0 after some algebra we arrive at (α ∈ N):

4F3

⎛
⎝3α,−3α, d, h + 1

1/2, d + 1, h

∣∣∣∣∣∣
3

4

⎞
⎠ =

d

h
+

h− d

h
4F3

⎛
⎝ α,−α, d, 1

Δ(d+ 1, 3)

⎞
⎠ .

Note that 4F3 on the right hand side is Saalschützian (i.e. 1-balanced) while 4F3 on the left hand side is
1/2-balanced.

Bailey’s cubic transformations have been recently extended by Maier in [13]. These extensions can be
combined with Lemma 2 to get generalizations of Theorems 2 and 5. Three Maier’s transformations [13,
Theorems 3.2, 3.5, 3.8] can also be combined with Lemma 3. We will restrict our attention to a
combination of Lemma 3 with the transformation [13, Theorems 3.2]

F

⎛
⎝ α, 1/2 − r − β, 1/2 − r + β

(α+ β + r)/2 + 3/4, (α − β + r)/2 + 3/4
Q(3)

r

∣∣∣∣∣∣
x

4

⎞
⎠

= (1− x)−α
3F2

⎛
⎝ Δ(α, 3)

(α+ β + r)/2 + 3/4, (α − β + r)/2 + 3/4

∣∣∣∣∣∣
−27x

4(1− x)3

⎞
⎠ . (28)

Here the 2r-degree polynomial Q(3)
r is given by

Q(3)
r (x) =

((12 − r + β − x)/2)r((
1
2 − r − β − x)/2)r

4−r(1/2 + β)r(1/2 − β)r
3F2

⎛
⎝ −x, (x+ α)/2,−r

(12 − r + β − x)/2, (12 − r − β − x)/2

⎞
⎠ .

This leads to the following generalization of Theorem 1.

Theorem 8. For n ∈ N we have

3

α+ 2
F

⎛
⎝ α, 1/2 − r − β, 1/2 − r + β, (α − 1)/3,−n

(α+ β + r)/2 + 3/4, (α − β + r)/2 + 3/4, (α + 5)/3, 2n + α+ 2
Q(3)

r

∣∣∣∣∣∣
1

4

⎞
⎠

=
Γ(3n+ 4)Γ(2n + α+ 2)

Γ(2n+ 3)Γ(3n + α+ 3)
5F4

⎛
⎝ Δ(α− 1, 3),−1/2 − n,−n

(α+ β + r)/2 + 3/4, (α − β + r)/2 + 3/4,−1/3 − n,−2/3− n

⎞
⎠ .

(29)

Proof. Apply Lemma 1 to transformation (28) and use Lemma 3 to sum the hypergeometric
functions on the right hand side. �
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3. DEGENERATE MILLER–PARIS TRANSFORMATIONS
Miller–Paris transformations are extensions of Euler’s transformations for the Gauss hypergeometric

function [1, Theorem 2.2.5] to generalized hypergeometric functions of higher-order having integral
parameter differences (IPD-type). They were developed in a series of papers published over last 15
years, the most general form was presented in a seminal paper [14] by Miller and Paris. In our recent
articles [6, 7] we extended these transformations to the previously prohibited valued of parameters and
gave denomination “degenerate Miller–Paris transformations” to the resulting identities. In this section
we apply the G function integral method to some degenerate Miller–Paris transformations. As these
transformations are not of the form (4), we cannot use Lemma 1, so we will follow the method explicitly.
As we mentioned earlier the essence of the method is to multiply a known transformation by the Meijer-
Nørlund function Gp,0

p,p function defined in (5) and integrate it from 0 to 1. To perform the term-wise
integration we will need the integral evaluation [4, p. 50]

Γ(b)

Γ(a)

1∫

0

xν(1− x)μGp,0
p,p

⎛
⎝x

∣∣∣∣∣∣
b− 1

a− 1

⎞
⎠ dx =

(a)ν
(b)ν

p+1Fp

⎛
⎝−μ,a+ ν

b+ ν

⎞
⎠ , (30)

where for arbitrary ν the Pochhammer’s symbol is defined by (a)ν = Γ(a+ ν)/Γ(a). The above formula
is true if �(a+ ν) > 0 and �(s(a,b) + μ) > 0 (recall that s(a,b) =

