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Abstract—The problem of finding the minimal eigenvalue and the corresponding positive eigen-
function of the nonlinear Sturm–Liouville problem for the ordinary differential equation with coeffi-
cients nonlinear depending on a spectral parameter is investigated. This problem arises in modeling
the plasma of radio-frequency discharge at reduced pressures. A sufficient condition for the existence
of a minimal eigenvalue and the corresponding positive eigenfunction of the nonlinear Sturm–
Liouville problem is established. The original differential eigenvalue problem is approximated by
the finite element method with Lagrangian finite elements of arbitrary order on a uniform grid. The
error estimates of the approximate eigenvalue and the approximate positive eigenfunction to exact
ones are proved. Investigations of this paper generalize well known results for the Sturm–Liouville
problem with linear entrance on the spectral parameter.
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1. INTRODUCTION

The present paper is concerned with investigating the following differential nonlinear Sturm–
Liouville problem: find the minimal eigenvalue λ ∈ Λ, Λ = [0,∞), and the corresponding positive
eigenfunction u = u(x), x ∈ Ω, Ω = (0, π), Ω = [0, π], satisfying the following equations

−(p(λs(x))u′)′ = r(λs(x))u, x ∈ Ω, u(0) = u(π) = 0. (1)

We assume that p(μ), r(μ), μ ∈ Λ, and s(x), x ∈ Ω, are given infinitely continuously differentiable
positive functions. We also assume that the function p(μ), μ ∈ Λ, and r(μ), μ ∈ Λ, are nondecreasing
functions, p(μ) = p2, μ ∈ Λ2, and r(μ) = r2, μ ∈ Λ2, Λ2 = [α,∞), p2, r2, and α are given positive
numbers.

Nonlinear eigenvalue problems of the form (1) arise in modeling the plasma of radio-frequency
discharge at reduced pressures. The existence conditions derived in the present paper defines an
existence conditions for maintaining a stationary inductive coupled radio-frequency discharge at reduced
presure [1–4].

In the present paper, a sufficient condition for the existence of a minimal eigenvalue and the
corresponding positive eigenfunction of the nonlinear Sturm–Liouville problem (1) is established. The
original nonlinear differential eigenvalue problem is approximated by the finite element method with
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Lagrangian finite elements of arbitrary order on a uniform grid. The error estimates of the approximate
minimal eigenvalue and the approximate positive eigenfunction to exact ones are proved. Investigations
of this paper generalize well known results for Sturm–Liouville problems with linear dependence on the
spectral parameter and develop the results obtained in the paper [5].

Nonlinear eigenvalue problems also arise in various fields of science and technology [6–26]. Com-
putational methods for solving nonlinear matrix eigenvalue problems were constructed and investigated
in the papers [27–41]. Error of the finite difference methods for solving differential eigenvalue problems
with nonlinear entrance of the spectral parameter was studied in [42–44]. The finite element method
for solving nonlinear eigenvalue problems was investigated in [5, 45], and estimations of the effect of
numerical integration in finite element eigenvalue and eigenfunction approximations were established
in [46–48] with using the results [49–52]. The investigations of approximate methods for solving
eigenvalue problems with nonlinear entrance of the spectral parameter in a Hilbert space were carried
out in the paper [54] with help general results for linear spectral problems [55–59]. In the papers [60–66],
approximate methods for solving applied nonlinear boundary value problems and variational inequalities
have been investigated.

2. VARIATIONAL STATEMENT OF THE PROBLEM

Let H = L2(Ω) be the real Lebesgue space with the following norm and scalar product

|v|0 =

⎛
⎝

π∫

0

(v(x))2dx

⎞
⎠

1/2

, (u, v)0 =

π∫

0

u(x)v(x)dx, ∀u, v ∈ H.

By V = {v : v, v′ ∈ H, v(0) = v(π) = 0} we denote the real Sobolev space with the following norm and
scalar product

|v|1 =

⎛
⎝

π∫

0

(v′(x))2dx

⎞
⎠

1/2

, (u, v)1 =

π∫

0

u′(x)v′(x)dx ∀u, v ∈ V.

Introduce the subset K = {v : v ∈ V, v(x) > 0, x ∈ Ω} of the space V .
For fixed μ ∈ Λ, u, v ∈ V , w ∈ V \ {0}, we define the following bilinear forms and the Rayleigh

functional

a(μ, u, v) =

π∫

0

p(μs(x))u′v′dx, b(μ, u, v) =

π∫

0

r(μs(x))uvdx, R(μ,w) =
a(μ,w,w)

b(μ,w,w)
.

