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Abstract—The main subjects of the present paper are the Goursat and Darboux boundary-value
problems for hyperbolic systems with two independent variables. We show that obtained by
T.V. Chekmarev in terms of successive approximations formulas for solution of the Goursat problem
can be built also by the Riemann method, work out an analog of the Riemann–Hadamard method
for the system, and introduce its Riemann–Hadamard matrix. We solve the Darboux problem in
terms of the introduced matrix.
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1. INTRODUCTION

System of equations of the first order

∂ui
∂xi

=

n∑

k=1

aik(x1, . . . , xn)uk + fi(x1, . . . , xn), i = 1, . . . , n, (1)

was studied by a number of authors (see, for instance, [1–6] and references in these papers). It is of
interest, in particular, in connection with differential equations of mixed type. The most number of
publications concerns the case n = 2.

The author prposed [7] a version of the ariemann method for systems of differential equations both
with simple and multiple characteristics.

The Darboux problem for hyperbolic equations and systems is of great interest. This problem for
equations of second order with two independent variables is considered by a number of authors. We
mention here the works [8, p. 228–233], [9–14]. There exist also investigations of the Darboux problem
for hyperbolic equations of the third order [15, 16].

2. THE GOURSAT PROBLEM

We consider the following system of equations
{
u1x = a11(x, y)u1 + a12(x, y)u2 + f1(x, y),

u2y = a21(x, y)u1 + a22(x, y)u2 + f2(x, y),
(2)

in rectangle D = {x0 < x < x1, y0 < y < y1}. Here a11, a12, a21, a22, f1, f2 ∈ C(D). A solution u is
called regular in D if u1, u2, u1x, u2y ∈ C(D).
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The Goursat problem: Find regular solution of system (2) in domain D which is continuously
extendable on the boundary of domain D and satisfies boundary conditions

u1(x0, y) = ϕ(y), u2(x, y0) = ψ(x),

ϕ(y) ∈ C([y0, y1]), ψ(x) ∈ C([x0, x1]). (3)

The Goursat problem has unique solution [3, p. 15–23].
A linear transformation of the desired functions reduces (2) to the case

a11 ≡ a22 ≡ 0. (4)

In what follows we conider these identities as fulfilled.
Chekmarev [2, 3, p. 15–22] by means of the successive approximations method obtained solution of

the Goursat problem (2), (3) in the form

u1(x, y) = ϕ(y) +

y∫

y0

ϕ(τ)L(x, y, x0, τ)dτ +

x∫

x0

ψ(t)K(x, y, t, y0)dt+

x∫

x0

f1(t, y)dt

+

x∫

x0

y∫

y0

(L(x, y, t, τ)f1(t, τ) +K(x, y, t, τ)f2(t, τ))dτdt, (5)

u2(x, y) = ψ(x) +

y∫

y0

ϕ(τ)M(x, y, x0, τ)dτ +

x∫

x0

ψ(t)N(x, y, t, y0)dt+

y∫

y0

f2(x, τ)dτ

+

x∫

x0

y∫

y0

(M(x, y, t, τ)f1(t, τ) +N(x, y, t, τ)f2(t, τ))dτdt, (6)

where L, K, M , N are determined by coefficients a12, a21 as uniformly convergent series, and satiffy
relations

K(x, y, t, τ) = a12(t, y) +

x∫

t

a12(ξ, y)N(ξ, y, t, τ)dξ,

L(x, y, t, τ) =

x∫

t

a12(ξ, y)M(ξ, y, t, τ)dξ,

M(x, y, t, τ) = a21(x, τ) +

y∫

t

a21(x, η)L(x, η, t, τ)dη,

N(x, y, t, τ) =

y∫

τ

a21(x, η)K(x, η, t, τ)dη. (7)

There exists other approach to solving of described aboveproblems. We can apply to system (2) the
Riemann method. Rewrite (2) in vector-matrix form

L(U) = F, L(U) ≡ AUx +BUy −CU, U = colon(u1, u2),

A =

⎛

⎝1 0

0 0

⎞

⎠ , B =

⎛

⎝0 0

0 1

⎞

⎠ , C =

⎛

⎝ 0 a12

a21 0

⎞

⎠ ,

F = colon(f1, f2). (8)
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Introduce Riemann matrix R = colon(R1,R2), where vectors Ri(x, y, ξ, η) = (ri1, ri2), i = 1, 2, are
solutions of systems

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ri1(x, y) = δi1 −
x∫

ξ

a21(α, y)ri2(α, y)dα,

ri2(x, y) = δi2 −
y∫

η

a12(x, β)ri1(x, β)dβ,

(9)

δij is Kronecker symbol. The solutions of systems (9) exist and are unique in the class of continuous
functions. We differentiate (9), and see that system (9) is equivalent to two Goursat problems

{
ri1x = −a21(x, y)r12, ri2y(x, y) = −a12(x, y)r11,

ri1|x=ξ = δi1, ri2|y=η = δi2, i = 1, 2.
(10)

Clearly, function R with respect to the first pair of variables satisfies the conjugated to (2) system

L∗(V) = 0, L∗(V) ≡ −(VA)x − (VB)y −VC.