∑p
j=1(bj − aj)). We now apply this

technique to the degenerate Miller–Paris transformation found in [7]. Define m = (m1, . . . ,mr) ∈ N
r,

m = m1 +m2 + . . .+mr and f = (f1, . . . , fr) ∈ C
r. We will reserve the symbols f and m for the

degenerate Miller–Paris transformations throughout the rest of the paper.
Theorem 9. Suppose �(e− a− d− p−m+ 1) > 0, �(e− d− p) > 0. Then

F

⎛
⎝a, b, d, f +m,h+ p

b+ 1, e, f ,h

⎞
⎠ = Ω · F

⎛
⎝ 1, b+ 1− a, d

b+ 1, e − a+ 1
Yp(1, 0)

⎞
⎠

+

m−1∑
l=0

βl
(a)l(d)l(h+ p)l

(e)l(h)l
F

⎛
⎝a+ l, d+ l,h+ p+ l

e+ l,h+ l

⎞
⎠ , (31)

where the polynomial Yp(1, 0) is defined in (9) with λ = 1− a and

Ω =
(f − b)mΓ(e)Γ(e− a− d+ 1)

(f)m(h)p(d+ a− e)pΓ(e+ 1− a)
, βl =

(−1)l

l!
F

⎛
⎝−l, b, f +m

b+ 1, f

⎞
⎠− (−1)l(f − b)m

(b+ 1)l(f)m
. (32)

Proof. According to [7, Teorem 3]

F

⎛
⎝a, b, f +m

b+ 1, f

∣∣∣∣∣∣
x

⎞
⎠ =

(f − b)m
(f)m

(1− x)1−a
2F1

⎛
⎝1, b+ 1− a

b+ 1

∣∣∣∣∣∣
x

⎞
⎠+

m−1∑
l=0

βl(a)lx
l(1− x)−a−l (33)

with βl defined in (32). Suppose h = (h1, . . . , hl) is a complex vector, p = (p1, . . . , pl) comprises non-
negative integers, p = p1 + . . .+ pl. To prove the theorem, multiply both sides of (33) by

Γ(e)

Γ(d)(h)p
Gl+1,0

l+1,l+1

⎛
⎝x

∣∣∣∣∣∣
e− 1,h− 1

d− 1,h+ p− 1

⎞
⎠

and integrate term-wise from 0 to 1. Applying (30) we then have

Γ(e)

Γ(d)(h)p

1∫

0

xl(1− x)−a−lGl+1,0
l+1,l+1

⎛
⎝x

∣∣∣∣∣∣
e− 1,h − 1

d− 1,h+ p− 1

⎞
⎠ dx

=
(d)l(h+ p)l
(e)l(h)l

F

⎛
⎝a+ l, d+ l,h+ p+ l

e+ l,h+ l

⎞
⎠ . (34)
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Setting α = (a, b, f +m), β = (b+ 1, f), on the left hand side we obtain

Γ(e)

Γ(d)(h)p

1∫

0

Gl+1,0
l+1,l+1

⎛
⎝x

∣∣∣∣∣∣
e− 1,h− 1

d− 1,h+ p− 1

⎞
⎠F

⎛
⎝α

β

∣∣∣∣∣∣
x

⎞
⎠ dx = F

⎛
⎝α, d,h + p

β, e,h

⎞
⎠ . (35)

Further, term-wise integration and Lemma 2 lead to the following evaluation:

Γ(e)

Γ(d)(h)p

1∫

0

Gl+1,0
l+1,l+1

⎛
⎝x

∣∣∣∣∣∣
e− 1,h− 1

d− 1,h + p− 1

⎞
⎠ (1− x)λ2F1

⎛
⎝1, b+ 1− a

b+ 1

∣∣∣∣∣∣
x

⎞
⎠ dx

=
Γ(e)Γ(e+ λ− d)

(h)p(d− e− λ+ 1)pΓ(e+ λ)
F

⎛
⎝1, b+ 1− a, d

b+ 1, e + λ
Yp(1, 0)

⎞
⎠ , (36)

where the polynomial Yp(1, 0) is defined by (9). �

The previous theorem can be further generalized by substituting the bottom parameter b+ 1 by b+ k
with k ≥ 2, as follows.