The differential nonlinear eigenvalue problem (1) is equivalent to the following variational nonlinear
eigenvalue problem: find the minimal number λ ∈ Λ and a function u ∈ K, b(λ, u, u) = 1, such that

a(λ, u, v) = b(λ, u, v) ∀v ∈ V. (2)

For fixed parameter μ ∈ Λ, we introduce the linear variational parameter eigenvalue problem: find the
minimal number γ(μ) ∈ Λ and a function u = uμ ∈ K, b(μ, u, u) = 1, such that

a(μ, u, v) = γ(μ)b(μ, u, v) ∀v ∈ V. (3)

The minimal eigenvalue of problem (3) satisfies the following variational representation

γ(μ) = min
v∈V \{0}

R(μ, v).

Therefore we obtain that the minimal eigenvalue λ of problem (2) is the minimal root of the equation

γ(μ) = 1, μ ∈ Λ. (4)

Formulate the auxiliary linear variational eigenvalue problem: find the minimal number κ ∈ Λ and a
function u ∈ K, (u, u)0 = 1, such that

(u, v)1 = κ(u, v)0 ∀v ∈ V. (5)
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The eigenvalue and eigenfunction of problem (5) is defined by

κ = 1, u(x) =

√
π

2
sinx, x ∈ Ω, κ =

(u, u)1
(u, u)0

= min
v∈V \{0}

(v, v)1
(v, v)0

.

For μ, η ∈ Λ, we denote

δp(μ, η) = max
x∈Ω

|p(μs(x))− p(ηs(x))|, δr(μ, η) = max
x∈Ω

|r(μs(x))− r(ηs(x))|.

Theorem 1. For μ, η ∈ Δ, the following estimate is valid

|γ(μ)− γ(η)| ≤ c(δp(μ, η) + δr(μ, η)),

where c is a positive constant independent of μ, η ∈ Δ, Δ = [α, β] ⊂ Λ.
Proof. This result is proved by analogy with the result of the paper [5]. �

Theorem 2. The convergences δp(μ, η) → 0, δr(μ, η) → 0, as η → μ hold.
Proof. This result is proved by analogy with the result of the paper [5]. �

Theorem 3. Suppose that the following conditions are valid p2 < r2, p(ξs1) > r(ξs2) for some
number ξ ∈ Λ, where numbers s1 and s2 are equal, respectively, to the minimum and maximum of
the function s(x), x ∈ Ω. Then there exist a minimal simple eigenvalue λ of problem (2) and a
corresponding positive eigenfunction u.

Proof. According to Theorems 1 and 2, γ(μ), μ ∈ Λ, is a continuous function. Using the variational
characterizations for the minimal eigenvalues of the problems (3) and (5), we obtain the relations

γ(μ) = min
v∈V \{0}

R(μ, v) = min
v∈V \{0}

π∫

0

p(μs(x))(v′)2dx

π∫

0

r(μs(x))v2dx

=
p2
r2

κ =
p2
r2

< 1,

γ(ξ) = min
v∈V \{0}

R(ξ, v) = min
v∈V \{0}

π∫

0

p(ξs(x))(v′)2dx

π∫

0

r(ξs(x))v2dx

≥ p(ξs1)

r(ξs2)
κ =

p(ξs1)

r(ξs2)
> 1,

for μs1 ∈ Λ2. Since γ(μ), μ ∈ Λ, is the continuous function, there exists a minimal root of equation (4),
which defines the minimal eigenvalue λ ∈ Λ of problem (2) corresponding to a positive eigenfunction u.
The eigenvalue λ ∈ Λ is simple and corresponds to a positive eigenfunction, since γ(μ) is the simple
eigenvalue of the parametric problem (3) for μ = λ corresponding to a positive eigenfunction. This
completes the proof of the theorem. �

3. FINITE ELEMENT APPROXIMATION OF THE PROBLEM

Let us partition the segment [0, π] by equidistant points xi = ih, i = 0, 1, . . . ,m, into the elements
ei = [xi−1, xi], i = 1, 2, . . . ,m, h = π/m. By Vh we denote the subspace of the space V , consisting
of continuous functions vh on Ω that are polynomials of degree at most n on each element ei, i =
1, 2, . . . ,m, Nh = dimVh = mn− 1. Set

Kh = {vh : vh ∈ Vh, v
h(x) > 0, x ∈ Ω}.

The variational nonlinear eigenvalue problem (2) is approximated by the following finite element
problem: find the minimal number λh ∈ Λ and a function uh ∈ Kh, b(λh, uh, uh) = 1, such that

a(λh, uh, vh) = b(λh, uh, vh) ∀vh ∈ Vh. (6)
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For fixed μ ∈ Λ, we define linear parameter eigenvalue problem: find the minimal number γh(μ) and a
function uh = uhμ ∈ Kh, b(μ, uh, uh) = 1, such that

a(μ, uh, vh) = γh(μ)b(μ, uh, vh) ∀vh ∈ Vh. (7)

The following variational characterization for the minimal eigenvalue of problem (7) is valid

γh(μ) = min
vh∈Vh\{0}

R(μ, vh).