We integrate identity

RL(U) = (RAU)x + (RBU)y (11)

over rectangle D1 = {x0 < x < ξ, y0 < y < η}, (ξ, η) ∈ D, and obtain

η∫

y0

r11(ξ, y, ξ, η)u1(ξ, y)dy +

ξ∫

x0

r12(x, η, ξ, η)u2(x, η)dx =

η∫

y0

r11(x0, y, ξ, η)u1(x0, y)dy

+

ξ∫

x0

r12(x, y0, ξ, η)u2(x, y0)dx+

∫∫

D1

(r11(x, y, ξ, η)f1(x, y) + r12(x, y, ξ, η)f2(x, y))dxdy, (12)

η∫

y0

r21(ξ, y, ξ, η)u1(ξ, y)dy +

ξ∫

x0

r22(x, η, ξ, η)u2(x, η)dx =

η∫

y0

r21(x0, y, ξ, η)u1(x0, y)dy

+

ξ∫

x0

r22(x, y0, ξ, η)u2(x, y0)dx+

∫∫

D1

(r21(x, y, ξ, η)f1(x, y) + r22(x, y, ξ, η)f2(x, y))dxdy. (13)

We use the properties of the Riemann matrix, differentiate (12) with respect to variable η and (13) with
respect to ξ, and obtain solutions of the Goursat problem in the following form:

u1(ξ, η) = ϕ(η) +

η∫

y0

r11η(x0, y, ξ, η)ϕ(y)dy +

ξ∫

x0

r12η(x, y0, ξ, η)ψ(x)dx +

ξ∫

x0

f1(x, η)dx

+

η∫

y0

ξ∫

x0

(r11η(x, y, ξ, η)f1(x, y) + r12η(x, y, ξ, η)f2(x, y))dxdy, (14)

u2(ξ, η) = ψ(ξ) +

η∫

y0

r21ξ(x0, y, ξ, η)ϕ(y)dy +

ξ∫

x0

r22ξ(x, y0, ξ, η)ψ(x)dx +

η∫

y0

f2(ξ, y)dy
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Fig. 1.

+

η∫

y0

ξ∫

x0

(r21ξ(x, y, ξ, η)f1(x, y) + r22ξ(x, y, ξ, η)f2(x, y))dxdy. (15)

The formulas (5), (6), (7), (9), (14), (15) imply relations

L(ξ, η, x, y) = r11η(x, y, ξ, η), K(ξ, η, x, y) = r12η(x, y, ξ, η),

M(ξ, η, x, y) = r21ξ(x, y, ξ, η), N(ξ, η, x, y) = r22ξ(x, y, ξ, η).

3. THE DARBOUX PROBLEM

We consider the Darboux problem: Find regular solution of system (2) in domain D0 =
{(x, y) : 0 < y < x < T}, which is continuable on the boundary of domain D and satisfies bound-
ary conditions

u1(y, y) = λ(y), u2(x, 0) = μ(x),

λ(y) ∈ C([0, T ]), μ(x) ∈ C([0, T ]). (16)

Solution of the Darboux problem exists, and it is unique [3, p. 26–29].
We fix a point P (ξ, η) ∈ D0, and consider corresponding quadrangle Dp = {(x, y) : y < x < ξ, 0 <

y < η} ⊂ D0 with vertices at points O(0, 0), P1(η, η), P (ξ, η), P3(ξ, 0), rectangle D1 = {(x, y) : η <
x < ξ, 0 < y < η} with vertices at points P , P1, P2(η, 0), P3, and triangle D2 = {(x, y) : y < x < η, 0 <
y < η} with vertices at points O, P1, P2 (see Fig. 1).

Define Riemann–Hadamard matrix for the Darboux problem H(x, y, ξ, η). Let

H(x, y, ξ, η) =

{
R(x, y, ξ, η), (x, y) ∈ D1,

V (x, y, ξ, η), (x, y) ∈ D2,
(17)

where R is the defined above Riemann matrix, and matrix V = colon(V1,V2), with vectors Vi(x, y,
ξ, η) = (r̄i1, r̄i2), i = 1, 2, needs to be specified in domain D2.