Theorem 10. Suppose k ∈ N, k ≥ 2, �(e− a− d− p−m+ 1) > 0 and �(e− d− p) > 0. Then

F

⎛
⎝a, b, d, f +m,h+ p

b+ k, e, f ,h

⎞
⎠ = Λ · F

⎛
⎝ 1, b− a+ 1, d

b+ k, e− a+ 1
Tk−1 · Yp(1, 0)

⎞
⎠

+
k∑

q=1

(−1)q−1(b)k
(b+ q − 1)(q − 1)!(k − q)!

m−1∑
l=0

σql
(a)l(d)l(h+ p)l

(e)l(h)l
F

⎛
⎝a+ l, d+ l,h+ p+ l

e+ l,h+ l

⎞
⎠ , (37)

where the polynomial Yp(1, 0) is defined by (9) with λ = 1− a,

Λ =
Γ(b− a+ 1)Γ(e)Γ(e + 1− a− d)

(f)m(h)p(d− e+ a)pΓ(b)Γ(e− a+ 1)
,

Tk−1(z) =
k∑

q=1

(−1)q−1(f − b− q + 1)mΓ(b+ q − 1)

Γ(b+ q − a)(q − 1)!(k − q)!
(b+ q + z)k−q(b+ 1− a+ z)q−1

is a polynomial of degree k − 1, and

σql =
(−1)l

l!
F

⎛
⎝−l, b+ q − 1, f +m

b+ q, f

⎞
⎠− (−1)l(f − b− q + 1)m

(b+ q)l(f)m
. (38)

Proof. The proof goes along the same lines as the proof of Theorem 9, but with transformation (33)
replaced by the transformation [7, Theorem 4]

F

⎛
⎝a, b, f +m

b+ k, f

∣∣∣∣∣∣
x

⎞
⎠ =

Γ(b− a+ 1)

Γ(b)(f)m
(1− x)1−aF

⎛
⎝1, b+ 1− a

b+ k
Tk−1

∣∣∣∣∣∣
x

⎞
⎠

+
k∑

q=1

(−1)q−1(b)k
(b+ q − 1)(q − 1)!(k − q)!

m−1∑
l=0

σql(a)lx
l(1− x)−a−l. (39)

�

Remark. Assuming λ = −a, vk = l, uk = l in Lemma 2, we obtain the summation formula

F

⎛
⎝a+ l, d+ l,h+ p+ l

e+ l,h+ l

⎞
⎠ =

(−1)l(h− d)pΓ(e− a− d)Γ(1 + d− e+ a)Γ(e+ l)

(h+ l)pΓ(e− a)Γ(e− d)Γ(l + d− e+ a+ p+ 1)
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×
p∑

j=0

(d− e+ 1)j
j!

F

⎛
⎝−j, 1− h+ d

1− h+ d− p

⎞
⎠ (l + d)j(l + d− e+ a+ j + 1)p−j . (40)

Thus, the second terms in equalities (31) and (37) are finite sums.
Theorem 11. Suppose (c− g −m+ 1)m−1 �= 0, (c− a−m+ 1)m−1 �= 0, (1 + a+ g − c)m−1 �= 0

and λ = c− a− g −m+ 1. Assuming convergence of the hypergeometric functions involved we
have the transformation

F

⎛
⎝a, g, d, b, f +m,h+ p

c, e, b+ 1, f ,h

⎞
⎠ =

(f − b)m
(f)m

F

⎛
⎝a, g, d, b,h + p

c, e, b + 1,h

⎞
⎠

+
Γ(e)Γ(e+ λ− d)[(f)m − (f − b)m]

Γ(e+ λ)(d− e− λ+ 1)p(f)m(h)p
F

⎛
⎝d, g + λ, a+ λ, λ̂+ 1

c, e + λ, λ̂
Yp(1, 0)