The minimal eigenvalue λh of the finite element problem (6) is the minimal root of the equation

γh(μ) = 1, μ ∈ Λ, (8)

where γh(μ) is the minimal eigenvalue of the finite element problem (7).

Theorem 4. For μ, η ∈ Δ, the following estimate is valid

|γh(μ)− γh(η)| ≤ c(δp(μ, η) + δr(μ, η)),

where c is a positive constant independent of μ, η ∈ Δ, Δ = [α, β] ⊂ Λ.

Proof. The proof of this theorem is similar to that of Theorem 1. �

Theorem 5. Suppose that the following conditions are valid p2 < r2, p(ξs1) > r(ξs2) for some
number ξ ∈ Λ, where numbers s1 and s2 are equal, respectively, to the minimum and maximum of
the function s(x), x ∈ Ω. Then for sufficiently small h there exist a minimal simple eigenvalue λh

of problem (2) and a corresponding positive eigenfunction uh.

Proof. By Theorem 4, γh(μ), μ ∈ Λ, is a continuous function. Using the variational characterizations
for the minimal eigenvalues, we derive the relations

γh(μ) = min
vh∈Vh\{0}

R(μ, vh) = min
vh∈Vh\{0}

π∫

0

p(μs(x))((vh)′)2dx

π∫

0

r(μs(x))(vh)2dx

=
p2
r2

κ
h < 1,

γh(ξ) = min
vh∈Vh\{0}

R(ξ, vh) = min
vh∈Vh\{0}

π∫

0

p(ξs(x))((vh)′)2dx

π∫

0

r(ξs(x))(vh)2dx

≥ p(ξs1)

r(ξs2)
κ
h ≥ p(ξs1)

r(ξs2)
> 1,

for μs1 ∈ Λ2 and sufficiently small h. Here we have taken into account that 1 = κ ≤ κ
h → 1 as h → 0,

where

κ
h = min

vh∈Vh\{0}

(vh, vh)1
(vh, vh)0

.

Since γh(μ), μ ∈ Λ, is the continuous function, there exists a minimal root of equation (8), which
defines the minimal eigenvalue λh ∈ Λ of problem (6) corresponding to a positive eigenfunction uh.
The eigenvalue λh ∈ Λ is simple and corresponds to a positive eigenfunction, since γh(μ) is the simple
eigenvalue of the parameter eigenvalue problem (7) for μ = λh corresponding to a positive eigenfunction
for sufficiently small h. This completes the proof of the theorem. �
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4. ERROR ANALYSIS OF THE FINITE ELEMENT SCHEME

By c we denote various positive constants independent of h. For fixed μ ∈ Λ, we introduce the
operator Ph(μ) : V → Vh defined by the formula a(μ, u− Ph(μ)u, v

h) = 0 for any vh ∈ Vh, where u ∈ V ,
|u− Ph(μ)u|1 ≤ chn. Put Ph = Ph(λ).

By γhi (μ), uhi (μ) = uhi (μ, x), x ∈ Ω, μ ∈ Λ, i = 1, 2, . . . , Nh, we denote eigenvalues and eigen-
functions satisfying equation (7) and such that γh1 (μ) ≤ γh2 (μ) ≤ . . . ≤ γhNh

(μ), a(μ, uhi (μ), u
h
j (μ)) =

γhi (μ)δij , b(μ, uhi (μ), u
h
j (μ)) = δij , i, j = 1, 2, . . . , Nh, uh1(μ) = uhμ ∈ Kh, γh1 (μ) = γh(μ), the functions

uhi (μ), μ ∈ Λ, i = 1, 2, . . . , Nh, form a complete system in the Hilbert space Vh. For fixed μ ∈ Λ and
sufficiently small h, the following error estimates hold: 0 ≤ γhi (μ)− γi(μ) ≤ ch2n, i = 1, 2, |uhμ − uμ|1 ≤
chn.

Theorem 6. The following convergences hold λh → λ, uh → u in V as h → 0.
Proof. This result follows from the paper [5]. �

Theorem 7. Suppose that γ′(λ) 	= 0. Then for sufficiently small h the following error estimate
holds

0 ≤ λh − λ ≤ ch2n.

Proof. We have (γh(μ))′ → γ′(μ) as h → 0, since

(γh(μ))′ = a′(μ, vh, vh)− γh(μ)b′(μ, vh, vh) → a′(μ, v, v) − γ(μ)b′(μ, v, v) = γ′(μ)

as h → 0, μ ∈ Λ, vh = uhμ, v = uμ, where γh(μ) → γ(μ), uhμ → uμ in V as h → 0.