We require that V1, V2 be solutions the Darboux problems in domain D2 for systems

r̄i1x = −a21(x, y)r̄12, r̄i2y(x, y) = −a12(x, y)r̄11, i = 1, 2, (18)

with conditions relatively

r̄11(η, y, ξ, η) = r11(η, y, ξ, η), r̄12(y, y, ξ, η) = 0 (19)
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for vector V1, and

r̄21(η, y, ξ, η) = r21(η, y, ξ, η), r̄22(y, y, ξ, η) = 0 (20)

for vector V2.
We integrate identity (11) over rectangle D1:

η∫

0

r11(ξ, y, ξ, η)u1(ξ, y)dy +

ξ∫

η

r12(x, η, ξ, η)u2(x, η)dx =

η∫

0

r11(η, y, ξ, η)u1(η, y)dy

+

ξ∫

η

r12(x, 0, ξ, η)u2(x, 0))dx +

∫∫

D1

(r11(x, y, ξ, η)f1(x, y) + r12(x, y, ξ, η)f2(x, y))dxdy, (21)

η∫

0

r21(ξ, y, ξ, η)u1(ξ, y)dy +

ξ∫

η

r22(x, η, ξ, η)u2(x, η)dx =

η∫

0

r21(η, y, ξ, η)u1(η, y)dy

+

ξ∫

η

r22(x, 0, ξ, η)u2(x, 0))dx +

∫∫

D1

(r21(x, y, ξ, η)f1(x, y) + r22(x, y, ξ, η)f2(x, y))dxdy. (22)

Integration of identity (11) over triangle D2 gives

−
η∫

0

r̄12(x, 0, ξ, η)u2(x, 0)dx +

η∫

0

r̄11(η, y, ξ, η)u1(η, y)dy +

0∫

η

(r̄11(y, y, ξ, η)u1(y, y)

− r̄12(y, y, ξ, η)u2(y, y))dy +

∫∫

D2

(r̄11(x, y, ξ, η)f1(x, y) + r̄12(x, y, ξ, η)f2(x, y))dxdy, (23)

−
η∫

0

r̄22(x, 0, ξ, η)u2(x, 0)dx +

η∫

0

r̄21(η, y, ξ, η)u1(η, y)dy +

0∫

η

(r̄21(y, y, ξ, η)u1(y, y)

− r̄22(y, y, ξ, η)u2(y, y))dy +

∫∫

D2

(r̄21(x, y, ξ, η)f1(x, y) + r̄22(x, y, ξ, η)f2(x, y))dxdy. (24)

We add (21) with (23) and (22) with (24), and obtain
η∫

0

r11(ξ, y, ξ, η)u1(ξ, y)dy +

ξ∫

η

r12(x, η, ξ, η)u2(x, η)dx

+

η∫

0

r̄11(η, y, ξ, η)u1(η, y)dy +

0∫

η

(r̄11(y, y, ξ, η)u1(y, y)− r̄12(y, y, ξ, η)u2(y, y))dy

=

η∫

0

r11(η, y, ξ, η)u1(η, y)dy +

ξ∫

η

r12(x, 0, ξ, η)u2(x, 0))dx

+

η∫

0

r̄12(x, 0, ξ, η)u2(x, 0)dx +

∫∫

D1

(r11(x, y, ξ, η)f1(x, y) + r12(x, y, ξ, η)f2(x, y))dxdy
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+

∫∫

D2

(r̄11(x, y, ξ, η)f1(x, y) + r̄12(x, y, ξ, η)f2(x, y))dxdy, (25)

η∫

0

r21(ξ, y, ξ, η)u1(ξ, y)dy +

ξ∫

η

r22(x, η, ξ, η)u2(x, η)dx

+

η∫

0

r̄21(η, y, ξ, η)u1(η, y)dy +

0∫

η

(r̄21(y, y, ξ, η)u1(y, y)− r̄22(y, y, ξ, η)u2(y, y))dy

=

η∫

0

r21(η, y, ξ, η)u1(η, y)dy +

ξ∫

η

r22(x, 0, ξ, η)u2(x, 0))dx

+

η∫

0

r̄12(x, 0, ξ, η)u2(x, 0)dx +

∫∫

D1

(r21(x, y, ξ, η)f1(x, y) + r22(x, y, ξ, η)f2(x, y))dxdy

+

∫∫

D2

(r̄21(x, y, ξ, η)f1(x, y) + r̄22(x, y, ξ, η)f2(x, y))dxdy. (26)

It follows from (9), (19), (20) that r11(ξ, y, ξ, η) = 1, r12(x, η, ξ, η) = 0, r21(ξ, y, ξ, η) = 0, r22(x, η,
ξ, η) = 1, r̄12(y, y, ξ, η) = 0, r̄22(y, y, ξ, η) = 0, and

r̄11(η, y, ξ, η) − r11(η, y, ξ, η) = 0, r̄21(η, y, ξ, η) − r21(η, y, ξ, η) = 0.

Consequently, (25) and (26) are representable as
η∫

0

u1(ξ, y)dy = F1(ξ, η),

ξ∫

η

u2(x, η)dx = F2(ξ, η), (27)

where F1(ξ, η), F2(ξ, η) are completely determined by the Riemann–Hadamard matrix H and boundary
data of the Darboux problem.

We differentiate the first equality (27) in η, and second in ξ, and obtain explicit solution of the Darboux
problem in terms of the Riemann–Hadamard matrix.
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