⎞
⎠ , (41)

where the polynomial Yp(1, 0) is given in (9) with λ = c− a− g −m+ 1 and λ̂ is the vector of
zeros of the polynomial of degree m− 1 defined by

L̂m−1(t) =

m−1∑
l=0

(−1)lβl(a)l(g)l(t)l
(c− a−m+ 1)l(c− g −m+ 1)l

3F2

⎛
⎝−m+ 1 + l, t+ l, c− a− g −m+ 1

c− a−m+ 1 + l, c− g −m+ 1 + l

⎞
⎠ (42)

with βl from (32).
Proof. The proof repeats that of Theorem 9 with transformation (33) replaced by the transforma-

tion [7, Theorem 5]

F

⎛
⎝a, g, b, f +m

c, b+ 1, f

∣∣∣∣∣∣
x

⎞
⎠ =

(f − b)m
(f)m

3F2

⎛
⎝ a, g, b

c, b+ 1

∣∣∣∣∣∣
x

⎞
⎠

+
(f)m − (f − b)m

(f)m
(1− x)c−a−g−m+1F

⎛
⎝c− a−m+ 1, c − g −m+ 1, λ̂+ 1

c, λ̂

∣∣∣∣∣∣
x

⎞
⎠ . (43)

�

4. ALTERNATIVE APPROACH: INTERCHANGE OF THE ORDER OF SUMMATIONS

In some situations we can exchange the order of summations on the right hand side of (7) to get the
hypergeometric function with several parameters shifted by unity as defined in (1). To illustrate this is
idea we apply it to Euler’s transformation

2F1

⎛
⎝a, b

c

∣∣∣∣∣∣
x

⎞
⎠ = (1− x)c−a−b

2F1

⎛
⎝c− a, c− b

c

∣∣∣∣∣∣
x

⎞
⎠ . (44)

This leads to
Theorem 12. Suppose q ∈ N, a,b ∈ C

p. Assuming convergence of the hypergeometric func-
tions involved we have

F

⎛
⎝γ + q, β,a

γ,b

⎞
⎠ = F

⎛
⎝β + q,a

b+ q
PM

⎞
⎠ , (45)

where the polynomial PM (x) of degree M = qp is defined by

PM (x) = (b+ x)q · p+2Fp+1

⎛
⎝−q, γ − β,a+ x

γ,b+ x

⎞
⎠ . (46)
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Remark. Using relation (3) formula (45) can be written in a more traditional notation as

p+2Fp+1

⎛
⎝γ + q, β,a

γ,b

⎞
⎠ = p+2Fp+1

⎛
⎝−q, γ − β,a

γ,b

⎞
⎠M+p+1FM+p

⎛
⎝β + q,a, 1− λ

b+ q,−λ

⎞
⎠ ,

where λ = (λ1, . . . , λqp) is the vector of roots of the polynomial (46).
Proof. Application of Lemma 1 to Euler’s transformation (44) yields:

p+2Fp+1

⎛
⎝α, β,a

γ,b

⎞
⎠ =

∞∑
k=0

(γ − α)k(γ − β)k(a)k
(γ)k(b)kk!

p+1Fp

⎛
⎝α+ β − γ,a+ k

b+ k

⎞
⎠ .

Now, assume that α = γ + q, q ∈ N. Then exchanging the order of summations we get

p+2Fp+1

⎛
⎝γ + q, β,a

γ,b

⎞
⎠ =

q∑
k=0

(−q)k(γ − β)k(a)k
(γ)k(b)kk!

p+1Fp

⎛
⎝β + q,a+ k

b+ k

⎞
⎠

=
∞∑
n=0

(β + q)n
n!

q∑
k=0

(−q)k(γ − β)k(a)k(a+ k)n
(γ)k(b)k(b+ k)nk!

=
∞∑
n=0

(β + q)n(a)n
(b)nn!

q∑
k=0

(−q)k(γ − β)k(a+ n)k
(γ)k(b+ n)kk!

=
∞∑
n=0

(β + q)n(a)n
(b)n(b+ n)qn!