For fixed ε > 0, we conclude λh ∈ [λ− ε, λ+ ε] for sufficiently small h and there exists ξh ∈ [λ−
ε, λ+ ε] such that

c1(λ
h − λ) ≤ −(γh(ξh))′(λh − λ) = γh(λ)− γh(λh) = γh(λ)− γ(λ) ≤ c2h

2n

for sufficiently small h, since −(γh(μ))′ ≥ c1 for μ ∈ [λ− ε, λ+ ε] and sufficiently small h, γh(λh) =
γ(λ) = 1. This proves the theorem. �

Theorem 8. Assume that γ′(λ) 	= 0. Let u be the positive eigenfunction of problem (2), and let
uh be approximate eigenfunction of problem (6). Then for sufficiently small h the following error
estimate holds

|uh − u|1 ≤ chn.

Proof. Denote βh
i = b(λh, Phu, y

h
i ), i = 1, 2, . . . , Nh, where yhi = uhi (λ

h), i = 1, 2, . . . , Nh. Since
elements yhi , i = 1, 2, . . . , Nh, form orthonormal basis in the Hilbert space Vh, it follows that the element
Phu ∈ Vh can be represented in the form Phu = βh

1 y
h
1 + wh

1 , where wh
1 = βh

2 y
h
2 + . . .+ βh

NyhN .

The inequality γ2(λ)− γ1(λ) > 0 implies that

γh2 (λ
h)− 1 = γh2 (λ

h)− γ1(λ) = (γ2(λ)− γ1(λ)) + (γh2 (λ
h)− γh2 (λ))

+ (γh2 (λ)− γ2(λ)) ≥ (γ2(λ)− γ1(λ))− ch2n ≥ c

for sufficiently small h. Set

ζh(u) = sup
vh∈Vh\{0}

|a(λh, Phu, v
h)− λb(λh, Phu, v

h)|
|vh|1

.

Then we have the estimate ζh(u) ≤ chn.

Let us prove the estimate |wh
1 |1 ≤ cζh(u). It is readily seen that a(λh, Phu,w

h
1 ) = a(λh, wh

1 , w
h
1 ),

b(λh, Phu,w
h
1 ) = b(λh, wh

1 , w
h
1 ), a(λ

h, wh
1 , w

h
1 ) ≥ γh2 (λ

h)b(λh, wh
1 , w

h
1 ). These relations imply the in-

equalities

|wh
1 |ζh(u) ≥ a(λh, Phu,w

h
1 )− b(λh, Phu,w

h
1 )

= a(λh, wh
1 , w

h
1 )− b(λh, wh

1 , w
h
1 ) ≥

γh2 (λ
h)− 1

γh2 (λ
h)

a(λh, wh
1 , w

h
1 ) ≥ c−1|wh

k |21,
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which in turn imply the required estimate.
Now, using the estimates we have proved, we arrive at the inequalities

|Phu− βh
1 y

h
1 |1 = |wh

1 |1 ≤ cζh(u) ≤ chn

for sufficiently small h.
Denote ||v||b(μ) = b(μ, v, v). Then we derive

βh
1 = ||βh

1 y
h
1 ||b(λh) ≤ ||u||b(λ) +

∣∣∣||u||b(λ) − ||u||b(λh)

∣∣∣+ ||u− βh
1 y

h
1 ||b(λh) ≤ 1 + chn,

βh
1 = ||βh

1 y
h
1 ||b(λh) ≥ ||u||b(λ) −

∣∣∣||u||b(λ) − ||u||b(λh)

∣∣∣− ||u− βh
1 y

h
1 ||b(λh) ≥ 1− chn,

where we have taken into account that

∣∣∣||u||b(λ) − ||u||b(λh)

∣∣∣ ≤
∣∣∣||u||2b(λ) − ||u||2

b(λh)

∣∣∣
||u||b(λ) + ||u||b(λh)

≤ c(λh − λ) ≤ ch2n,

||u− βh
1 y

h
1 ||b(λh) ≤ c|u− βh

1 y
h
1 |1 ≤ c(|u− Phu|1 + |Phu− βh

1 y
h
1 |1) ≤ chn.

Consequently, we obtain |1− βh
1 | ≤ chn. As a result we conclude

c|uh − u|1 ≤ ||u− yh1 ||a(λh) ≤ ||u− βh
1 y

h
1 ||a(λh) + ||yh1 − βh

1 y
h
1 ||a(λh)

≤ ||u− βh
1 y

h
1 ||a(λh) + c|1− βh

1 | ≤ chn.

This proves the theorem. �
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