PM (n),

where M = qp and PM (x) is defined in (46). This proves (45). To justify the expression from the remark
denote the zeros of this polynomial by λ1, λ2, . . ., λM and note that the constant term of this polynomial,
PM (0), is easily computed, so that in view of (2) we have

PM (n) = (b)q · p+2Fp+1

⎛
⎝−q, γ − β,a

γ,b

⎞
⎠ (1− λ1)n · · · (1− λM )n

(−λ1)n · · · (−λM )n
.

It remains to apply (b)n(b+ n)q = (b)q(b+ q)n. �

In particular, for p = q = 1:

3F2

⎛
⎝γ + 1, β, a

γ, b

∣∣∣∣∣∣
1

⎞
⎠ =

(
1− (γ − β)a

γb

)
3F2

⎛
⎝β + 1, a, 1 − λ

b+ 1,−λ

∣∣∣∣∣∣
1

⎞
⎠ ,

where λ = β−1((γ − β)a− γb). For m = 1, p = 2:

4F3

⎛
⎝γ + 1, β, a1, a2

γ, b1, b2

∣∣∣∣∣∣
1

⎞
⎠ =

(
1− (γ − β)a1a2

γb1b2

)
5F4

⎛
⎝β + 1, a1, a2, 1− λ1, 1 − λ2

b1 + 1, b2 + 1,−λ1,−λ2

∣∣∣∣∣∣
1

⎞
⎠ ,

where λ1, λ2 are the roots of
P2(x) = (a1 + x)(a2 + x)(γ − β)− γ(b1 + x)(b2 + x) = 0.

If we start with the first Euler–Pfaff transformation

2F1

⎛
⎝a, b

c

∣∣∣∣∣∣
x

⎞
⎠ = (1− x)−a

2F1

⎛
⎝a, c− b

c

∣∣∣∣∣∣
x

x− 1

⎞
⎠ , (47)

we arrive at the following theorem.
Theorem 13. Suppose −a1 = m ∈ N, N � q ≤ m, a,b ∈ C

p. Then

F

⎛
⎝γ + q, α,a

γ,b

⎞
⎠ = F

⎛
⎝ α,a

b+ q
RM

⎞
⎠ , (48)
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where the polynomial RM of degree M = q(p+ 1) is defined by

RM (x) = (b+ x)q

q∑
k=0

(−q)k(α+ x)k(a+ x)k
(b+ x)k(−1)k(γ)kk!

= (b+ x)q · p+2Fp+1

⎛
⎝−q, α+ x,a+ x

γ,b+ x

∣∣∣∣∣∣
− 1

⎞
⎠ .

(49)

Remark. Using relation (3) formula (48) can be written in a more traditional notation as

p+2Fp+1

⎛
⎝γ + q, α,a

γ,b

⎞
⎠ = p+2Fp+1

⎛
⎝−q, α,a

γ,b

∣∣∣∣∣∣
− 1

⎞
⎠

M+p+1FM+p

⎛
⎝α,a, 1− η

b+ q,−η

⎞
⎠ , (50)

where η = (η1, . . . , ηM ) is the vector of roots of the polynomial (49).
Proof. Set β = γ + q. Application of Lemma 1 to Euler’s transformation (47) yields:

p+2Fp+1

⎛
⎝α, β,a

γ,b

⎞
⎠ =

q∑
k=0

(α)k(γ − β)k(a)k
(−1)k(γ)k(b)kk!

p+1Fp

⎛
⎝α+ k,a+ k

b+ k

⎞
⎠

=

q∑
k=0

(α)k(−q)k(a)k
(−1)k(γ)k(b)kk!

m∑
n=0

(α+ k)n(a+ k)n
(b+ k)nn!

=
m∑

n=0

(α)n(a)n
(b+ n)q(b)nn!

RM (n),

where M = q(p+ 1) and RM (x) is defined in (49) which proves (48). Denoting the zeros of this
polynomials by η1, η2, . . ., ηM and noting that the constant term of this polynomial, RM (0), is easily
computed, we get

RM (n) = (b)q · p+2Fp+1

⎛
⎝−q, α,a

γ,b

∣∣∣∣∣∣
− 1

⎞
⎠ (1− η1)n · · · (1− ηM )n

(−η1)n · · · (−ηM )n
.

Substituting this expression back, we obtain (50). �

In particular, for p = q = 1:

3F2

⎛
⎝γ + 1, α,−m

γ, b

∣∣∣∣∣∣
1

⎞
⎠ =

(
1− αm

γb

)
4F3

⎛
⎝α,−m, 1 − η1, 1− η2

b+ 1,−η1,−η2

∣∣∣∣∣∣
1

⎞
⎠ ,

where η1, η2 are the roots of

γ(b+ x) + (α+ x)(x−m) = 0.

This approach works for a number of other transformations listed in [8, section 2.3]. For another
example we take Maier’s recent generalization of Whipple’s quadratic transformation for 3F2 [13,
Theorem 3.1]:

F

⎛
⎝ α, β, δ, 1 − ρ

1 + α− β, 1 + α− δ,−ρ

∣∣∣∣∣∣
x

⎞
⎠

= (1− x)−α
3F2

⎛
⎝α/2, α/2 + 1/2, α − β − δ − r + 1

1 + α− β, 1 + α− δ

∣∣∣∣∣∣
−4x

(1− x)2

⎞
⎠ , (51)

where ρ is the vector of roots of the 2r degree polynomial

P2r(t;α, β, δ) = 3F2

⎛
⎝−r,−t, t+ α

β, δ

⎞
⎠ . (52)
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Theorem 14. Suppose r ∈ N and q ∈ N satisfies 2q <
∑p

j=1(bj − aj)− α. Then

F

⎛
⎝β + δ + r − q − 1, β, δ,a

δ + r − q, β + r − q,b
P2r

⎞
⎠ =

1

(b)q
F

⎛
⎝β + δ + r − q − 1,a

b+ q
QM

⎞
⎠ , (53)

where QM (x) is a polynomial of degree M = (p+ 2)q given by

QM(x) = (b+ x)q · F

⎛
⎝−q,Δ(β + δ + r − q − 1 + x, 2),a + x

δ + r − q, β + r − q,b+ x

∣∣∣∣∣∣
− 4

⎞
⎠ .

Formula (53) remains true for r = 0 if we omit P2r on the left hand side.
Proof. Set α = β + δ + r − q − 1. Application of Lemma 1 to formula (51) then yields:

F

⎛
⎝ α, β, δ,a

δ + r − q, β + r − q,b
P2r

⎞
⎠ =

q∑
k=0

Δ(α, 2)k(−q)k(a)k(−4)k

(δ + r − q)k(β + r − q)k(b)kk!
F

⎛
⎝α+ 2k,a+ k

b+ k

⎞
⎠

=

∞∑
n=0

(α)n(a)n
(b)n(b+ n)qn!

q∑
k=0

(−q)k(α+ n)2k(a+ n)k(−1)k(b+ n)q
(δ + r − q)k(β + r − q)k(b+ n)kk!

=

∞∑
n=0

(α)n(a)n
(b)n(b+ n)qn!

QM (n),

where we applied the relations

(a)k(a+ k)n = (a)n(a+ n)k, (α+ n)2k = 4kΔ(α+ n, 2)k.

�

5. SUMMATION FORMULAS

In this section we specialize some transformations from Section 2 and from our paper [8] to get
summation formulas which appeared interesting and new to us. Note that the formulas presented in
Theorems 15, 17, 18 sum hypergeometric functions with non-linearly constrained parameters. This
type of formulas is rarely met in the hypergeometric literature. Two examples were found by us recently
in [6, (45)], [8, p. 15].

Theorem 15. For �(β) > 0 the following summation formula holds true:

5F4

⎛
⎝β, d, 1 − d, ζ + 1, ψ + 1

γ, 3 + 2β − γ, ζ, ψ

⎞
⎠

=
AΓ(γ)Γ ((d+ γ)/2) Γ (1 + β − (d+ γ)/2) Γ (3 + 2β − γ)

Γ(d+ γ − 1)Γ ((γ − d)/2) Γ (1 + β + (d− γ)/2) Γ(2 + 2β − d− γ)
, (54)

where ζ = (2 + β − d− γ)(γ − d− 1)/β + γ − 1,

ψ =
β(1− d)(β + d)

(β + d)(2 + β − d− γ) + (γ − β − 1)(d + γ − 2)

and

A =
β

(β(γ − 1) + (2 + β − d− γ)(γ − d− 1))(β + d)
.

Proof. In [8, (59)] we proved that

5F4

⎛
⎝a, b, d, h + 1, f + 1

c, e, h, f

⎞
⎠ =

((e− d− 1)h + (c− a− b− 1)(h− d))Γ(e)Γ(s∗)

hΓ(s∗ + d+ 1)Γ(e− d)

× 5F4

⎛
⎝c− a− 1, c − b− 1, d, ξ̂ + 1, ζ̂ + 1

c, e+ c− a− b− 1, ξ̂, ζ̂

⎞
⎠ , (55)
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where s∗ = e+ c− a− b− d− 2, c− a− 1 �= 0, c− b− 1 �= 0,

ξ̂ = h+
(c− a− b− 1)(h− d)

e− d− 1
and ζ̂ =

(c− a− 1)(c − b− 1)f

(c− a− b− 1)f + ab
.

Setting e = f + 1, c = h+ 1, we will have

3F2

⎛
⎝a, b, d

h, f

⎞
⎠ = L · 5F4

⎛
⎝ h− a, h− b, d, ψ + 1, ζ + 1

h+ 1, f + h− a− b+ 1, ψ, ζ

⎞
⎠ , (56)

where

ζ = h+
(h− a− b)(h− d)

(f − d)
, ψ =

(h− a)(h − b)f

(h− a− b)f + ab
,

L =
((f − d)h+ (h− a− b)(h− d))Γ(f + 1))Γ(h + f − a− b− d)

(f − d)hΓ(h + f − a− b+ 1)Γ(f − d)
.

Assume that f = d+ β, h = γ − 1, a = γ + d− 2, b = γ − β − 1. Then we can apply Dixon’s theorem
(see, for example, [1, (2.2.11)]) to sum

3F2

⎛
⎝γ + d− 2, γ − β − 1, d

d+ β, γ − 1

⎞
⎠ ,

which after some algebra yields the result. �

Next theorem is a summation formula for general very well-poised non-terminating 7F6 containing a

parameter pair

⎡
⎣F + 1

F

⎤
⎦.

Theorem 16. Suppose �(A− C −D − E) > 0. Then

7F6

⎛
⎝ A, 1 +A/2, C,D,E, F + 1, 1 +A− F

A/2, 1 +A− C, 1 +A−D, 1 +A− E,F,A − F

⎞
⎠

=
Γ(1 +A− C)Γ(1 + A−D)Γ(1 + A− E)Γ(1 + A− C −D − E)

Γ(1 +A)Γ(1 + A− C − E)Γ(1 + A−D − E)Γ(1 + A− C −D)

×
(
1 +

CDE

F (F −A)(C +D + E −A)

)
. (57)

Proof. Changing capital to lowercase letters in [8, (79)] and setting (a− 1)/2− b = −1 we will have:

7F6

⎛
⎝ 2b− 1, b + 1/2, c, d, e, b + 1/2− σ, b+ 1/2 + σ

b− 1/2, 2b − c, 2b− d, 2b− e, b− 1/2 − σ, b− 1/2 + σ

⎞
⎠

=
Γ(2b− c)Γ(2b− d)Γ(2b − e)Γ(2b− c− d− e)

Γ(2b− c− e)Γ(2b − d− e)Γ(2b− c− d)Γ(2b)

(
1− cde(f + 1)

b2f(c+ d+ e− 2b+ 1)

)
,

where

σ2 =
(2b− 1)2 − (4b− 1)f

4(f + 1)
.

The last expression can be written as

f =
(b− 1/2)2 − σ2

(b− 1/4) + σ2
.
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Using this expression we can get rid of f on the right hand side of the last formula. Next, setting
A = b− 1/2, F = b− 1/2 − σ, C = c, D = d, E = e, after much rearrangements and simplifications
we arrive at (57).

Theorem 17. For −d ∈ N the following summation formula holds:

7F6

⎛
⎝ Δ(α, 3),Δ(1 + α− e, 2), d, ξ + 1

α/2, (α + 3)/2,Δ(2 + α+ d− e, 3), ξ

⎞
⎠

=
hΓ(e− α)Γ(e − d)(1 + α+ d− e)

Γ(e)Γ(e − α− d)((h − d)α − (e− d− 1)h)

(
1− 2d(h + 1)

(α+ 3)eh

)
, (58)

where

ξ =
(h− d)α− (e− d− 1)h

3h− 2d− e+ 1
.

Proof. Set 2β = α+ 1 in (23), use (10) for Y1(1, 3) and simplify. �

Theorem 18. For −d ∈ N the following summation formula holds:

8F7

⎛
⎝ Δ(α, 3), β,Δ(1 + α− e, 2), d, ξ + 1

Δ(α, 2), β + 1,Δ(2 + α+ d− e, 3), ξ

⎞
⎠

=
Γ(e− α)Γ(e − d− 1)β(1 + α+ d− e)[h(3β − α)(β − d− 1) + d(2β − α+ h)]

Γ(e− 1)Γ(e− α− d)(β − d− 1)(β − d)(3β − α)((h − d)α− (e− d− 1)h)
, (59)

where 3β + e− α− d = 2 and

ξ =
(h− d)α− (e− d− 1)h

3h− 2d− e+ 1
.

Proof. Rakha and Rathie [17, (2.5)] (see also [9, (3.1)]) extended the Pfaff–Saalschütz summation
theorem by adding a parameter pair with unit shift. Their extension can be written in the form

4F3

⎛
⎝−j, a, b, f + 1

c, d, f

⎞
⎠ =

(c− a− 1)j(d− a)j(γ + 1)j
(c)j(d)j(γ)j

, c+ d = −j + a+ b+ 2,

where

γ =
(c− a− 1)(c− b− 1)f

ab+ (c− a− b− 1)f
.

Imposing the condition 3β + e−α− d = 2 we get Saalschützian 4F3 with one unit shift on the left hand
side of (23). Using the above formula to sum 4F3 and applying (10) for Y1(1, 3) after some simplifications
we arrive at (59). �

Theorem 19. For each r, n ∈ N the following summation formula is true:

5F4

⎛
⎝ Δ(α− 1, 3),−1/2 − n,−n

α/2 + r, α/2 + 3/2,−1/3 − n,−2/3 − n

⎞
⎠ =

3Γ(2n + 3)Γ(3n + α+ 3)

(α+ 2)Γ(3n + 4)Γ(2n + α+ 2)

×
{
1 +

2nα(α− 1)(1 − r)(β − r − 1/2)r(−β − r − 1/2)r
(α+ 3)(α + 5)(α+ 2r)(α + 2n+ 2)(β + 1/2)r(−β + 1/2)r

×
[
1 +

2r(α+ 1)

(β − r − 1/2)(−β − r − 1/2)

]}
. (60)

Proof. Set β = 3/2− r in (29). �
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For r = 0 the above theorem takes a particularly simple form:

5F4

⎛
⎝ Δ(α− 1, 3),−1/2 − n,−n

α/2, α/2 + 3/2,−1/3 − n,−2/3 − n

⎞
⎠

=
3Γ(2n + 3)Γ(3n + α+ 3)

(α+ 2)Γ(3n + 4)Γ(2n + α+ 2)

(
1 +

2n(α− 1)

(α+ 3)(α + 5)(α + 2n+ 2)

)
.

FUNDING

The second author has been supported by the Russian Foundation for Basic Research under
project 19-010-00206. The third named author has been supported by the Russian Foundation for
Basic Research under project 20-01-00018.

REFERENCES
1. G. E. Andrews, R. Askey, and R. Roy, Special Functions, Vol. 71 of Encyclopedia of Mathematics and Its

Applications (Cambridge Univ. Press, New York, 1999).
2. P. Blaschke, “Hypergeometric form of the fundamental theorem of calculus,” arXiv:1808.04837 (2018).
3. I. Gessel and D. Stanton, “Strange evaluations of hypergeometric series,” SIAM J. Math. Anal. 13, 295–308

(1982).
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